1
|
Monistrol-Mula A, Diaz-Torres S, Felez-Nobrega M, Haro JM, Medland SE, Mitchell BL. Genetic analyses point to alterations in immune-related pathways underpinning the association between psychiatric disorders and COVID-19. Mol Psychiatry 2024:10.1038/s41380-024-02643-0. [PMID: 38956374 DOI: 10.1038/s41380-024-02643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Current literature suggests that people with psychiatric disorders have a higher risk of COVID-19 infection and a worse prognosis of the disease. We aimed to study the genetic contribution to these associations across seven psychiatric disorders as well as a general psychopathology factor (P-factor) and determine whether these are unique or shared across psychiatric disorders using statistical genetic techniques. Using the largest available genome-wide association studies (GWAS), we found a significant genetic overlap between depression, ADHD, PTSD, and the P-factor with both COVID-19 infection and hospitalization, and between anxiety and COVID-19 hospitalization. We used pairwise GWAS to examine this overlap on a fine-grained scale and identified specific regions of the genome shared between several psychiatric disorders, the P-factor, and COVID-19. Gene-based analysis in these genomic regions suggested possible links with immune-related pathways such as thyroid homeostasis, inflammation, and stress response. Finally, we show preliminary evidence for causal associations between depression, ADHD, PTSD, and the P-factor, and higher COVID-19 infection and hospitalization using Mendelian Randomization and Latent Causal Variable methods. Our results support the hypothesis that the relationship between psychiatric disorders and COVID-19 risk is likely due to shared alterations in immune-related pathways and is not a result of environmental factors alone, shedding light on potentially viable therapeutic targets.
Collapse
Affiliation(s)
- Anna Monistrol-Mula
- Group of Epidemiology of Psychiatric disorders and Ageing, Sant Joan de Déu Research Institute, Sant Boi de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine, University of Barcelona, Barcelona, Spain.
- Mental Health and Neuroscience program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Santiago Diaz-Torres
- Mental Health and Neuroscience program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mireia Felez-Nobrega
- Group of Epidemiology of Psychiatric disorders and Ageing, Sant Joan de Déu Research Institute, Sant Boi de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Maria Haro
- Group of Epidemiology of Psychiatric disorders and Ageing, Sant Joan de Déu Research Institute, Sant Boi de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sarah E Medland
- Mental Health and Neuroscience program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brittany L Mitchell
- Mental Health and Neuroscience program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Xia Z, Ding X, Ji C, Zhou D, Sun X, Liu T. EP300 restores the glycolytic activity and anti-tumor function of CD8 + cytotoxic T cells in nasopharyngeal carcinoma. iScience 2024; 27:108957. [PMID: 38333692 PMCID: PMC10850748 DOI: 10.1016/j.isci.2024.108957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Competition for glucose may metabolically limit T cells during cancer progression. This study shows that culturing in the condition medium (CM) of NPC c6661 cells restricted glycolytic and immune activities of CD8+ T cells. These cells also exhibited limited tumor-eliminating effects in mouse xenograft tumor models. Glucose supplementation restored glycolysis and immune activity of CD8+ T cells in vitro and in vivo by rescuing the expression of E1A binding protein p300 (EP300). EP300 upregulated bromodomain PHD finger transcription factor (BPTF) expression by catalyzing H3K27ac modification, and BPTF further activated AT-rich interaction domain 1A (ARID1A) transcription. Either BPTF or ARID1A knockdown in CD8+ T cells reduced their glycolytic activity, decreased the secretion of cytotoxic molecules, and blocked the tumor-killing function in mice. Overall, this study demonstrates that EP300 restores the glycolytic and anti-tumor activities of CD8+ T cells in the glucose restriction condition in NPC through the BPTF/ARID1A axis.
Collapse
Affiliation(s)
- Zhixiu Xia
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Xiaoxu Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Chao Ji
- Clinical Epidemiology Teaching and Research Section, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Dabo Zhou
- Repair Teaching and Research Section, School and Hospital of Stomatology, China Medical University, Shenyang 110002, Liaoning, P.R. China
| | - Xun Sun
- Department of Immunology, College of Basic Medicine, China Medical University, Shenyang 110002, Liaoning, P.R. China
| | - Tiancong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| |
Collapse
|
3
|
Yogev Y, Schaffer M, Shlapobersky M, Jean MM, Wormser O, Drabkin M, Halperin D, Kassem R, Livoff A, Tsitrina AA, Asna N, Birk OS. A role of BPTF in viral oncogenicity delineated through studies of heritable Kaposi sarcoma. J Med Virol 2024; 96:e29436. [PMID: 38380509 DOI: 10.1002/jmv.29436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.
