1
|
Wang W, Li E, Zou J, Qu C, Ayala J, Wen Y, Islam MS, Weintraub NL, Fulton DJ, Liang Q, Zhou J, Liu J, Li J, Sun Y, Su H. Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy. Circ Res 2024; 135:e39-e56. [PMID: 38873758 PMCID: PMC11264309 DOI: 10.1161/circresaha.124.324285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. Apart from Parkin, little is known about additional Ub (ubiquitin) ligases that mediate mitochondrial ubiquitination and turnover, particularly in highly metabolically active organs such as the heart. METHODS In this study, we have combined in silico analysis and biochemical assay to identify CRL (cullin-RING ligase) 5 as a mitochondrial Ub ligase. We generated cardiomyocytes and mice lacking RBX2 (RING-box protein 2; also known as SAG [sensitive to apoptosis gene]), a catalytic subunit of CRL5, to understand the effects of RBX2 depletion on mitochondrial ubiquitination, mitophagy, and cardiac function. We also performed proteomics analysis and RNA-sequencing analysis to define the impact of loss of RBX2 on the proteome and transcriptome. RESULTS RBX2 and CUL (cullin) 5, 2 core components of CRL5, localize to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, increased cardiomyocyte cell death, and has a global impact on the mitochondrial proteome. In vivo, deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to the rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. The action of RBX2 in mitochondria is not dependent on Parkin, and Parkin gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 (PTEN-induced kinase 1) in mitochondria. CONCLUSIONS These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that regulates mitophagy and cardiac homeostasis in a Parkin-independent, PINK1-dependent manner.
Collapse
Affiliation(s)
- Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Ermin Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Chen Qu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Juan Ayala
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Yuan Wen
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Md Sadikul Islam
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - David J. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Qiangrong Liang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York 11568, United States
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| |
Collapse
|
2
|
Wang W, Li E, Zou J, Qu C, Ayala J, Wen Y, Islam MS, Weintraub NL, Fulton DJ, Liang Q, Zhou J, Liu J, Li J, Sun Y, Su H. The Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581168. [PMID: 38464205 PMCID: PMC10925227 DOI: 10.1101/2024.02.24.581168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes. CRL5 is a multi-subunit Ub ligase comprised by the catalytic RING box protein RBX2 (also known as SAG), scaffold protein Cullin 5 (CUL5), and a substrate-recognizing receptor. Analysis of the mitochondrial outer membrane-interacting proteome uncovered a robust association of CRLs with mitochondria. Subcellular fractionation, immunostaining, and immunogold electron microscopy established that RBX2 and Cul5, two core components of CRL5, localizes to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, and increased cell death in cardiomyocytes. In vivo , deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. Notably, the action of RBX2 in mitochondria is not dependent on PARKIN, and PARKIN gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. Proteomics and biochemical analyses further revealed a global impact of RBX2 deficiency on the mitochondrial proteome and identified several mitochondrial proteins as its putative substrates. These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that controls mitophagy under physiological conditions in a PARKIN-independent, PINK1-dependent manner, thereby regulating cardiac homeostasis.
Collapse
|
3
|
Tan Y, Xu M, Lin D. Review of research progress on intestinal microbiota based on metabolism and inflammation for depression. Arch Microbiol 2024; 206:146. [PMID: 38462572 DOI: 10.1007/s00203-024-03866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
Depression is a prevalent mental illness, affecting a significant portion of the global population. Recent research has highlighted the crucial role of the gut microbiota in both metabolic and central nervous health. By reviewing literature from various databases, including Pubmed, Science Direct, Web of Science, and Scopus, spanning the years 2005-2023, a comprehensive search was conducted using keywords such as "Depression" and "Gut Microbiota". The gut microbiota acts as a "second brain" in humans and can communicate bidirectionally with the brain through the Brain-gut-microbiota axis pathway. This communication involves the immune and nervous systems. However, there are challenges in detecting and treating depression effectively. To address these limitations, researchers have been exploring the relationship between gut microbiota and depression. Studies have shown that gut microbial metabolites, such as lipopolysaccharides and short-chain fatty acids, can induce pro-inflammatory cytokines that contribute to neuroinflammation and increase the risk of depression. The kynurenine pathway, triggered by gut microbial metabolites, has also been associated with neuroinflammation. Thus, investigating these microbial metabolites can provide insights into depression treatment. This review focuses on analyzing the connection between gut microbial metabolites, inflammation, and depression. It explores novel mechanisms contributing to depression, specifically focusing on the mediation of inflammation through the release of pro-inflammatory cytokines. The objective is to provide valuable insights into the mechanisms underlying depression and to propose potential treatments.
