1
|
Grijincu M, Buzan MR, Zbîrcea LE, Păunescu V, Panaitescu C. Prenatal Factors in the Development of Allergic Diseases. Int J Mol Sci 2024; 25:6359. [PMID: 38928067 PMCID: PMC11204337 DOI: 10.3390/ijms25126359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Allergic diseases are showing increasing prevalence in Western societies. They are characterized by a heightened reactivity towards otherwise harmless environmental stimuli. Allergic diseases showing a wide range of severity of symptoms have a significant impact on the quality of life of affected individuals. This study aims to highlight the mechanisms that induce these reactions, how they progress, and which prenatal factors influence their development. Most frequently, the reaction is mediated by immunoglobulin E (IgE) produced by B cells, which binds to the surface of mast cells and basophils and triggers an inflammatory response. The antibody response is triggered by a shift in T-cell immune response. The symptoms often start in early childhood with eczema or atopic dermatitis and progress to allergic asthma in adolescence. An important determinant of allergic diseases seems to be parental, especially maternal history of allergy. Around 30% of children of allergic mothers develop allergic sensitization in childhood. Genes involved in the regulation of the epithelial barrier function and the T-cell response were found to affect the predisposition to developing allergic disorders. Cord blood IgE was found to be a promising predictor of allergic disease development. Fetal B cells produce IgE starting at the 20th gestation week. These fetal B cells could be sensitized together with mast cells by maternal IgE and IgE-allergen complexes crossing the placental barrier via the low-affinity IgE receptor. Various factors were found to facilitate these sensitizations, including pesticides, drugs, exposure to cigarette smoke and maternal uncontrolled asthma. Prenatal exposure to microbial infections and maternal IgG appeared to play a role in the regulation of T-cell response, indicating a protective effect against allergy development. Additional preventive factors were dietary intake of vitamin D and omega 3 fatty acids as well as decreased maternal IgE levels. The effect of exposure to food allergens during pregnancy was inconclusive, with studies having found both sensitizing and protective effects. In conclusion, prenatal factors including genetics, epigenetics and fetal environmental factors have an important role in the development of allergic disorders in later life. Children with a genetic predisposition are at risk when exposed to cigarette smoke as well as increased maternal IgE in the prenatal period. Maternal diet during pregnancy and immunization against certain allergens could help in the prevention of allergy in predisposed children.
Collapse
Affiliation(s)
- Manuela Grijincu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Maria-Roxana Buzan
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Lauriana-Eunice Zbîrcea
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
- OncoGen Center, Pius Brînzeu County Clinical Emergency Hospital, 300723 Timișoara, Romania
| |
Collapse
|
2
|
Simonin EM, Babasyan S, Wagner B. Peripheral CD23hi/IgE+ Plasmablasts Secrete IgE and Correlate with Allergic Disease Severity. THE JOURNAL OF IMMUNOLOGY 2022; 209:665-674. [DOI: 10.4049/jimmunol.2101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/16/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Production and secretion of IgE by B cells, plasmablasts, and plasma cells is a central step in the development and maintenance of allergic diseases. IgE can bind to one of its receptors, the low-affinity IgE receptor CD23, which is expressed on activated B cells. As a result, most B cells bind IgE through CD23 on their surface. This makes the identification of IgE producing cells challenging. In this study, we report an approach to clearly identify live IgE+ plasmablasts in peripheral blood for application by both flow cytometry analysis and in vitro assay. These IgE+ plasmablasts readily secrete IgE, upregulate specific mRNA transcripts (BLIMP-1 IRF4, XBP1, CD138, and TACI), and exhibit highly differentiated morphology all consistent with plasmablast differentiation. Most notably, we compared the presence of IgE+ plasmablasts in peripheral blood of allergic and healthy individuals using a horse model of naturally occurring seasonal allergy, Culicoides hypersensitivity. The model allows the comparison of immune cells both during periods of clinical allergy and when in remission and clinically healthy. Allergic horses had significantly higher percentages of IgE+ plasmablasts and IgE secretion while experiencing clinical allergy compared with healthy horses. Allergy severity and IgE secretion were both positively correlated to the frequency of IgE+ plasmablasts in peripheral blood. These results provide strong evidence for the identification and quantification of peripheral IgE-secreting plasmablasts and provide a missing cellular link in the mechanism of IgE secretion and upregulation during allergy.
Collapse
Affiliation(s)
- Elisabeth M. Simonin
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
3
|
Chalayer E, Gramont B, Zekre F, Goguyer-Deschaumes R, Waeckel L, Grange L, Paul S, Chung AW, Killian M. Fc receptors gone wrong: A comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun Rev 2021; 21:103016. [PMID: 34915182 DOI: 10.1016/j.autrev.2021.103016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022]
Abstract
Systemic autoimmune and inflammatory diseases have a complex and only partially known pathophysiology with various abnormalities involving all the components of the immune system. Among these components, antibodies, and especially autoantibodies are key elements contributing to autoimmunity. The interaction of antibody fragment crystallisable (Fc) and several distinct receptors, namely Fc receptors (FcRs), have gained much attention during the recent years, with possible major therapeutic perspectives for the future. The aim of this review is to comprehensively describe the known roles for FcRs (activating and inhibitory FcγRs, neonatal FcR [FcRn], FcαRI, FcεRs, Ro52/tripartite motif containing 21 [Ro52/TRIM21], FcδR, and the novel Fc receptor-like [FcRL] family) in systemic autoimmune and inflammatory disorders, namely rheumatoid arthritis, Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis, idiopathic inflammatory myopathies, mixed connective tissue disease, Crohn's disease, ulcerative colitis, immunoglobulin (Ig) A vasculitis, Behçet's disease, Kawasaki disease, IgG4-related disease, immune thrombocytopenia, autoimmune hemolytic anemia, antiphospholipid syndrome and heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Emilie Chalayer
- Department of Hematology and Cell Therapy, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France; INSERM U1059-Sainbiose, dysfonction vasculaire et hémostase, Université de Lyon, Saint-Etienne, France
| | - Baptiste Gramont
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Franck Zekre
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Pediatrics, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Roman Goguyer-Deschaumes
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Lucile Grange
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Amy W Chung
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Killian
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France.