Collapse
Affiliation(s)
- Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moshe Schaffer
- Department of Oncology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Mark Shlapobersky
- Department of Pathology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Matan M Jean
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Riad Kassem
- Department of Dermatology, Sheba Medical Center, Ramat Gan, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Livoff
- Department of Pathology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Department of Pathology, Galilee Medical Center, and The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Alexandra A Tsitrina
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Noam Asna
- Department of Oncology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
4
|
Wu D, Bi X, Chow KHM. Identification of female-enriched and disease-associated microglia (FDAMic) contributes to sexual dimorphism in late-onset Alzheimer's disease. J Neuroinflammation 2024; 21:1. [PMID: 38178204 PMCID: PMC10765928 DOI: 10.1186/s12974-023-02987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Late-onset Alzheimer's disease (LOAD) is the most common form of dementia; it disproportionally affects women in terms of both incidence rates and severity of progression. The cellular and molecular mechanisms underlying this clinical phenomenon remain elusive and ill-defined. METHODS In-depth analyses were performed with multiple human LOAD single-nucleus transcriptome datasets to thoroughly characterize cell populations in the cerebral cortex. ROSMAP bulk human brain tissue transcriptome and DNA methylome datasets were also included for validation. Detailed assessments of microglial cell subpopulations and their relevance to sex-biased changes at the tissue level were performed. Clinical trait associations, cell evolutionary trajectories, and transcription regulon analyses were conducted. RESULTS The relative numbers of functionally defective microglia were aberrantly increased uniquely among affected females. Substratification of the microglia into different subtypes according to their transcriptomic signatures identified a group of female-enriched and disease-associated microglia (FDAMic), the numbers of which were positively associated with disease severity. Phenotypically, these cells exhibit transcriptomic signatures that support active proliferation, MHC class II autoantigen presentation and amyloid-β binding, but they are also likely defective in phagocytosis. FDAMic are likely evolved from female activated response microglia (ARMic) with an APOE4 background and compromised estrogen receptor (ER) signaling that is deemed to be active among most subtypes of microglia. CONCLUSION This study offered important insights at both the cellular and molecular levels into how ER signaling affects microglial heterogeneity and function. FDAMic are associated with more advanced pathologies and severe trends of cognitive decline. Their emergence could, at least in part, explain the phenomenon of greater penetrance of the APOE4 genotype found in females. The biases of FDAMic emergence toward female sex and APOE4 status may also explain why hormone replacement therapy is more effective in APOE4 carriers. The pathologic nature of FDAMic suggests that selective modulations of these cells may help to regain brain neuroimmune homeostasis, serving as a new target for future drug development.
Collapse
Affiliation(s)
- Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
5
|
Liang X, Cao Y, Duan Z, Wang M, Zhang N, Ding Y, Luo C, Lu N, Chen S. Discovery of new small molecule inhibitors of the BPTF bromodomain. Bioorg Chem 2023; 134:106453. [PMID: 36898211 DOI: 10.1016/j.bioorg.2023.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Chromatin remodeling regulates many basic cellular processes, such as gene transcription, DNA repair, and programmed cell death. As the largest member of nucleosome remodeling factor (NURF), BPTF plays a vital role in the occurrence and development of cancer. Currently, BPTF bromodomain inhibitors are still in development. In this study, by conducting homogenous time-resolved fluorescence resonance energy transfer (HTRF) assay, we identified a potential, novel BPTF inhibitor scaffold Sanguinarine chloride with the IC50 value of 344.2 ± 25.1 nM. Biochemical analysis revealed that compound Sanguinarine chloride exhibited high binding affinity to the BPTF bromodomain. Molecular docking predicted the binding mode of Sanguinarine chloride and elucidated the activities of its derivatives. Moreover, Sanguinarine chloride showed a potent anti-proliferative effect in MIAPaCa-2 cells and inhibited the expression of BPTF target gene c-Myc. Taken together, Sanguinarine chloride provides a qualified chemical tool for developing potent BPTF bromodomain inhibitors.
Collapse
Affiliation(s)
- Xiaochen Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhe Duan
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingchen Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiluan Ding
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Blake D, Radens CM, Ferretti MB, Gazzara MR, Lynch KW. Alternative splicing of apoptosis genes promotes human T cell survival. eLife 2022; 11:80953. [PMID: 36264057 PMCID: PMC9625086 DOI: 10.7554/elife.80953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing occurs in the vast majority of human genes, giving rise to distinct mRNA and protein isoforms. We, and others, have previously identified hundreds of genes that change their isoform expression upon T cell activation via alternative splicing; however, how these changes link activation input with functional output remains largely unknown. Here, we investigate how costimulation of T cells through the CD28 receptor impacts alternative splicing in T cells activated through the T cell receptor (TCR, CD3) and find that while CD28 signaling alone has minimal impact on splicing, it enhances the extent of change for up to 20% of TCR-induced alternative splicing events. Interestingly, a set of CD28-enhanced splicing events occur within genes encoding key components of the apoptotic signaling pathway; namely caspase-9, Bax, and Bim. Using both CRISPR-edited cells and antisense oligos to force expression of specific isoforms, we show for all three of these genes that the isoform induced by CD3/CD28 costimulation promotes resistance to apoptosis, and that changes in all three genes together function combinatorially to further promote cell viability. Finally, we show that the JNK signaling pathway, induced downstream of CD3/CD28 costimulation, is required for each of these splicing events, further highlighting their co-regulation. Together, these findings demonstrate that alternative splicing is a key mechanism by which costimulation of CD28 promotes viability of activated T cells.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group, University of PennsylvaniaPhiladelphiaUnited States,Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Caleb M Radens