Collapse
Affiliation(s)
- Yunxiang Tan
- School of Life Sciences, Fudan University, Shanghai, 200438, China
- Faculty of Ecology and Environment, Hainan University, Danzhou, 571700, Hainan, China
| | - Mengyu Xu
- Faculty of Ecology and Environment, Hainan University, Danzhou, 571700, Hainan, China
| | - Deng Lin
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Greater Bay Area Institute of Precision Medicine, Guangzhou, 511466, Guangdong, China.
- Beijing Research Center for Chinese Classic Science and Technology, Beijing, 102425, China.
| |
Collapse
|
4
|
Mao H, Lin X, Sun Y. Neddylation Regulation of Immune Responses. RESEARCH (WASHINGTON, D.C.) 2023; 6:0283. [PMID: 38434245 PMCID: PMC10907026 DOI: 10.34133/research.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 03/05/2024]
Abstract
Neddylation plays a vital role in post-translational modification, intricately shaping the regulation of diverse biological processes, including those related to cellular immune responses. In fact, neddylation exerts control over both innate and adaptive immune systems via various mechanisms. Specifically, neddylation influences the function and survival of innate immune cells, activation of pattern recognition receptors and GMP-AMP synthase-stimulator of interferon genes pathways, as well as the release of various cytokines in innate immune reactions. Moreover, neddylation also governs the function and survival of antigen-presenting cells, which are crucial for initiating adaptive immune reactions. In addition, neddylation regulates T cell activation, proliferation, differentiation, survival, and their effector functions, thereby ensuring an appropriate adaptive immune response. In this review, we summarize the most recent findings in these aspects and delve into the connection between dysregulated neddylation events and immunological disorders, especially inflammatory diseases. Lastly, we propose future directions and potential treatments for these diseases by targeting neddylation.
Collapse
Affiliation(s)
- Hongmei Mao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province, China
- Research Center for Life Science and Human Health,
Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
5
|
Sun L, Zhang H, Zhang H, Lou X, Wang Z, Wu Y, Yang X, Chen D, Guo B, Zhang A, Qian F. Staphylococcal virulence factor HlgB targets the endoplasmic-reticulum-resident E3 ubiquitin ligase AMFR to promote pneumonia. Nat Microbiol 2023; 8:107-120. [PMID: 36593296 DOI: 10.1038/s41564-022-01278-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/21/2022] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus invades cells and persists intracellularly, causing persistent inflammation that is notoriously difficult to treat. Here we investigated host-pathogen interactions underlying intracellular S. aureus infection in macrophages and discovered that the endoplasmic reticulum (ER) is an important cellular compartment for intracellular S. aureus infection. Using CRISPR-Cas9 guide RNA library screening, we determined that the autocrine motility factor receptor (AMFR), an ER-resident E3 ubiquitin ligase, played an essential role in mediating intracellular S. aureus-induced inflammation. AMFR directly interacted with TAK1-binding protein 3 (TAB3) in the ER, inducing K27-linked polyubiquitination of TAB3 on lysine 649 and promoting TAK1 activation. Moreover, the virulence factor γ-haemolysin B (HIgB) of S. aureus bound to the AMFR and regulated TAB3. Our findings highlight an unknown role of AMFR in intracellular S. aureus infection-induced pneumonia and suggest that pharmacological interruption of AMFR-mediated TAB3 signalling cascades and HIgB targeting may prevent invasive staphylococci-mediated pneumonia.
