1
|
Wang W, Wang Q, Yu L, Ge G, Liu X, Gao A, Wang G, Wu Z, Bai J, Wang H, Chu PK, Geng D. Bio-orthogonal engineered peptide: A multi-functional strategy for the gene therapy of osteoporotic bone loss. Biomaterials 2023; 302:122352. [PMID: 37866014 DOI: 10.1016/j.biomaterials.2023.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Osteoporosis is a degenerative disease affecting millions of elderly people globally and increases the risk of bone fractures due to the reduced bone density. Drugs are normally prescribed to treat osteoporosis, especially after surgical treatment of osteoporotic fractures. However, many anti-osteoporotic drugs produce deleterious side effects. The recent development of gene therapy utilizing oligonucleotides (ONs) has spurred the development of new therapies for osteoporosis. Nevertheless, most ONs lack the capability of cell penetration and lysosome escape and hence, intracellular delivery of ON remains a challenge. Herein, a novel strategy is demonstrated to efficiently deliver ON to cells by combining ON with the cell-penetrating peptide (CPP) via the bio-orthogonal click reaction. Several dopamine (DOPA) groups are also introduced into the fabricated peptide to scavenge intracellular reactive oxygen species (ROS). Owing to favorable properties such as good cytocompatibility, cell penetration, lysosome escape, ROS scavenging, and osteoclastogenesis suppression, the hybrid CPP-DOPA-ON peptide improves the osteoporotic conditions significantly in vivo even when bone implants are involved. This strategy has great potential in the treatment of osteoporosis and potentially broadens the scope of gene therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Medical 3D Printing Center, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Qing Wang
- Department of Orthopedics, Medical 3D Printing Center, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, Medical 3D Printing Center, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Gaoran Ge
- Department of Orthopedics, Medical 3D Printing Center, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Xin Liu
- Department of Orthopedics, Medical 3D Printing Center, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, And Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhengwei Wu
- Department of Physics, Department of Materials Science and Engineering, And Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, China
| | - Jiaxiang Bai
- Department of Orthopedics, Medical 3D Printing Center, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, And Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dechun Geng
- Department of Orthopedics, Medical 3D Printing Center, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
2
|
Sun Y, Xu C, Jiang Z, Jiang X. DEF6(differentially exprehomolog) exacerbates pathological cardiac hypertrophy via RAC1. Cell Death Dis 2023; 14:483. [PMID: 37524688 PMCID: PMC10390462 DOI: 10.1038/s41419-023-05948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023]
Abstract
Pathological cardiac hypertrophy involves multiple regulators and several signal transduction pathways. Currently, the mechanisms of it are not well understood. Differentially expressed in FDCP 6 homolog (DEF6) was reported to participate in immunity, bone remodeling, and cancers. The effects of DEF6 on pathological cardiac hypertrophy, however, have not yet been fully characterized. We initially determined the expression profile of DEF6 and found that DEF6 was upregulated in hypertrophic hearts and cardiomyocytes. Our in vivo results revealed that DEF6 deficiency in mice alleviated transverse aortic constriction (TAC)-induced cardiac hypertrophy, fibrosis, dilation and dysfunction of left ventricle. Conversely, cardiomyocyte-specific DEF6-overexpression aggravated the hypertrophic phenotype in mice under chronic pressure overload. Similar to the animal experiments, the in vitro data showed that adenovirus-mediated knockdown of DEF6 remarkably inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas DEF6 overexpression exerted the opposite effects. Mechanistically, exploration of the signal pathways showed that the mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase 1/2 (ERK1/2) cascade might be involved in the prohypertrophic effect of DEF6. Coimmunoprecipitation and GST (glutathione S-transferase) pulldown analyses demonstrated that DEF6 can directly interact with small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), and the Rac1 activity assay revealed that the activity of Rac1 is altered with DEF6 expression in TAC-cardiac hypertrophy and PE-triggered cardiomyocyte hypertrophy. In the end, western blot and rescue experiments using Rac1 inhibitor NSC23766 and the constitutively active mutant Rac1(G12V) verified the requirement of Rac1 and MEK1/2-ERK1/2 activation for DEF6-mediated pathological cardiac hypertrophy. Our study substantiates that DEF6 acts as a deleterious regulator of cardiac hypertrophy by activating the Rac1 and MEK1/2-ERK1/2 signaling pathways, and suggests that DEF6 may be a potential treatment target for heart failure.