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States,Department of Genetics, University of PennsylvaniaPhildelphiaUnited States
| | - Kristen W Lynch
- Immunology Graduate Group, University of PennsylvaniaPhiladelphiaUnited States,Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Chang Y, Li X, Cheng Q, Hu Y, Chen X, Hua X, Fan X, Tao M, Song J, Hu S. Single-cell transcriptomic identified HIF1A as a target for attenuating acute rejection after heart transplantation. Basic Res Cardiol 2021; 116:64. [PMID: 34870762 DOI: 10.1007/s00395-021-00904-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/04/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Acute rejection (AR) is an important contributor to graft failure, which remains a leading cause of death after heart transplantation (HTX). The regulation of immune metabolism has become a new hotspot in the development of immunosuppressive drugs. In this study, Increased glucose metabolism of cardiac macrophages was found in patients with AR. To find new therapeutic targets of immune metabolism regulation for AR, CD45+ immune cells extracted from murine isografts, allografts, and untransplanted donor hearts were explored by single-cell RNA sequencing. Total 20 immune cell subtypes were identified among 46,040 cells. The function of immune cells in AR were illustrated simultaneously. Cardiac resident macrophages were substantially replaced by monocytes and proinflammatory macrophages during AR. Monocytes/macrophages in AR allograft were more active in antigen presentation and inflammatory recruitment ability, and glycolysis. Based on transcription factor regulation analysis, we found that the increase of glycolysis in monocytes/macrophages was mainly regulated by HIF1A. Inhibition of HIF1A could alleviate inflammatory cells infiltration in AR. To find out the effect of HIF1A on AR, CD45+ immune cells extracted from allografts after HIF1A inhibitor treatment were explored by single-cell RNA sequencing. HIF1A inhibitor could reduce the antigen presenting ability and pro-inflammatory ability of macrophages, and reduce the infiltration of Cd4+ and Cd8a+ T cells in AR. The expression of Hif1α in AR monocytes/macrophages was regulated by pyruvate kinase 2. Higher expression of HIF1A in macrophages was also detected in human hearts with AR. These indicated HIF1A may serve as a potential target for attenuating AR.
Collapse
Affiliation(s)
- Yuan Chang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.,The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Xiangjie Li
- School of Statistics and Data Science, Nankai University, Tianjin, 300371, China.,The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Ministry of Education, National Health Commission, Wuhan, 430000, China
| | - Yiqing Hu
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Xiao Chen
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Xiumeng Hua
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Xuexin Fan
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Menghao Tao
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Jiangping Song
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China.
| | - Shengshou Hu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.,The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| |
Collapse
|
8
|
Li Y, Gong H, Wang P, Zhu Y, Peng H, Cui Y, Li H, Liu J, Wang Z. The emerging role of ISWI chromatin remodeling complexes in cancer. J Exp Clin Cancer Res 2021; 40:346. [PMID: 34736517 PMCID: PMC8567610 DOI: 10.1186/s13046-021-02151-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Disordered chromatin remodeling regulation has emerged as an essential driving factor for cancers. Imitation switch (ISWI) family are evolutionarily conserved ATP-dependent chromatin remodeling complexes, which are essential for cellular survival and function through multiple genetic and epigenetic mechanisms. Omics sequencing and a growing number of basic and clinical studies found that ISWI family members displayed widespread gene expression and genetic status abnormalities in human cancer. Their aberrant expression is closely linked to patient outcome and drug response. Functional or componential alteration in ISWI-containing complexes is critical for tumor initiation and development. Furthermore, ISWI-non-coding RNA regulatory networks and some non-coding RNAs derived from exons of ISWI member genes play important roles in tumor progression. Therefore, unveiling the transcriptional regulation mechanism underlying ISWI family sparked a booming interest in finding ISWI-based therapies in cancer. This review aims at describing the current state-of-the-art in the role of ISWI subunits and complexes in tumorigenesis, tumor progression, immunity and drug response, and presenting deep insight into the physiological and pathological implications of the ISWI transcription machinery in cancers.
Collapse
Affiliation(s)
- Yanan Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Han Gong
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Pan Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yajuan Cui
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Heng Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
9
|
Zahid H, Buchholz CR, Singh M, Ciccone MF, Chan A, Nithianantham S, Shi K, Aihara H, Fischer M, Schönbrunn E, Dos Santos CO, Landry JW, Pomerantz WCK. New Design Rules for Developing Potent Cell-Active Inhibitors of the Nucleosome Remodeling Factor (NURF) via BPTF Bromodomain Inhibition. J Med Chem 2021; 64:13902-13917. [PMID: 34515477 DOI: 10.1021/acs.jmedchem.1c01294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The nucleosome remodeling factor (NURF) alters chromatin accessibility through interactions with its largest subunit,the bromodomain PHD finger transcription factor BPTF. BPTF is overexpressed in several cancers and is an emerging anticancer target. Targeting the BPTF bromodomain presents a potential strategy for its inhibition and the evaluation of its functional significance; however, inhibitor development for BPTF has lagged behind those of other bromodomains. Here we describe the development of pyridazinone-based BPTF inhibitors. The lead compound, BZ1, possesses a high potency (Kd = 6.3 nM) and >350-fold selectivity over BET bromodomains. We identify an acidic triad in the binding pocket to guide future designs. We show that our inhibitors sensitize 4T1 breast cancer cells to doxorubicin but not BPTF knockdown cells, suggesting a specificity to BPTF. Given the high potency and good physicochemical properties of these inhibitors, we anticipate that they will be useful starting points for chemical tool development to explore the biological roles of BPTF.