Collapse
Affiliation(s)
- Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Haibo Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Lou
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiming Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xinyi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Daijie Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Ao Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Wu MH, Hsu WB, Chen MH, Shi CS. Inhibition of Neddylation Suppresses Osteoclast Differentiation and Function In Vitro and Alleviates Osteoporosis In Vivo. Biomedicines 2022; 10:2355. [PMID: 36289618 PMCID: PMC9598818 DOI: 10.3390/biomedicines10102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 09/20/2023] Open
Abstract
Neddylation, or the covalent addition of NEDD8 to specific lysine residue of proteins, is a reversible posttranslational modification, which regulates numerous biological functions; however, its involvement and therapeutic significance in osteoporosis remains unknown. Our results revealed that during the soluble receptor activator of nuclear factor-κB ligand (sRANKL)-stimulated osteoclast differentiation, the neddylation and expression of UBA3, the NEDD8-activating enzyme (NAE) catalytic subunit, were dose- and time-dependently upregulated in RAW 264.7 macrophages. UBA3 knockdown for diminishing NAE activity or administering low doses of the NAE inhibitor MLN4924 significantly suppressed sRANKL-stimulated osteoclast differentiation and bone-resorbing activity in the macrophages by inhibiting sRANKL-stimulated neddylation and tumor necrosis factor receptor-associated factor 6 (TRAF6)-activated transforming growth factor-β-activated kinase 1 (TAK1) downstream signaling for diminishing nuclear factor-activated T cells c1 (NFATc1) expression. sRANKL enhanced the interaction of TRAF6 with the neddylated proteins and the polyubiquitination of TRAF6's lysine 63, which activated TAK1 downstream signaling; however, this process was inhibited by MLN4924. MLN4924 significantly reduced osteoporosis in an ovariectomy- and sRANKL-induced osteoporosis mouse model in vivo. Our novel finding was that NAE-mediated neddylation participates in RANKL-activated TRAF6-TAK1-NFATc1 signaling during osteoclast differentiation and osteoporosis, suggesting that neddylation may be a new target for treating osteoporosis.
Collapse
Affiliation(s)
- Meng-Huang Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Biodesign Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Mei-Hsin Chen
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
- Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| |
Collapse
|
7
|
Chadha A, Moreau F, Wang S, Dufour A, Chadee K. Entamoeba histolytica activation of caspase-1 degrades cullin that attenuates NF-κB dependent signaling from macrophages. PLoS Pathog 2021; 17:e1009936. [PMID: 34499701 PMCID: PMC8454965 DOI: 10.1371/journal.ppat.1009936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/21/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages. The protozoan parasite Entamoeba histolytica (Eh) is the etiologic agent for the disease amebiasis. It is a potent pathogen that deploys an arsenal of virulence factors to trigger and subvert host immune defenses. One of the hallmark features of the disease is amebic colitis and in extreme cases, it can lead to abscesses of the liver and brain. For unknown reasons, the parasite breaches colonic mucosal barriers and invade underlying tissues. The host immune system plays a decisive role in determining the outcome of the disease. At the molecular level, the interaction of Eh with macrophage is a turning point in shaping pro-inflammatory responses. Understanding host-pathogen intricacies at the molecular level is key in determining the complexity of the disease. In the context of amebiasis, the underlying molecular events that occur at the Eh-macrophage intercellular junction are partly unravelled. Here we sought to interrogate the mechanisms by which NF-κB signaling is aborted following Eh-macrophage contact and found two regulatory scaffold proteins, cullin-1 and -5 (cullin-1/5) of the multiple E3 ligase complex, are degraded leading to dampening of NF-κB signaling. During Eh-macrophage contact, cullin-1/4A/4B/5 were rapidly degraded whereas cullin-2/3 were not. The degradation of cullin-1/5 was highly dependent on Eh-induced caspase-1 activation via the NLRP3 inflammasome. In contrast, the degradation of cullin-4A but not cullin-4B, was partially dependent on caspase-1 and was inhibited with a cell-permeable pan caspase inhibitor. Intriguingly, we found that Eh virulence factor EhCP-A1 and EhCP-A4, but not EhCP-A5, played an important role in mediating the degradation of these proteins. Silencing cullin-1/5 decreased the phosphorylation of Iκ-Bα in response to Eh and LPS stimulation that markedly downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. This study unravelled a novel role for Eh-induced NLRP3 inflammasome activation of caspase-1 that intersected with the NF-κB pathway leading to the degradation of the novel substrates cullin-1/5 that regulates NF-κB-dependent pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Attinder Chadha
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shanshan Wang
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
8
|
Jiang Y, Li L, Li Y, Liu G, Hoffman RM, Jia L. Neddylation Regulates Macrophages and Implications for Cancer Therapy. Front Cell Dev Biol 2021; 9:681186. [PMID: 34164400 PMCID: PMC8215544 DOI: 10.3389/fcell.2021.681186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer progression via stimulating angiogenesis, invasion/metastasis, and suppressing anti-cancer immunity. Targeting TAMs is a potential promising cancer therapeutic strategy. Neddylation adds the ubiquitin-like protein NEDD8 to substrates, and thereby regulates diverse biological processes in multiple cell types, including macrophages. By controlling cellular responses, the neddylation pathway regulates the function, migration, survival, and polarization of macrophages. In the present review we summarized how the neddylation pathway modulates Macrophages and its implications for cancer therapy.