Collapse
Affiliation(s)
- Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Changlu Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China
| | - Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, 110022, Shenyang, Liaoning Province, China.
| |
Collapse
|
3
|
Zhou P, Zheng T, Zhao B. Cytokine-mediated immunomodulation of osteoclastogenesis. Bone 2022; 164:116540. [PMID: 36031187 PMCID: PMC10657632 DOI: 10.1016/j.bone.2022.116540] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Cytokines are an important set of proteins regulating bone homeostasis. In inflammation induced bone resorption, cytokines, such as RANKL, TNF-α, M-CSF, are indispensable for the differentiation and activation of resorption-driving osteoclasts, the process we know as osteoclastogenesis. On the other hand, immune system produces a number of regulatory cytokines, including IL-4, IL-10 and IFNs, and limits excessive activation of osteoclastogenesis and bone loss during inflammation. These unique properties make cytokines powerful targets as rheostat to maintain bone homeostasis and for potential immunotherapies of inflammatory bone diseases. In this review, we summarize recent advances in cytokine-mediated regulation of osteoclastogenesis and provide insights of potential translational impact of bench-side research into clinical treatment of bone disease.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China; Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Ting Zheng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
4
|
Inoue K, Ng C, Xia Y, Zhao B. Regulation of Osteoclastogenesis and Bone Resorption by miRNAs. Front Cell Dev Biol 2021; 9:651161. [PMID: 34222229 PMCID: PMC8249944 DOI: 10.3389/fcell.2021.651161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023] Open
Abstract
Osteoclasts are specialized bone-resorbing cells that contribute to physiological bone development and remodeling in bone metabolism throughout life. Abnormal production and activation of osteoclasts lead to excessive bone resorption in pathological conditions, such as in osteoporosis and in arthritic diseases with bone destruction. Recent epigenetic studies have shed novel insight into the dogma of the regulation of gene expression. microRNAs belong to a category of epigenetic regulators, which post-transcriptionally regulate and silence target gene expression, and thereby control a variety of biological events. In this review, we discuss miRNA biogenesis, the mechanisms utilized by miRNAs, several miRNAs that play important roles in osteoclast differentiation, function, survival and osteoblast-to-osteoclast communication, and their translational potential and challenges in bone biology and skeletal diseases.
Collapse
Affiliation(s)
- Kazuki Inoue
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States,Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Courtney Ng
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
| | - Yuhan Xia
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States,Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Graduate Program in Cell and Developmental Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, United States,*Correspondence: Baohong Zhao,
| |
Collapse
|
5
|
Deng Z, Ng C, Inoue K, Chen Z, Xia Y, Hu X, Greenblatt M, Pernis A, Zhao B. Def6 regulates endogenous type-I interferon responses in osteoblasts and suppresses osteogenesis. eLife 2020; 9:e59659. [PMID: 33373293 PMCID: PMC7771961 DOI: 10.7554/elife.59659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Bone remodeling involves a balance between bone resorption and formation. The mechanisms underlying bone remodeling are not well understood. DEF6 is recently identified as a novel loci associated with bone mineral density. However, it is unclear how Def6 impacts bone remodeling. We identify Def6 as a novel osteoblastic regulator that suppresses osteoblastogenesis and bone formation. Def6 deficiency enhances both bone resorption and osteogenesis. The enhanced bone resorption in Def6-/- mice dominates, leading to osteoporosis. Mechanistically, Def6 inhibits the differentiation of both osteoclasts and osteoblasts via a common mechanism through endogenous type-I IFN-mediated feedback inhibition. RNAseq analysis shows expression of a group of IFN stimulated genes (ISGs) during osteoblastogenesis. Furthermore, we found that Def6 is a key upstream regulator of IFNβ and ISG expression in osteoblasts. Collectively, our results identify a novel immunoregulatory function of Def6 in bone remodeling, and shed insights into the interaction between immune system and bone.