Collapse
Affiliation(s)
- Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Manjulata Singh
- The Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Michael F Ciccone
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Alice Chan
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Stanley Nithianantham
- Department of Chemical Biology & Therapeutics and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Joseph W Landry
- The Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Lu T, Lu H, Duan Z, Wang J, Han J, Xiao S, Chen H, Jiang H, Chen Y, Yang F, Li Q, Chen D, Lin J, Li B, Jiang H, Chen K, Lu W, Lin H, Luo C. Discovery of High-Affinity Inhibitors of the BPTF Bromodomain. J Med Chem 2021; 64:12075-12088. [PMID: 34375106 DOI: 10.1021/acs.jmedchem.1c00721] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dysfunctional bromodomain PHD finger transcription factor (BPTF) exerts a pivotal influence in the occurrence and development of many human diseases, particularly cancers. Herein, through the structural decomposition of the reported BPTF inhibitor TP-238, the effective structural fragments were synthetically modified to obtain our lead compound DC-BPi-03. DC-BPi-03 was identified as a novel BPTF-BRD inhibitor with a moderate potency (IC50 = 698.3 ± 21.0 nM). A structure-guided structure-activity relationship exploration gave rise to two BPTF inhibitors with much higher affinities, DC-BPi-07 and DC-BPi-11. Notably, DC-BPi-07 and DC-BPi-11 show selectivities 100-fold higher than those of other BRD targets. The cocrystal structures of BPTF in complex with DC-BPi-07 and DC-BPi-11 demonstrate the rationale of chemical efforts from the atomic level. Further study showed that DC-BPi-11 significantly inhibited leukemia cell proliferation.
Collapse
Affiliation(s)
- Tian Lu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.,Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Haibo Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhe Duan
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jun Wang
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jie Han
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Senhao Xiao
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - HuanHuan Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Hao Jiang
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yu Chen
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feng Yang
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qi Li
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dongying Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Bo Li
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.,The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wenchao Lu
- Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Hua Lin
- The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Cheng Luo
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.,School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,The Chemical Biology Center, Drug Design and Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
11
|
Zahid H, Olson NM, Pomerantz WCK. Opportunity knocks for uncovering the new function of an understudied nucleosome remodeling complex member, the bromodomain PHD finger transcription factor, BPTF. Curr Opin Chem Biol 2021; 63:57-67. [PMID: 33706239 PMCID: PMC8384639 DOI: 10.1016/j.cbpa.2021.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/27/2022]
Abstract
Nucleosome remodeling provides access to genomic DNA for recruitment of the transcriptional machinery to mediate gene expression. The aberrant function of nucleosome remodeling complexes has been correlated to human cancer, making them emerging therapeutic targets. The bromodomain PHD finger transcription factor, BPTF, is the largest member of the human nucleosome remodeling factor NURF. Over the last five years, BPTF has become increasingly identified as a protumorigenic factor, prompting investigations into the molecular mechanisms associated with BPTF function. Despite a druggable bromodomain, small molecule discovery is at an early stage. Here we highlight recent investigations into the biology being discovered for BPTF, chemical biology approaches used to study its function, and small molecule inhibitors being designed as future chemical probes and therapeutics.
Collapse
Affiliation(s)
- Huda Zahid
- 207Pleasant St. SE, Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Noelle M Olson
- 207Pleasant St. SE, Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - William C K Pomerantz
- 207Pleasant St. SE, Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Mélin L, Calosing C, Kharenko OA, Hansen HC, Gagnon A. Synthesis of NVS-BPTF-1 and evaluation of its biological activity. Bioorg Med Chem Lett 2021; 47:128208. [PMID: 34146702 DOI: 10.1016/j.bmcl.2021.128208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
BPTF (bromodomain and PHD finger containing transcription factor) is a multidomain protein that plays essential roles in transcriptional regulation, T-cell homeostasis and stem cell pluripotency. As part of the chromatin remodeling complex hNURF (nucleosome remodeling factor), BPTF epigenetic reader subunits are particularly important for BPTF cellular function. Here we report the synthesis of NVS-BPTF-1, a previously reported highly potent and selective BPTF-bromodomain inhibitor. Evaluation of the impact of the inhibition of BPTF-bromodomain using NVS-BPTF-1 on selected proteins involved in the antigen processing pathway revealed that exclusively targeting BPTF-bromodomain is insufficient to observe an increase of PSMB8, PSMB9, TAP1 and TAP2 proteins.
Collapse
Affiliation(s)
- Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Cyrus Calosing
- Zenith Epigenetics Ltd, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Olesya A Kharenko
- Zenith Epigenetics Ltd, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Henrik C Hansen
- Zenith Epigenetics Ltd, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
13
|
Fang Q, Li T, Chen P, Wu Y, Wang T, Mo L, Ou J, Nandakumar KS. Comparative Analysis on Abnormal Methylome of Differentially Expressed Genes and Disease Pathways in the Immune Cells of RA and SLE. Front Immunol 2021; 12:668007. [PMID: 34079550 PMCID: PMC8165287 DOI: 10.3389/fimmu.2021.668007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
We identified abnormally methylated, differentially expressed genes (DEGs) and pathogenic mechanisms in different immune cells of RA and SLE by comprehensive bioinformatics analysis. Six microarray data sets of each immune cell (CD19+ B cells, CD4+ T cells and CD14+ monocytes) were integrated to screen DEGs and differentially methylated genes by using R package “limma.” Gene ontology annotations and KEGG analysis of aberrant methylome of DEGs were done using DAVID online database. Protein-protein interaction (PPI) network was generated to detect the hub genes and their methylation levels were compared using DiseaseMeth 2.0 database. Aberrantly methylated DEGs in CD19+ B cells (173 and 180), CD4+ T cells (184 and 417) and CD14+ monocytes (193 and 392) of RA and SLE patients were identified. We detected 30 hub genes in different immune cells of RA and SLE and confirmed their expression using FACS sorted immune cells by qPCR. Among them, 12 genes (BPTF, PHC2, JUN, KRAS, PTEN, FGFR2, ALB, SERB-1, SKP2, TUBA1A, IMP3, and SMAD4) of RA and 12 genes (OAS1, RSAD2, OASL, IFIT3, OAS2, IFIH1, CENPE, TOP2A, PBK, KIF11, IFIT1, and ISG15) of SLE are proposed as potential biomarker genes based on receiver operating curve analysis. Our study suggests that MAPK signaling pathway could potentially differentiate the mechanisms affecting T- and B- cells in RA, whereas PI3K pathway may be used for exploring common disease pathways between RA and SLE. Compared to individual data analyses, more dependable and precise filtering of results can be achieved by integrating several relevant data sets.
