1
|
Letafati A, Bahari M, Salahi Ardekani O, Nayerain Jazi N, Nikzad A, norouzi F, Mahdavi B, Aboofazeli A, Mozhgani SH. HTLV-1 vaccination Landscape: Current developments and challenges. Vaccine X 2024; 19:100525. [PMID: 39105133 PMCID: PMC11298643 DOI: 10.1016/j.jvacx.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/23/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that is distinguished for its correlation to myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATLL). As well, HTLV-1 has been documented to have links with other inflammatory diseases, such as uveitis and dermatitis. According to the World Health Organization (WHO), the global distribution of HTLV-1 infection is estimated to extend between 5 and 10 million individuals. Recent efforts in HTLV-1 vaccine development primarily involve selecting viral components, such as antigens, from structural and non-structural proteins. These components are chosen to trigger a vigorous immune response from cytotoxic T lymphocytes (CTLs), helper T lymphocytes (HTLs), and B cells. Investigation into developing a vaccine against HTLV-1 is ongoing, and current surveys have explored several approaches, including viral vector vaccines, DNA vaccines, protein and peptide vaccines, dendritic cell-based vaccines, mRNA vaccines, and other platforms. Despite these investigations have shown promising results, challenges like the necessity for long-term protective immunity, addressing viral diversity, and managing potential side effects remain. It is critical to keep track of the progress made in HTLV-1 vaccination research to comprehend the development status and its possible impacts. The evolving nature of vaccine development underscores the importance of staying informed about advancements as we strive to combat HTLV-1-associated diseases through effective vaccination strategies. In this review, our goal is to provide an overview of the current status of HTLV-1 vaccination efforts, emphasizing the progress, challenges, and potential future directions in this vital area of research.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mahshid Bahari
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Negar Nayerain Jazi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Abuzar Nikzad
- Dipartimento di Chimica Organica e Industriale Universita’ di Milano, Milan, Italy
| | - Farnaz norouzi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Bahar Mahdavi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Amir Aboofazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
2
|
Seighali N, Shafiee A, Rafiee MA, Aminzade D, Mozhgani SH. Human T-cell lymphotropic virus type 1 (HTLV-1) proposed vaccines: a systematic review of preclinical and clinical studies. BMC Infect Dis 2023; 23:320. [PMID: 37170214 PMCID: PMC10173209 DOI: 10.1186/s12879-023-08289-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Numerous vaccination research experiments have been conducted on non-primate hosts to prevent or control HTLV-1 infection. Therefore, reviewing recent advancements for status assessment and strategic planning of future preventative actions to reduce HTLV-1 infection and its consequences would be essential. METHODS MEDLINE, Scopus, Web of Science, and Clinicaltrials.gov were searched from each database's inception through March 27, 2022. All original articles focusing on developing an HTLV-1 vaccine candidate were included. RESULTS A total of 47 studies were included. They used a variety of approaches to develop the HTLV-1 vaccine, including DNA-based, dendritic-cell-based, peptide/protein-based, and recombinant vaccinia virus approaches. The majority of the research that was included utilized Tax, Glycoprotein (GP), GAG, POL, REX, and HBZ as their main peptides in order to develop the vaccine. The immunization used in dendritic cell-based investigations, which were more recently published, was accomplished by an activated CD-8 T-cell response. Although there hasn't been much attention lately on this form of the vaccine, the initial attempts to develop an HTLV-1 immunization depended on recombinant vaccinia virus, and the majority of results seem positive and effective for this type of vaccine. Few studies were conducted on humans. Most of the studies were experimental studies using animal models. Adenovirus, Cytomegalovirus (CMV), vaccinia, baculovirus, hepatitis B, measles, and pox were the most commonly used vectors. CONCLUSIONS This systematic review reported recent progression in the development of HTLV-1 vaccines to identify candidates with the most promising preventive and therapeutic effects.
