1
|
Li Y, Liu Y, Bu X, Qin Y, Zhang Y. Research progress on V delta 1 + T cells and their effect on pathogen infection. PeerJ 2024; 12:e18313. [PMID: 39494290 PMCID: PMC11531252 DOI: 10.7717/peerj.18313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
The ongoing high occurrence of harmful infectious diseases significantly threatens human health. Existing methods used to control such diseases primarily involve targeting the pathogens, usually neglecting the vital role of host factors in disease advancement. Gamma delta (γδ) T cells act as a bridge between innate and adaptive immunity, playing a crucial role in combating pathogen invasion. Among these γδT cell subsets, which are categorized based on T cell receptor delta variable expression patterns, V delta (δ) 1+ T cells possess unique recognition abilities and regulatory characteristics and actively engage in various immune responses. The differentiation, development, and immune reactivity of Vδ1+ T cells are closely associated with the initial and progressive stages of infectious diseases. This article provides an overview of the classification, distribution, differentiation, and development of Vδ1+ T cells and their mechanisms in combating pathogenic infections, offering new insights for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yuxia Li
- School of Basic Medical Sciences, Shandong Second Medical University, Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, Weifang, Shandong, China
| | - Yanfei Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaoxiao Bu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuanyuan Qin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Yanyan Zhang
- Department of Rheumatology and Immunology, Weifang Second People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
2
|
Toor RK, Semmes EC, Walsh KM, Permar SR, Giulino-Roth L. Does congenital cytomegalovirus infection contribute to the development of acute lymphoblastic leukemia in children? Curr Opin Virol 2023; 60:101325. [PMID: 37075577 DOI: 10.1016/j.coviro.2023.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 04/21/2023]
Abstract
Cytomegalovirus (CMV) is a ubiquitous herpesvirus that has a profound impact on the host immune system. Congenital cytomegalovirus (cCMV) infection modulates neonatal immune cell compartments, yet the full impact of in utero exposure on developing fetal immune cells remains poorly characterized. A series of recent studies have identified a potential link between cCMV infection and the development of acute lymphoblastic leukemia (ALL) in childhood. Here, we review the emerging evidence linking CMV and ALL risk, discuss what is known about the causes of childhood ALL, and propose how CMV infection in early life may confer increased ALL risk.
Collapse
|
3
|
Kaminski H, Marsères G, Cosentino A, Guerville F, Pitard V, Fournié JJ, Merville P, Déchanet-Merville J, Couzi L. Understanding human γδ T cell biology toward a better management of cytomegalovirus infection. Immunol Rev 2020; 298:264-288. [PMID: 33091199 DOI: 10.1111/imr.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
Cytomegalovirus (CMV) infection is responsible for significant morbidity and mortality in immunocompromised patients, namely solid organ and hematopoietic cell transplant recipients, and can induce congenital infection in neonates. There is currently an unmet need for new management and treatment strategies. Establishment of an anti-CMV immune response is critical in order to control CMV infection. The two main human T cells involved in HCMV-specific response are αβ and non-Vγ9Vδ2 T cells that belong to γδ T cell compartment. CMV-induced non-Vγ9Vδ2 T cells harbor a specific clonal expansion and a phenotypic signature, and display effector functions against CMV. So far, only two main molecular mechanisms underlying CMV sensing have been identified. Non-Vγ9Vδ2 T cells can be activated either by stress-induced surface expression of the γδT cell receptor (TCR) ligand annexin A2, or by a multimolecular stress signature composed of the γδTCR ligand endothelial protein C receptor and co-stimulatory signals such as the ICAM-1-LFA-1 axis. All this basic knowledge can be harnessed to improve the clinical management of CMV infection in at-risk patients. In particular, non-Vγ9Vδ2 T cell monitoring could help better stratify the risk of infection and move forward a personalized medicine. Moreover, recent advances in cell therapy protocols open the way for a non-Vγ9Vδ2 T cell therapy in immunocompromised patients.