Collapse
Affiliation(s)
- Yanyu Jiang
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, San Diego, CA, United States.,AntiCancer Inc., San Diego, CA, United States
| | - Lijun Jia
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhou Q, Zheng Y, Sun Y. Neddylation regulation of mitochondrial structure and functions. Cell Biosci 2021; 11:55. [PMID: 33731189 PMCID: PMC7968265 DOI: 10.1186/s13578-021-00569-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are the powerhouse of a cell. The structure and function of mitochondria are precisely regulated by multiple signaling pathways. Neddylation, a post-translational modification, plays a crucial role in various cellular processes including cellular metabolism via modulating the activity, function and subcellular localization of its substrates. Recently, accumulated data demonstrated that neddylation is involved in regulation of morphology, trafficking and function of mitochondria. Mechanistic elucidation of how mitochondria is modulated by neddylation would further our understanding of mitochondrial regulation to a new level. In this review, we first briefly introduce mitochondria, then neddylation cascade, and known protein substrates subjected to neddylation modification. Next, we summarize current available data of how neddylation enzymes, its substrates (including cullins/Cullin-RING E3 ligases and non-cullins) and its inhibitor MLN4924 regulate the structure and function of mitochondria. Finally, we propose the future perspectives on this emerging and exciting field of mitochondrial research.
Collapse
Affiliation(s)
- Qiyin Zhou
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Yawen Zheng
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China
| | - Yi Sun
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.
| |
Collapse
|
10
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
11
|
Zhao Y, Xiong X, Sun Y. Cullin-RING Ligase 5: Functional characterization and its role in human cancers. Semin Cancer Biol 2020; 67:61-79. [PMID: 32334051 DOI: 10.1016/j.semcancer.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Cullin-RING ligase 5 (CRL5) is a multi-protein complex and consists of a scaffold protien cullin 5, a RING protein RBX2 (also known as ROC2 or SAG), adaptor proteins Elongin B/C, and a substrate receptor protein SOCS. Through targeting a variety of substrates for proteasomal degradation or modulating various protein-protein interactions, CRL5 is involved in regulation of many biological processes, such as cytokine signal transduction, inflammation, viral infection, and oncogenesis. As many substrates of CRL5 are well-known oncoproteins or tumor suppressors, abnormal regulation of CRL5 is commonly found in human cancers. In this review, we first briefly introduce each of CRL5 components, and then discuss the biological processes regulated by four members of SOCS-box-containing substrate receptor family through substrate degradation. We next describe how CRL5 is hijacked by a variety of viral proteins to degrade host anti-viral proteins, which facilitates virus infection. We further discuss the regulation of CUL5 and its various roles in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose novel insights for future perspectives on the validation of cullin5 and other CRL5 components as potential targets, and possible targeting strategies to discover CRL5 inhibitors for anti-cancer and anti-virus therapies.