Collapse
Affiliation(s)
- Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Ali Rafiee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dlnya Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Mulherkar TH, Gómez DJ, Sandel G, Jain P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022; 14:v14092037. [PMID: 36146843 PMCID: PMC9503663 DOI: 10.3390/v14092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) function as a link between innate and adaptive immune responses. Retroviruses HIV-1 and HTLV-1 modulate DCs to their advantage and utilize them to propagate infection. Coinfection of HTLV-1 and HIV-1 has implications for cancer malignancies. Both viruses initially infect DCs and propagate the infection to CD4+ T cells through cell-to-cell transmission using mechanisms including the formation of virologic synapses, viral biofilms, and conduits. These retroviruses are both neurotrophic with neurovirulence determinants. The neuropathogenesis of HIV-1 and HTLV-1 results in neurodegenerative diseases such as HIV-associated neurocognitive disorders (HAND) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Infected DCs are known to traffic to the brain (CNS) and periphery (PNS, lymphatics) to induce neurodegeneration in HAND and HAM/TSP patients. Elevated levels of neuroinflammation have been correlated with cognitive decline and impairment of motor control performance. Current vaccinations and therapeutics for HIV-1 and HTLV-1 are assessed and can be applied to patients with HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL). These diseases caused by co-infections can result in both neurodegeneration and cancer. There are associations with cancer malignancies and HIV-1 and HTLV-1 as well as other human oncogenic viruses (EBV, HBV, HCV, HDV, and HPV). This review contains current knowledge on DC sensing of HIV-1 and HTLV-1 including DC-SIGN, Tat, Tax, and current viral therapies. An overview of DC interaction with oncogenic viruses including EBV, Hepatitis viruses, and HPV is also provided. Vaccines and therapeutics targeting host–pathogen interactions can provide a solution to co-infections, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Tania H. Mulherkar
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Daniel Joseph Gómez
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Department of Biological Sciences, California State University, 25800 Carlos Bee Blvd, Hayward, CA 94542, USA
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Correspondence:
| |
Collapse
|
4
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
5
|
Kannagi M, Hasegawa A, Nagano Y, Kimpara S, Suehiro Y. Impact of host immunity on HTLV-1 pathogenesis: potential of Tax-targeted immunotherapy against ATL. Retrovirology 2019; 16:23. [PMID: 31438973 PMCID: PMC6704564 DOI: 10.1186/s12977-019-0484-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other inflammatory diseases. There is no disease-specific difference in viral strains, and it is unclear how HTLV-1 causes such different diseases manifesting as lymphoproliferation or inflammation. Although some progress has been made in therapies for these diseases, the prognosis for ATL is still dismal and HAM/TSP remains an intractable disease. So far, two regulatory proteins of HTLV-1, Tax and HBZ, have been well studied and shown to have pleiotropic functions implicated in viral pathogenesis. Tax in particular can strongly activate NFκB, which is constitutively activated in HTLV-1-infected cells and considered to contribute to both oncogenesis and inflammation. However, the expression level of Tax is very low in vivo, leading to confusion in understanding its role in viral pathogenesis. A series of studies using IL-2-dependent HTLV-1-infected cells indicated that IL-10, an anti-inflammatory/immune suppressive cytokine, could induce a proliferative phenotype in HTLV-1-infected cells. In addition, type I interferon (IFN) suppresses HTLV-1 expression in a reversible manner. These findings suggest involvement of host innate immunity in the switch between lymphoproliferative and inflammatory diseases as well as the regulation of HTLV-1 expression. Innate immune responses also affect another important host determinant, Tax-specific cytotoxic T lymphocytes (CTLs), which are impaired in ATL patients, while activated in HAM/TSP patients. Activation of Tax-specific CTLs in ATL patients after hematopoietic stem cell transplantation indicates Tax expression and its fluctuation in vivo. A recently developed anti-ATL therapeutic vaccine, consisting of Tax peptide-pulsed dendritic cells, induced Tax-specific CTL responses in ATL patients and exhibited favorable clinical outcomes, unless Tax-defective ATL clones emerged. These findings support the significance of Tax in HTLV-1 pathogenesis, at least in part, and encourage Tax-targeted immunotherapy in ATL. Host innate and acquired immune responses induce host microenvironments that modify HTLV-1-encoded pathogenesis and establish a complicated network for development of diseases in HTLV-1 infection. Both host and viral factors should be taken into consideration in development of therapeutic and prophylactic strategies in HTLV-1 infection.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shuichi Kimpara