Collapse
Affiliation(s)
- Hannah Kaminski
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel Marsères
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Anaïs Cosentino
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Florent Guerville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,CHU Bordeaux, Pôle de gérontologie, Bordeaux, Bordeaux, France
| | - Vincent Pitard
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Merville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Lionel Couzi
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
4
|
Rechavi E, Somech R. Maturation of the immune system in the fetus and the implications for congenital CMV. Best Pract Res Clin Obstet Gynaecol 2019; 60:35-41. [PMID: 30981539 DOI: 10.1016/j.bpobgyn.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
Congenital cytomegalovirus (CMV) infection is the most prevalent and consequential congenital infection, among others, that affects approximately 0.6% of all live births worldwide. Timing of maternal infection and maternal immune status largely determine the likelihood of a symptomatic infection. However, recent studies suggest that the fetal immune system, long perceived as naïve and immature, may also play a role in deciding the outcome of congenital CMV infection. Here, we review the development of four immune cells most pertinent to CMV control in the human fetus. αβT cells, B cells, natural killer (NK) cells, and γδT cells are all present, mature and partially functional in utero, and are capable of mounting some form of response to congenital CMV infection. Whether this response is negligible, effective, or harmful remains an open question. Expanding our knowledge of normal and abnormal immune development could provide clinicians with more accurate tools for the detection, monitoring, and treatment of congenital CMV infection in fetuses.
Collapse
Affiliation(s)
- Erez Rechavi
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Affiliated with Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Affiliated with Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Rovito R, Warnatz HJ, Kiełbasa SM, Mei H, Amstislavskiy V, Arens R, Yaspo ML, Lehrach H, Kroes ACM, Goeman JJ, Vossen ACTM. Impact of congenital cytomegalovirus infection on transcriptomes from archived dried blood spots in relation to long-term clinical outcome. PLoS One 2018; 13:e0200652. [PMID: 30024899 PMCID: PMC6053152 DOI: 10.1371/journal.pone.0200652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/30/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital Cytomegalovirus infection (cCMV) is the leading infection in determining permanent long-term impairments (LTI), and its pathogenesis is largely unknown due to the complex interplay between viral, maternal, placental, and child factors. The cellular activity, considered to be the result of the response to exogenous and endogenous factors, is captured by the determination of gene expression profiles. In this study, we determined whole blood transcriptomes in relation to cCMV, CMV viral load and LTI development at 6 years of age by using RNA isolated from neonatal dried blood spots (DBS) stored at room temperature for 8 years. As DBS were assumed to mainly reflect the neonatal immune system, particular attention was given to the immune pathways using the global test. Additionally, differential expression of individual genes was performed using the voom/limma function packages. We demonstrated feasibility of RNA sequencing from archived neonatal DBS of children with cCMV, and non-infected controls, in relation to LTI and CMV viral load. Despite the lack of statistical power to detect individual genes differences, pathway analysis suggested the involvement of innate immune response with higher CMV viral loads, and of anti-inflammatory markers in infected children that did not develop LTI. Finally, the T cell exhaustion observed in infected neonates, in particular with higher viral load, did not correlate with LTI, therefore other mechanisms are likely to be involved in the long-term immune dysfunction. Despite these data demonstrate limitation in determining prognostic markers for LTI by means of transcriptome analysis, this exploratory study represents a first step in unraveling the pathogenesis of cCMV, and the aforementioned pathways certainly merit further evaluation.
Collapse
Affiliation(s)
- Roberta Rovito
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Szymon M. Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Vyacheslav Amstislavskiy
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Aloys C. M. Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jelle J. Goeman
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ann C. T. M. Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Vermijlen D, Gatti D, Kouzeli A, Rus T, Eberl M. γδ T cell responses: How many ligands will it take till we know? Semin Cell Dev Biol 2018; 84:75-86. [PMID: 29402644 DOI: 10.1016/j.semcdb.2017.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
γδ T cells constitute a sizeable and non-redundant fraction of the total T cell pool in all jawed vertebrates, but in contrast to conventional αβ T cells they are not restricted by classical MHC molecules. Progress in our understanding of the role of γδ T cells in the immune system has been hampered, and is being hampered, by the considerable lack of knowledge regarding the antigens γδ T cells respond to. The past few years have seen a wealth of data regarding the TCR repertoires of distinct γδ T cell populations and a growing list of confirmed and proposed molecules that are recognised by γδ T cells in different species. Yet, the physiological contexts underlying the often restricted TCR usage and the chemical diversity of γδ T cell ligands remain largely unclear, and only few structural studies have confirmed direct ligand recognition by the TCR. We here review the latest progress in the identification and validation of putative γδ T cell ligands and discuss the implications of such findings for γδ T cell responses in health and disease.