Collapse
Affiliation(s)
- Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Zhang S, Sun Y. Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:261-283. [DOI: 10.1007/978-981-15-1025-0_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Liu A, Zhang S, Shen Y, Lei R, Wang Y. Association of mRNA expression levels of Cullin family members with prognosis in breast cancer: An online database analysis. Medicine (Baltimore) 2019; 98:e16625. [PMID: 31374029 PMCID: PMC6709298 DOI: 10.1097/md.0000000000016625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cullin proteins couple with RING-finger proteins, adaptor proteins and substrate recognition receptors to form E3 ubiquitin ligases for recognizing numerous substrates and participating in a variety of cellular processes, especially in genome stability and tumorigenesis. However, the prognostic values of Cullins in breast cancer remain elusive.A "Kaplan-Meier plotter" (KM plotter) online survival analysis tool was used to evaluate the association of individual Cullin members' mRNA expression with overall survival (OS) in breast cancer patients.Our results revealed that elevated mRNA expression of CUL4A and PARC were significantly associated with poor OS for breast cancer patients. While high mRNA expression of CUL2, CUL4B, and CUL5 were correlated with better survival for breast cancers.The associated results suggested that some Cullin members could serve as new predictive prognostic indicators for breast cancer.
Collapse
Affiliation(s)
- Aiyu Liu
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Shizhen Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine
| | - Yanwen Shen
- Institute of Translational Medicine, Zhejiang University School of Medicine
| | - Rui Lei
- Department of Plastic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Yannan Wang
- Department of Scientific Research, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Hao R, Song Y, Li R, Wu Y, Yang X, Li X, Qian F, Ye RD, Sun L. MLN4924 protects against interleukin-17A-induced pulmonary inflammation by disrupting ACT1-mediated signaling. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1070-L1080. [PMID: 30892082 DOI: 10.1152/ajplung.00349.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An excessive inflammatory response in terminal airways, alveoli, and the lung interstitium eventually leads to pulmonary hypertension and chronic obstructive pulmonary disease. Proinflammatory cytokine interleukin-17A (IL-17A) has been implicated in the pathogenesis of pulmonary inflammatory diseases. MLN4924, an inhibitor of NEDD8-activating enzyme (NAE), is associated with the treatment of various types of cancers, but its role in the IL-17A-mediated inflammatory response has not been identified. Here, we report that MLN4924 can markedly reduce the expression of proinflammatory cytokines and chemokines such as IL-1β, IL-6, and CXCL-1 and neutrophilia in a mouse model of IL-17A adenovirus-induced pulmonary inflammation. MLN4924 significantly inhibited IL-17A-induced stabilization of mRNA of proinflammatory cytokines and chemokines in vitro. Mechanistically, MLN4924 significantly blocked the activation of MAPK and NF-κB pathways and interfered with the interaction between ACT1 and tumor necrosis factor receptor-associated factor proteins (TRAFs), thereby inhibiting TRAF6 ubiquitination. Taken together, our data uncover a previously uncharacterized inhibitory effect of MLN4924 on the IL-17A-mediated inflammatory response; this phenomenon may facilitate the development of MLN4924 into an effective small-molecule drug for the treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Rui Hao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Yunduan Song
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University , Shanghai , People's Republic of China
| | - Runsheng Li
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| | - Yaxian Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xinyi Yang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xiaozong Li
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University , Shanghai , People's Republic of China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China
| | - Richard D Ye
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Institute of Chinese Medical Sciences, University of Macau, Macau Special Administration Region , China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
15
|
Key J, Mueller AK, Gispert S, Matschke L, Wittig I, Corti O, Münch C, Decher N, Auburger G. Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiol Dis 2019; 127:114-130. [PMID: 30763678 DOI: 10.1016/j.nbd.2019.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear how selective neural circuits become vulnerable and finally undergo atrophy. We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein targets of Parkin activity, an ubiquitin E3 ligase. Thus, we now used aged Parkin-knockout (KO) mouse brain for a global quantification of ubiquitylated peptides by mass spectrometry (MS). This approach confirmed the most abundant substrate to be VDAC3, a mitochondrial outer membrane porin that modulates calcium flux, while uncovering also >3-fold dysregulations for neuron-specific factors. Ubiquitylation decreases were prominent for Hippocalcin (HPCA), Calmodulin (CALM1/CALML3), Pyruvate Kinase (PKM2), sodium/potassium-transporting ATPases (ATP1A1/2/3/4), the Rab27A-GTPase activating protein alpha (TBC1D10A) and an ubiquitin ligase adapter (DDB1), while strong increases occurred for calcium transporter ATP2C1 and G-protein subunits G(i)/G(o)/G(Tr). Quantitative immunoblots validated elevated abundance for the electrogenic pump ATP1A2, for HPCA as neuron-specific calcium sensor, which stimulates guanylate cyclases and modifies axonal slow afterhyperpolarization (sAHP), and for the calcium-sensing G-protein GNA11. We assessed if compensatory molecular regulations become insufficient over time, leading to functional deficits. Patch clamp experiments in acute Parkin-KO brain slices indeed revealed alterations of the electrophysiological properties in aged noradrenergic locus coeruleus (LC) neurons. LC neurons of aged Parkin-KO brain showed an acceleration of the spontaneous pacemaker frequency, a reduction in sAHP and shortening of action potential duration, without modulation of KCNQ potassium currents. These findings indicate altered calcium-dependent excitability in a PARK2 model of PD, mediated by diminished turnover of potential Parkin targets such as ATP1A2 and HPCA. The data also identified further novel Parkin substrate candidates like SIRT2, OTUD7B and CUL5. Our elucidation of neuron-specific mechanisms of PD pathogenesis helps to explain the known exceptional susceptibility of noradrenergic and dopaminergic projections to alterations of calcium homeostasis and its mitochondrial buffering.