Collapse
Affiliation(s)
- Qinghua Fang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tingyue Li
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peiya Chen
- Department of Science and Education, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuzhe Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lixia Mo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaxin Ou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
14
|
Glinton KE, Hurst ACE, Bowling KM, Cristian I, Haynes D, Adstamongkonkul D, Schnappauf O, Beck DB, Brewer C, Parikh AS, Shinde DN, Donaldson A, Brautbar A, Koene S, van Haeringen A, Piton A, Capri Y, Furlan M, Gardella E, Møller RS, van de Beek I, Zuurbier L, Lakeman P, Bayat A, Martinez J, Signer R, Torring PM, Engelund MB, Gripp KW, Amlie-Wolf L, Henderson LB, Midro AT, Tarasów E, Stasiewicz-Jarocka B, Moskal-Jasinska D, Vos P, Boschann F, Stoltenburg C, Puk O, Mero IL, Lossius K, Mignot C, Keren B, Acosta Guio JC, Briceño I, Gomez A, Yang Y, Stankiewicz P. Phenotypic expansion of the BPTF-related neurodevelopmental disorder with dysmorphic facies and distal limb anomalies. Am J Med Genet A 2021; 185:1366-1378. [PMID: 33522091 PMCID: PMC8048530 DOI: 10.1002/ajmg.a.62102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage‐sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi‐faceted complications due to haploinsufficiency of BPTF.
Collapse
Affiliation(s)
- Kevin E Glinton
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin M Bowling
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Ingrid Cristian
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, Florida, USA
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, Florida, USA
| | - Dusit Adstamongkonkul
- CoxHealth, CoxHealth Pediatric Specialties, Springfield, Missouri, USA.,University of Missouri School of Medicine, Springfield Clinical Campus, Springfield, Missouri, USA
| | - Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carole Brewer
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Aditi Shah Parikh
- Center for Human Genetics, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Deepali N Shinde
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Alan Donaldson
- Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Ariel Brautbar
- Medical Genetics Department, Cook Children's Hospital, Fort Worth, Texas, USA
| | - Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Amélie Piton
- Unité de Génétique Moléculaire Strasbourg University Hospital, 1 place de l'Hôpital, Strasbourg Cedex, France
| | - Yline Capri
- Service de Génétique Clinique, CHU Robert Debré, Paris Cedex, France
| | | | - Elena Gardella
- Danish Epilepsy Centre, Dianalund, Denmark.,University of Southern Denmark, Odense, Denmark
| | | | - Irma van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, the Netherlands
| | - Linda Zuurbier
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, the Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, the Netherlands
| | - Allan Bayat
- Danish Epilepsy Centre, Dianalund, Denmark.,University of Southern Denmark, Odense, Denmark.,Department of Pediatrics, University Hospital of Hvidovre, Copenhagen, Denmark
| | - Julian Martinez
- Departments of Human Genetics, Pediatrics and Psychiatry, David Geffen School of Medicine at UCLA, California, Los Angeles, USA
| | - Rebecca Signer
- Departments of Human Genetics, Pediatrics and Psychiatry, David Geffen School of Medicine at UCLA, California, Los Angeles, USA
| | - Pernille M Torring
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Karen W Gripp
- Division of Medical Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Louise Amlie-Wolf
- Division of Medical Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | | | - Alina T Midro
- Department of Clinical Genetics, Medical University, Białystok, 15-089, Białystok, Poland
| | | | | | - Diana Moskal-Jasinska
- Department of Clinical Phonoaudiology and Speech Therapy, Medical University, Białystok, Białystok, Poland
| | - Paul Vos
- Department of Pediatrics, Haga Teaching Hospital, Juliana Children's Hospital, The Hague, The Netherlands
| | - Felix Boschann
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Corinna Stoltenburg
- Department of Neuropaediatrics, Charité - Berlin University of Medicine, Berlin, Germany
| | - Oliver Puk
- Praxis für Humangenetik Tuebingen, Department of Genetic Diagnostics, Tuebingen, Germany
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Norway
| | - Kristine Lossius
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Norway
| | - Cyril Mignot
- APHP-Sorbonne Université, Département de Génétique, Hôpital Trousseau et Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Department of Genetics, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Johanna C Acosta Guio
- Especialista en Genética Médica, Instituto de Ortopedia Infantil Roosevelt, Bogotá, Cundinamarca, Colombia
| | - Ignacio Briceño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Alberto Gomez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Yaping Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA.,AiLife Diagnostics, Country Place Pkwy Suite 100, Pearland, Texas, USA
| | - Pawel Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| |
Collapse
|
15
|