| |
Collapse
|
4
|
Engeroff P, Vogel M. The role of CD23 in the regulation of allergic responses. Allergy 2021; 76:1981-1989. [PMID: 33378583 PMCID: PMC8359454 DOI: 10.1111/all.14724] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
IgE, the key molecule in atopy has been shown to bind two receptors, FcεRI, the high‐affinity receptor, and FcεRII (CD23), binding IgE with lower affinity. Whereas cross‐linking of IgE on FcεRI expressed by mast cells and basophils triggers the allergic reaction, binding of IgE to CD23 on B cells plays an important role in both IgE regulation and presentation. Furthermore, IgE‐immune complexes (IgE‐ICs) bound by B cells enhance antibody and T cell responses in mice and humans. However, the mechanisms that regulate the targeting of the two receptors and the respective function of the two pathways in inflammation or homeostasis are still a matter of debate. Here, we focus on CD23 and discuss several mechanisms related to IgE binding, as well as the impact of the IgE/antigen‐binding on different immune cells expressing CD23. One recent paper has shown that free IgE preferentially binds to FcεRI whereas IgE‐ICs are preferentially captured by CD23. Binding of IgE‐ICs to CD23 on B cells can, on one hand, regulate serum IgE and prevent effector cell activation and on the other hand facilitate antigen presentation by delivering the antigen to dendritic cells. These data argue for a multifunctional role of CD23 for modulating IgE serum levels and immune responses.
Collapse
Affiliation(s)
- Paul Engeroff
- INSERM UMR_S 959 Immunology‐Immunopathology‐Immunotherapy (i3) Sorbonne Université Paris France
| | - Monique Vogel
- Center for Clinical Research Region Västmanland/Uppsala University, Västmanland hospital Västerås Sweden
- Department of BioMedical Research University of Bern Bern Switzerland
| |
Collapse
|
5
|
Vizzardelli C, Gindl M, Roos S, Möbs C, Nagl B, Zimmann F, Sexl V, Kenner L, Neunkirchner A, Zlabinger GJ, Pickl WF, Pfützner W, Bohle B. Blocking antibodies induced by allergen-specific immunotherapy ameliorate allergic airway disease in a human/mouse chimeric model. Allergy 2018; 73:851-861. [PMID: 29159964 DOI: 10.1111/all.13363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) induces specific blocking antibodies (Ab), which are claimed to prevent IgE-mediated reactions to allergens. Additionally, AIT modulates cellular responses to allergens, for example, by desensitizing effector cells, inducing regulatory T and B lymphocytes and immune deviation. It is still enigmatic which of these mechanisms mediate(s) clinical tolerance. We sought to address the role of AIT-induced blocking Ab separately from cellular responses in a chimeric human/mouse model of respiratory allergy. METHODS Nonobese diabetic severe combined immunodeficient γc-/- (NSG) mice received intraperitoneally allergen-reactive PBMC from birch pollen-allergic patients together with birch pollen extract and human IL-4. Engraftment was assessed by flow cytometry. Airway hyperresponsiveness (AHR) and bronchial inflammation were analyzed after intranasal challenges with allergen or PBS. Sera collected from patients before and during AIT with birch pollen were added to the allergen prior to intranasal challenge. The IgE-blocking activity of post-AIT sera was assessed in vitro. RESULTS Human cells were detected in cell suspensions of murine lungs and spleens indicating successful humanization. Humanized mice displayed a more pronounced AHR and bronchial inflammation when challenged with allergen compared to negative controls. Post-AIT sera exerted IgE-blocking activity. In contrast to pre-AIT sera, the presence of heterologous and autologous post-AIT sera significantly reduced the allergic airway inflammation and matched their IgE-blocking activity determined in vitro. CONCLUSION Our data demonstrate that post-AIT sera with IgE-blocking activity ameliorate allergic airway inflammation in a human/mouse chimeric model of respiratory allergy independently of AIT-induced cellular changes.
Collapse
Affiliation(s)
- C. Vizzardelli
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Gindl
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - S. Roos
- Unit of Laboratory Animal Pathology; University of Veterinary Medicine Vienna; Vienna Austria
| | - C. Möbs
- Department of Dermatology and Allergology; Philipps University Marburg; Marburg Germany
| | - B. Nagl
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - F. Zimmann
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - V. Sexl
- Institute of Pharmacology and Toxicology; University of Veterinary Medicine Vienna; Vienna Austria
| | - L. Kenner
- Unit of Laboratory Animal Pathology; University of Veterinary Medicine Vienna; Vienna Austria
- Department of Experimental and Laboratory Animal Pathology; Medical University of Vienna; Vienna Austria
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR); Vienna Austria
| | - A. Neunkirchner
- Institute of Immunology; Medical University of Vienna; Vienna Austria
| | - G. J. Zlabinger
- Institute of Immunology; Medical University of Vienna; Vienna Austria
| | - W. F. Pickl
- Institute of Immunology; Medical University of Vienna; Vienna Austria
| | - W. Pfützner
- Department of Dermatology and Allergology; Philipps University Marburg; Marburg Germany
| | - B. Bohle
- Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| |
Collapse
|