Collapse
Affiliation(s)
- J Key
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - A K Mueller
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - S Gispert
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - L Matschke
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - I Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - O Corti
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France; Inserm, U1127, Paris, F-75013, France; CNRS, UMR 7225, Paris, F-75013, France; Sorbonne Universités, Paris, F-75013, France
| | - C Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - N Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany.
| | - G Auburger
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Yang L, Ruan Z, Li X, Li L, Wang Q, Li W. NEDD8-conjugated Cullin4 positive regulates antimicrobial peptides expression in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1041-1049. [PMID: 30381265 DOI: 10.1016/j.fsi.2018.10.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/01/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
The ubiquitin-proteasome system is involved in numerous cellular processes, such as signal transduction, autophagy, cell cycle control, embryogenesis, and regulation of immune response. Neural precursor cell expressed developmentally downregulated 8 (NEDD8) is a ubiquitin-like protein that activates Cullin-RING ligases and modifies substrates via neddylation. However, there is limited information on how neddylation regulates innate immunity in crustaceans. In the present study, we identified the evolutionarily conserved NEDD8 with the ubiquitin homologue domain in the Chinese mitten crab (Eriocheir sinensis), named it EsNEDD8. Then, we analyzed the expression patterns and cellular location of its substrate, EsCullin4. qRT-PCR showed that both EsNEDD8 and EsCullin4 were widely expressed in all the selected tissues, and EsCullin4 was significantly upregulated in hemocytes after bacterial stimulation. Moreover, silencing of EsCullin4 significantly suppressed the expression of antimicrobial peptides (AMPs) in the hemocytes after bacterial stimulation, and inhibition of EsCullin4 neddylation by treatment with the NEDD8-activating enzyme inhibitor MLN4924 significantly inhibited the expression of the AMPs. Thus, the results show that EsNEDD8-modified EsCullin4 could control antimicrobial activities via regulation of AMPs expression in the Chinese mitten crab.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory of Invertebrate Immunological Defence & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zechao Ruan
- Laboratory of Invertebrate Immunological Defence & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuejie Li
- Laboratory of Invertebrate Immunological Defence & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Lu Li
- Laboratory of Invertebrate Immunological Defence & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defence & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defence & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
17
|
Xiong X, Mathewson ND, Li H, Tan M, Fujiwara H, Li H, Reddy P, Sun Y. SAG/RBX2 E3 Ubiquitin Ligase Differentially Regulates Inflammatory Responses of Myeloid Cell Subsets. Front Immunol 2018; 9:2882. [PMID: 30574150 PMCID: PMC6291737 DOI: 10.3389/fimmu.2018.02882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/23/2018] [Indexed: 02/03/2023] Open
Abstract
Macrophages form an important component of the innate immune system and serve as first responders against invading pathogens. While pathways critical for initiation of inflammatory responses between macrophages and other LysM+ myeloid cells are largely similar, it remains unknown whether a specific pathway has differential effects on inflammatory responses mediated between these cells. Recent studies demonstrated that depletion of SAG (Sensitive to Apoptosis Gene), an E3 ubiquitin ligase, blocked inflammatory responses generated by macrophages and dendritic cells in response to LPS in cell culture settings. However, the in vivo role of Sag on modulation of macrophages and neutrophil is not known. Here we generated LysM-Cre/Sag fl/fl mice with selective Sag deletion in myeloid lineage, and found that in contrast to in vitro observations, LysM-Cre/Sag fl/fl mice showed increased serum levels of proinflammatory cytokines and enhanced mortality in response to LPS. Interestingly, while Sag -/- macrophages released less proinflammatory cytokines, Sag -/- neutrophils released more. Mechanistically, expression of a list of genes response to LPS was significantly altered in bone marrow cells from LysM-Cre +/Sag fl/fl mice after LPS challenge. Specifically, induction by LPS of myeloperoxidase (Mpo), a key neutrophil enzyme, and Elane, neutrophil expressed elastase, was significantly decreased upon Sag depletion. Collectively, our study revealed that Sag plays a differential role in the activation of macrophages and neutrophils.