Yang Y, Wang C, Wei N, Hong T, Sun Z, Xiao J, Yao J, Li Z, Liu T. Identification of prognostic chromatin-remodeling genes in clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:25614-25642. [PMID: 33232269 PMCID: PMC7803503 DOI: 10.18632/aging.104170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the effects of chromatin-remodeling genes on the prognosis of patients with clear cell renal cell carcinoma (ccRCC). In TCGA-KIRC patients, two subgroups based on 86 chromatin-remodeling genes were established. The random forest algorithm was used for feature selection to identify BPTF, SIN3A and CNOT1 as characterized chromatin remodelers in ccRCC with good prognostic value. YY1 was indicated to be a transcription factor of genes highly related to BPTF, SIN3A and CNOT1. Functional annotations indicated that BPTF, SIN3A, CNOT1 and YY1 are all involved in the ubiquitin-mediated proteolysis process and that high expression of any of the five associated E3 ubiquitin ligases found in the pathway suggests a good prognosis. Protein network analysis indicated that BPTF has a targeted regulatory effect on YY1. Another independent dataset from International Cancer Genome Consortium (ICGC) showed a strong consistency with results in TCGA. In conclusion, we demonstrate that BPTF, SIN3A and CNOT1 are novel prognostic factors that predict good survival in ccRCC. We predicted that the good prognostic value of chromatin-remodeling genes BPTF and SIN3A is related to the regulation of YY1 and that YY1 regulates E3 ubiquitin ligases for further degradation of oncoproteins in ccRCC.
Collapse
Affiliation(s)
- Yujing Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Chengyuan Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ningde Wei
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ting Hong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zuyu Sun
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Tiexi District, Shenyang 110001, P.R. China
| | - Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| |
Collapse
|
16
|
Dai M, Hu S, Liu CF, Jiang L, Yu W, Li ZL, Guo W, Tang R, Dong CY, Wu TH, Deng WG. BPTF cooperates with p50 NF-κB to promote COX-2 expression and tumor cell growth in lung cancer. Am J Transl Res 2019; 11:7398-7409. [PMID: 31934287 PMCID: PMC6943470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Cyclooxygenase-2 (COX-2) is overexpressed in most human cancers, but its precise regulatory mechanism in cancer cells remains unclear. The aims of this study are to discover and identify the new regulatory factors which bind to the COX-2 promoter and regulate COX-2 expression and cancer cell growth, and to elucidate the mechanisms of action of these factors in lung cancer. In this study, the COX-2 promoter-binding protein BPTF (bromodomain PHD finger transcription factor) was detected, identified and verified by biotin-streptavidin-agarose pulldown, mass spectrum analysis and chromatin immunoprecipitation (ChIP) in lung cancer cells, respectively. The expressions of COX-2 and BPTF in lung cancer cell lines, mouse tumor tissues and human clinical samples were detected by RT-PCR, Western blot and immunohistochemistry assays. The interaction of BPTF with NF-kB was analyzed by immunoprecipitation and confocal immunofluorescence assays. We discovered and identified BPTF as a new COX-2 promoter-binding protein in human lung cancer cells. Knockdown of BPTF inhibited COX-2 promoter activity and COX-2 expression in lung cancer cells in vitro and in vivo. We also found that BPTF functioned as a transcriptional regulator through its interaction with the p50 subunit of NF-kB. Knockdown of BPTF abrogated the binding of p50 to the COX-2 promoter, while the inhibition of p50 activity abolished the decreased trend of COX-2 expression and lung cancer cell proliferation caused by BPTF silencing. Moreover, we showed that the expressions of BPTF and COX-2 in tumor tissues of lung cancer patients were positively correlated, and high co-expression of BPTF and COX-2 predicted poor prognosis in lung cancer patients. Collectively, our results indicated that BPTF cooperated with p50 NF-κB to regulate COX-2 expression and lung cancer growth, suggesting that the BPTF/p50/COX-2 axis could be a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Meng Dai
- The First Affiliated Hospital and Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
- Dalian Municipal Central HospitalDalian, China
| | - Sheng Hu
- The First Affiliated Hospital and Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | | | - Ling Jiang
- Dalian Municipal Central HospitalDalian, China
| | - Wendan Yu
- The First Affiliated Hospital and Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | | | - Wei Guo
- The First Affiliated Hospital and Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Ranran Tang
- The First Affiliated Hospital and Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Cheng-Yong Dong
- The First Affiliated Hospital and Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Tai-Hua Wu
- The First Affiliated Hospital and Institute of Cancer Stem Cell, Dalian Medical UniversityDalian, China
| | - Wu-Guo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer MedicineGuangzhou, China
| |
Collapse
|
17
|