Collapse
Affiliation(s)
- David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium.
| | - Deborah Gatti
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Belgium
| | - Ariadni Kouzeli
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Teja Rus
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
7
|
Maternal and child human leukocyte antigens in congenital cytomegalovirus infection. J Reprod Immunol 2018; 126:39-45. [PMID: 29477013 DOI: 10.1016/j.jri.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/16/2023]
Abstract
Congenital Cytomegalovirus infection (cCMV) is the most common cause of congenital infections worldwide causing permanent long-term impairment (LTI). cCMV immunopathogenesis remains largely unknown due to the complex interplay between viral, maternal, placental and child factors. The aim of this study was to determine the possible role of particular HLA antigens, of the number of HLA mismatches (mm) and non-inherited maternal antigens (NIMAs) in a large retrospective nation-wide cohort of children with cCMV and their mothers. HLA Class I (HLA-A, HLA-B and HLA-C) and HLA Class II (HLA-DR and HLA-DQ) were assessed in 96 mother-child pairs in relation to a control group of 5604 Dutch blood donors, but no significant differences were observed. Next, although these HLA antigens could not be assessed in relation to symptoms at birth, nor to LTI, due to the low number of cases, they could be evaluated in relation to CMV viral load. HLA-DRB1*04, and potentially HLA-B*51, was shown to have a protective role in the children as its frequency was increased in the low viral load group compared to the high viral load group, and this remained significant after correction. The number of HLA mm and of NIMAs were not associated to symptoms at birth nor to LTI or viral load. In conclusion, although none of the HLA alleles could be put forward as prognostic marker for long-term outcome, our findings give useful insights into cCMV pathogenesis, and identify potential HLAs that correlate with a better viral control.
Collapse
|
8
|
Brizić I, Hiršl L, Britt WJ, Krmpotić A, Jonjić S. Immune responses to congenital cytomegalovirus infection. Microbes Infect 2017; 20:543-551. [PMID: 29287989 DOI: 10.1016/j.micinf.2017.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) is the most common cause of viral infection acquired in utero. Even though the infection has been studied for several decades, immune determinants important for virus control and mechanisms of long-term sequelae caused by infection are still insufficiently characterized. Animal models of congenital HCMV infection provide unique opportunity to study various aspects of human disease. In this review, we summarize current knowledge on the role of immune system in congenital CMV infection, with emphasis on lessons learned from mouse model of congenital CMV infection.
Collapse
Affiliation(s)
- Ilija Brizić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lea Hiršl
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics Infectious Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
9
|
Plasmablast Response to Primary Rhesus Cytomegalovirus (CMV) Infection in a Monkey Model of Congenital CMV Transmission. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00510-16. [PMID: 28298291 DOI: 10.1128/cvi.00510-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/06/2017] [Indexed: 11/20/2022]
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection worldwide and the leading infectious cause of neurologic deficits and hearing loss in newborns. Development of a maternal HCMV vaccine to prevent vertical virus transmission is a high priority, yet protective maternal immune responses following acute infection are poorly understood. To characterize the maternal humoral immune response to primary CMV infection, we investigated the plasmablast and early antibody repertoire using a nonhuman primate model with two acutely rhesus CMV (RhCMV)-infected animals-a CD4+ T cell-depleted dam that experienced fetal loss shortly after vertical RhCMV transmission and an immunocompetent dam that did not transmit RhCMV to her infant. Compared to the CD4+ T cell-depleted dam that experienced fetal loss, the immunocompetent, nontransmitting dam had a more rapid and robust plasmablast response that produced a high proportion of RhCMV-reactive antibodies, including the first identified monoclonal antibody specific for soluble and membrane-associated RhCMV envelope glycoprotein B (gB). Additionally, we noted that plasmablast RhCMV-specific antibodies had variable gene usage and maturation similar to those observed in a monkey chronically coinfected with simian immunodeficiency virus (SIV) and RhCMV. This study reveals characteristics of the early maternal RhCMV-specific humoral immune responses to primary RhCMV infection in rhesus monkeys and may contribute to a future understanding of what antibody responses should be targeted by a vaccine to eliminate congenital HCMV transmission. Furthermore, the identification of an RhCMV gB-specific monoclonal antibody underscores the possibility of modeling future HCMV vaccine strategies in this nonhuman primate model.
Collapse
|