Collapse
Affiliation(s)
- Xiufang Xiong
- Institute of Translational Medicine, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Nathan D Mathewson
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, United States.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cancer Immunology and Virology, Department of Microbiology and Immunobiology, Department of Neurology, Dana-Farber Cancer Institute, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, United States
| | - Hua Li
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Mingjia Tan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Hideaki Fujiwara
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, United States
| | - Haomin Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, United States
| | - Yi Sun
- Institute of Translational Medicine, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Zhang D, Li X, Hu Y, Jiang H, Wu Y, Ding Y, Yu K, He H, Xu J, Sun L, Qian F. Tabersonine attenuates lipopolysaccharide-induced acute lung injury via suppressing TRAF6 ubiquitination. Biochem Pharmacol 2018; 154:183-192. [DOI: 10.1016/j.bcp.2018.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
|
19
|
Jang SM, Redon CE, Aladjem MI. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018; 5:19. [PMID: 29594129 PMCID: PMC5859106 DOI: 10.3389/fmolb.2018.00019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic.
Collapse
Affiliation(s)
| | | | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
20
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|
21
|
Zhu Z, Sun L, Hao R, Jiang H, Qian F, Ye RD. Nedd8 modification of Cullin-5 regulates lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2017; 313:L104-L114. [PMID: 28522566 DOI: 10.1152/ajplung.00410.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/17/2023] Open
Abstract
Lung infections are major causes of acute lung injury (ALI), with limited effective treatment available. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an essential adaptor regulating Toll-like receptors (TLRs). We recently identified Cullin-5 (Cul-5) as a prominent component in the regulation of TRAF6 polyubiquitination, but its physiological significance in ALI has not been explored. In this study, we investigated the potential role of Cul-5 in regulating ALI using mice receiving intratracheal instillation of LPS. We observed that Cul-5-deficient mice displayed reduced lung injury compared with wild-type mice as evidenced by histological analysis, alveolar neutrophil infiltration, and lung liquid accumulation. In addition, inflammatory cytokine expression in bronchoalveolar lavage fluid and lung tissue was also markedly reduced in LPS-treated Cul-5-deficient mice. Interestingly, intratracheal adoptive transfer of Cul-5+/- but not Cul-5+/+ macrophages attenuated neutrophil recruitment, alveolar inflammation, and loss of barrier function in LPS-challenged wild-type mice. Finally, we demonstrated that Cul-5 neddylation following LPS exposure induced Cul-5 and TRAF6 interaction and, thereby, TFAR6 polyubiquitination, leading to NF-κB activation and generation of proinflammatory cytokines. Our data show that neural precursor cell expressed developmentally downregulated protein 8 (Nedd8) modification of Cul-5 is required for its interaction with TRAF6 and activation of the TLR4-TRAF6 signaling pathway in LPS-induced ALI, a feature that may be explored for therapeutic intervention.
Collapse
Affiliation(s)
- Ziyan Zhu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China;
| | - Rui Hao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongchao Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Feng Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Research Center for Cancer Precision Medicine, Bengbu Medical College, Bengbu, Anhui Province, People's Republic of China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China; and
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Institute of Chinese Medical Sciences, University of Macau, Macau Special Administration Region, People's Republic of China
| |
Collapse
|