Xu W, Long L, Zhao Y, Stevens L, Felipe I, Munoz J, Ellis RE, McGrath PT. Evolution of Yin and Yang isoforms of a chromatin remodeling subunit precedes the creation of two genes. eLife 2019; 8:e48119. [PMID: 31498079 PMCID: PMC6752949 DOI: 10.7554/elife.48119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Genes can encode multiple isoforms, broadening their functions and providing a molecular substrate to evolve phenotypic diversity. Evolution of isoform function is a potential route to adapt to new environments. Here we show that de novo, beneficial alleles in the nurf-1 gene became fixed in two laboratory lineages of C. elegans after isolation from the wild in 1951, before methods of cryopreservation were developed. nurf-1 encodes an ortholog of BPTF, a large (>300 kD) multidomain subunit of the NURF chromatin remodeling complex. Using CRISPR-Cas9 genome editing and transgenic rescue, we demonstrate that in C. elegans, nurf-1 has split into two, largely non-overlapping isoforms (NURF-1.D and NURF-1.B, which we call Yin and Yang, respectively) that share only two of 26 exons. Both isoforms are essential for normal gametogenesis but have opposite effects on male/female gamete differentiation. Reproduction in hermaphrodites, which involves production of both sperm and oocytes, requires a balance of these opposing Yin and Yang isoforms. Transgenic rescue and genetic position of the fixed mutations suggest that different isoforms are modified in each laboratory strain. In a related clade of Caenorhabditis nematodes, the shared exons have duplicated, resulting in the split of the Yin and Yang isoforms into separate genes, each containing approximately 200 amino acids of duplicated sequence that has undergone accelerated protein evolution following the duplication. Associated with this duplication event is the loss of two additional nurf-1 transcripts, including the long-form transcript and a newly identified, highly expressed transcript encoded by the duplicated exons. We propose these lost transcripts are non-functional side products necessary to transcribe the Yin and Yang transcripts in the same cells. Our work demonstrates how gene sharing, through the production of multiple isoforms, can precede the creation of new, independent genes.
Collapse
Affiliation(s)
- Wen Xu
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lijiang Long
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative BiosciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Yuehui Zhao
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Irene Felipe
- Epithelial Carcinogenesis GroupSpanish National Cancer Research Center-CNIOMadridSpain
| | - Javier Munoz
- Proteomics Unit-ProteoRed-ISCIIISpanish National Cancer Research Center-CNIOMadridSpain
| | - Ronald E Ellis
- Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordUnited States
| | - Patrick T McGrath
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Parker H. Petit Institute of Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUnited States
- School of PhysicsGeorgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
18
|
Zhang D, Han J, Lu W, Lian F, Wang J, Lu T, Tao H, Xiao S, Zhang F, Liu YC, Liu R, Zhang N, Jiang H, Chen K, Zhao C, Luo C. Discovery of alkoxy benzamide derivatives as novel BPTF bromodomain inhibitors via structure-based virtual screening. Bioorg Chem 2019; 86:494-500. [DOI: 10.1016/j.bioorg.2019.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022]
|
19
|
Comprehensive analysis of differentially expressed profiles of long non-coding RNAs and messenger RNAs in kaolin-induced hydrocephalus. Gene 2019; 697:184-193. [PMID: 30797995 DOI: 10.1016/j.gene.2019.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS The pathophysiology of hydrocephalus induced brain damage remains unclear. Long non-coding RNAs (lncRNAs) have been demonstrated to be implicated in many central nervous system diseases. However, the roles of lncRNAs in hydrocephalus injury are poorly understood. METHODS The present study depicted the expression profiles of lncRNAs and messenger RNAs (mRNAs) in C57BL/6 mice with kaolin-induced hydrocephalus and saline controls using high-throughput RNA sequencing. Afterward, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to identify potential targets that correlated with hydrocephalus. In addition, co-expression networks and cis- and trans-regulation were predicted using bioinformatics methods. Finally, representative lncRNAs and mRNAs were further validation using quantitative real-time polymerase chain reaction. RESULTS A total of 1575 lncRNAs and 1168 mRNAs were differentially expressed (DE) in hydrocephalus. GO and KEGG analyses indicated several immune and inflammatory response-associated pathways may be important in the hydrocephalus. Besides, functional enrichment analysis based on co-expression network showed several similar pathways, such as chemokine signaling pathway, phagosome, MAPK signaling pathway and complement and coagulation cascade. Cis-regulation prediction revealed 5 novel lncRNAs might regulate their nearby coding genes, and trans-regulation revealed several lncRNAs participate in pathways regulated by transcription factors, including BPTF, FOXM1, NR5A2, P2RX5, and NR6A1. CONCLUSIONS In conclusion, our results provide candidate genes involved in hydrocephalus and suggest a new perspective on the modulation of lncRNAs in hydrocephalus.