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
6
|
Qi K, Jiang D, Hayat T, Alsaedi A. The stationary distribution and extinction of a double thresholds HTLV-I infection model with nonlinear CTL immune response disturbed by white noise. INT J BIOMATH 2019. [DOI: 10.1142/s179352451950058x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper investigates the stochastic HTLV-I infection model with CTL immune response, and the corresponding deterministic model has two basic reproduction numbers. We consider the nonlinear CTL immune response for the interaction between the virus and the CTL immune cells. Firstly, for the theoretical needs of system dynamical behavior, we prove that the stochastic model solution is positive and global. In addition, we obtain the existence of ergodic stationary distribution by stochastic Lyapunov functions. Meanwhile, sufficient condition for the extinction of the stochastic system is acquired. Reasonably, the dynamical behavior of deterministic model is included in our result of stochastic model when the white noise disappears.
Collapse
Affiliation(s)
- Kai Qi
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Daqing Jiang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China
- Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tasawar Hayat
- Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
| | - Ahmed Alsaedi
- Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
| |
Collapse
|
7
|
Kannagi M, Hasegawa A, Nagano Y, Iino T, Okamura J, Suehiro Y. Maintenance of long remission in adult T-cell leukemia by Tax-targeted vaccine: A hope for disease-preventive therapy. Cancer Sci 2019; 110:849-857. [PMID: 30666755 PMCID: PMC6398881 DOI: 10.1111/cas.13948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/27/2018] [Accepted: 01/13/2019] [Indexed: 12/19/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive lymphoproliferative disease caused by human T-cell leukemia virus type 1 (HTLV-1). Multi-agent chemotherapy can reduce ATL cells but frequently allows relapses within a short period of time. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following chemotherapy is now a standard therapy for ATL in Japan as it can achieve long-term remission in approximately one-third of recipient ATL patients; however, it also has a risk of treatment-related mortality. Allo-HSCT often induces HTLV-1 Tax-specific cytotoxic T cells (CTL) as well as graft-versus-host (GVH) response in ATL patients. This observation led to development of a new therapeutic vaccine to activate Tax-specific CTL, anticipating anti-ATL effects without GVH response. The newly developed Tax-DC vaccine consists of autologous dendritic cells pulsed with Tax peptides corresponding to CTL epitopes that have been identified in post-allo-HSCT ATL patients. In a pilot study of Tax-DC therapy in three ATL patients after various initial therapies, two patients survived for more than 4 years after vaccination without severe adverse effects (UMIN000011423). The Tax-DC vaccine is currently under phase I trial, showing a promising clinical outcome so far. These findings indicate the importance of patients' own HTLV-1-specific T-cell responses in maintaining remission and provide a new approach to anti-ATL immunotherapy targeting Tax. Although Tax-targeted vaccination is ineffective against Tax-negative ATL cells, it can be a safe alternative maintenance therapy for Tax-positive ATL and may be further applicable for treatment of indolent ATL or even prophylaxis of ATL development among HTLV-1-carriers.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadafumi Iino
- Center for Advanced Medicine Innovation, Kyushu University, Fukuoka, Japan
| | - Jun Okamura
- Institute for Clinical Research, National Kyushu Cancer Center, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
8
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
9
|
Abstract
Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom;
| |
Collapse
|