Collapse
|
20
|
Dolcino M, Pelosi A, Fiore PF, Patuzzo G, Tinazzi E, Lunardi C, Puccetti A. Long Non-Coding RNAs Play a Role in the Pathogenesis of Psoriatic Arthritis by Regulating MicroRNAs and Genes Involved in Inflammation and Metabolic Syndrome. Front Immunol 2018; 9:1533. [PMID: 30061880 PMCID: PMC6054935 DOI: 10.3389/fimmu.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Psoriatic arthritis (PsA) is an inflammatory arthritis, characterized by inflammation of entheses and synovium, leading to joint erosions and new bone formation. It affects 10-30% of patients with psoriasis, and has an estimated prevalence of approximately 1%. PsA is considered to be primarily an autoimmune disease, driven by autoreactive T cells directed against autoantigens present in the skin and in the joints. However, an autoinflammatory origin has recently been proposed. Long noncoding RNAs (lncRNAs) are RNAs more than 200 nucleotides in length that do not encode proteins. LncRNAs play important roles in several biological processes, including chromatin remodeling, transcription control, and post-transcriptional processing. Several studies have shown that lncRNAs are expressed in a stage-specific or lineage-specific manner in immune cells that have a role in the development, activation, and effector functions of immune cells. LncRNAs are thought to play a role in several diseases, including autoimmune disorders. Indeed, a few lncRNAs have been identified in systemic lupus erythematosus, rheumatoid arthritis, and psoriasis. Although several high-throughput studies have been performed to identify lncRNAs, their biological and pathological relevance are still unknown, and most transcriptome studies in autoimmune diseases have only assessed protein-coding transcripts. No data are currently available on lncRNAs in PsA. Therefore, by microarray analysis, we have investigated the expression profiles of more than 50,000 human lncRNAs in blood samples from PsA patients and healthy controls using Human Clariom D Affymetrix chips, suitable to detect rare and low-expressing transcripts otherwise unnoticed by common sequencing methodologies. Network analysis identified lncRNAs targeting highly connected genes in the PsA transcriptome. Such genes are involved in molecular pathways crucial for PsA pathogenesis, including immune response, glycolipid metabolism, bone remodeling, type 1 interferon, wingless related integration site, and tumor necrosis factor signaling. Selected lncRNAs were validated by RT-PCR in an expanded cohort of patients. Moreover, modulated genes belonging to meaningful pathways were validated by RT-PCR in PsA PBMCs and/or by ELISA in PsA sera. The findings indicate that lncRNAs are involved in PsA pathogenesis by regulating both microRNAs and genes and open new avenues for the identification of new biomarkers and therapeutical targets.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Pelosi
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | | | | | - Elisa Tinazzi
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Antonio Puccetti
- Department of Experimental Medicine - Section of Histology, University of Genova, Genova, Italy
| |
Collapse
|
21
|
Xu B, Cai L, Butler JM, Chen D, Lu X, Allison DF, Lu R, Rafii S, Parker JS, Zheng D, Wang GG. The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells. Stem Cell Reports 2018; 10:675-683. [PMID: 29456179 PMCID: PMC5918338 DOI: 10.1016/j.stemcr.2018.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF), a component of the nucleosome remodeling factor (NURF) chromatin-remodeling complex, is essential for maintaining the population size of hematopoietic stem/progenitor cells (HSPCs), including long-term hematopoietic stem cells (HSCs). Bptf-deficient HSCs are defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow failure and anemia. Genome-wide transcriptome profiling revealed that BPTF loss caused downregulation of HSC-specific gene-expression programs, which contain several master transcription factors (Meis1, Pbx1, Mn1, and Lmo2) required for HSC maintenance and self-renewal. Furthermore, we show that BPTF potentiates the chromatin accessibility of key HSC “stemness” genes. These results demonstrate an essential requirement of the chromatin remodeler BPTF and NURF for activation of “stemness” gene-expression programs and proper function of adult HSCs. The chromatin remodeler gene Bptf shows preferential expression in primitive HSPCs Bptf ensures maintenance and functionality of HSCs in a cell-autonomous manner Bptf is required for the activation of HSC “stemness” genes including master TFs Hematopoietic-specific loss of Bptf results in bone marrow failure and anemia
Collapse
Affiliation(s)
- Bowen Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason M Butler
- Department of Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dongliang Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Xiongdong Lu
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, NY 10065, USA
| | - David F Allison
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Shahin Rafii
- Department of Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Deyou Zheng
- Department of Neuroscience and Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Haploinsufficiency of the Chromatin Remodeler BPTF Causes Syndromic Developmental and Speech Delay, Postnatal Microcephaly, and Dysmorphic Features. Am J Hum Genet 2017; 101:503-515. [PMID: 28942966 DOI: 10.1016/j.ajhg.2017.08.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
Bromodomain PHD finger transcription factor (BPTF) is the largest subunit of nucleosome remodeling factor (NURF), a member of the ISWI chromatin-remodeling complex. However, the clinical consequences of disruption of this complex remain largely uncharacterized. BPTF is required for anterior-posterior axis formation of the mouse embryo and was shown to promote posterior neuroectodermal fate by enhancing Smad2-activated wnt8 expression in zebrafish. Here, we report eight loss-of-function and two missense variants (eight de novo and two of unknown origin) in BPTF on 17q24.2. The BPTF variants were found in unrelated individuals aged between 2.1 and 13 years, who manifest variable degrees of developmental delay/intellectual disability (10/10), speech delay (10/10), postnatal microcephaly (7/9), and dysmorphic features (9/10). Using CRISPR-Cas9 genome editing of bptf in zebrafish to induce a loss of gene function, we observed a significant reduction in head size of F0 mutants compared to control larvae. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and phospho-histone H3 (PH3) staining to assess apoptosis and cell proliferation, respectively, showed a significant increase in cell death in F0 mutants compared to controls. Additionally, we observed a substantial increase of the ceratohyal angle of the craniofacial skeleton in bptf F0 mutants, indicating abnormal craniofacial patterning. Taken together, our data demonstrate the pathogenic role of BPTF haploinsufficiency in syndromic neurodevelopmental anomalies and extend the clinical spectrum of human disorders caused by ablation of chromatin remodeling complexes.
Collapse
|