Collapse
Affiliation(s)
- Zhonghao Deng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
| | - Courtney Ng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Ziyu Chen
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
| | - Yuhan Xia
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
| | - Matthew Greenblatt
- Pathology and Laboratory Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Research Division, Hospital for Special SurgeryNew YorkUnited States
| | - Alessandra Pernis
- Autoimmunity and Inflammation Program, Hospital for Special SurgeryNew YorkUnited States
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
6
|
Zhang Q, Zhao GS, Cao Y, Tang XF, Tan QL, Lin L, Guo QN. Increased DEF6 expression is correlated with metastasis and poor prognosis in human osteosarcoma. Oncol Lett 2020; 20:1629-1640. [PMID: 32724404 PMCID: PMC7377196 DOI: 10.3892/ol.2020.11743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the primary cause of high mortality in patients with osteosarcoma (OS). However, the molecular mechanisms underlying the regulation of metastatic disease are yet to be determined. Differentially expressed in FDCP 6 homolog (DEF6) has been demonstrated to be correlated with the metastatic behavior of several cancers, such as breast, ovarian and colorectal cancers. However, the role of DEF6 in OS remains unknown. Accordingly, the current study aimed to investigate the relationship between DEF6 expression and the malignant behavior of OS. The results revealed that high levels of DEF6 in OS tissues were associated with advanced clinical stage and metastases. Furthermore, immunohistochemistry results predicted a poor prognosis in 58 human OS specimens. Additionally, DEF6 expression was reported to be upregulated in human OS cell lines compared with a normal osteoblast cell line. small interfering RNA transfection, cell proliferation and colony formation assays, wound healing assays and Transwell assays were performed. DEF6 was not identified to be a major driver of OS cell proliferation, but it significantly contributed to metastatic potential in vitro. In addition, bioinformatics, western blotting and immunohistochemistry results indicated that MMP9 expression was positively correlated with DEF6 expression in human OS. To summarize, the results revealed that increased levels of DEF6 were associated with metastasis and poor prognosis in human OS and that DEF6 expression is positively correlated with MMP9 expression. The results indicated that DEF6 may serve as a potential antimetastatic target for OS.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Pain and Rehabilitation, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Guo-Sheng Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ya Cao
- Department of Pathology, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, P.R. China
| | - Xue-Feng Tang
- Department of Pathology, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, P.R. China
| | - Qiu-Lin Tan
- Department of Pathology, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, P.R. China
| | - Lu Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
7
|
Inoue K, Hu X, Zhao B. Regulatory network mediated by RBP-J/NFATc1-miR182 controls inflammatory bone resorption. FASEB J 2020; 34:2392-2407. [PMID: 31908034 PMCID: PMC7018544 DOI: 10.1096/fj.201902227r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Bone resorption is a severe consequence of inflammatory diseases associated with osteolysis, such as rheumatoid arthritis (RA), often leading to disability in patients. In physiological conditions, the differentiation of bone-resorbing osteoclasts is delicately regulated by the balance between osteoclastogenic and anti-osteoclastogenic mechanisms. Inflammation has complex impact on osteoclastogenesis and bone destruction, and the underlying mechanisms of which, especially feedback inhibition, are underexplored. Here, we identify a novel regulatory network mediated by RBP-J/NFATc1-miR182 in TNF-induced osteoclastogenesis and inflammatory bone resorption. This network includes negative regulator RBP-J and positive regulators, NFATc1 and miR182, of osteoclast differentiation. In this network, miR182 is a direct target of both RBP-J and NFATc1. RBP-J represses, while NFATc1 activates miR182 expression through binding to specific open chromatin regions in the miR182 promoter. Inhibition of miR182 by RBP-J servers as a critical mechanism that limits TNF-induced osteoclast differentiation and inflammatory bone resorption. Inflammation, such as that which occurs in RA, shifts the expression levels of the components in this network mediated by RBP-J/NFATc1-miR182-FoxO3/PKR (previously identified miR182 targets) towards more osteoclastogenic, rather than healthy conditions. Treatment with TNF inhibitors in RA patients reverses the expression changes of the network components and osteoclastogenic potential. Thus, this network controls the balance between activating and repressive signals that determine the extent of osteoclastogenesis. These findings collectively highlight the biological significance and translational implication of this newly identified intrinsic regulatory network in inflammatory osteoclastogenesis and osteolysis.
Collapse
Affiliation(s)
- Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| |
Collapse
|
8
|
Zhao B. Intrinsic Restriction of TNF-Mediated Inflammatory Osteoclastogenesis and Bone Resorption. Front Endocrinol (Lausanne) 2020; 11:583561. [PMID: 33133025 PMCID: PMC7578415 DOI: 10.3389/fendo.2020.583561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF-κB p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Baohong Zhao,
| |
Collapse
|
9
|
Xu C, Vitone GJ, Inoue K, Ng C, Zhao B. Identification of a Novel Role for Foxo3 Isoform2 in Osteoclastic Inhibition. THE JOURNAL OF IMMUNOLOGY 2019; 203:2141-2149. [PMID: 31541023 DOI: 10.4049/jimmunol.1900707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Foxo3 acts as an important central regulator that integrates signaling pathways and coordinates cellular responses to environmental changes. Recent studies show the involvement of Foxo3 in osteoclastogenesis and rheumatoid arthritis, which prompted us to further investigate the FOXO3 locus. Several databases document FOXO3 isoform2, an N-terminal truncated mutation of the full-length FOXO3 However, the biological function of FOXO3 isoform2 is unclear. In this study, we established a conditional allele of Foxo3 in mice that deletes the full-length Foxo3 except isoform2, a close ortholog of the human FOXO3 isoform2. Expression of Foxo3 isoform2 specifically in macrophage/osteoclast lineage suppresses osteoclastogenesis and leads to the osteopetrotic phenotype in mice. Mechanistically, Foxo3 isoform2 enhances the expression of type I IFN response genes to RANKL stimulation and thus inhibits osteoclastogenesis via endogenous IFN-β-mediated feedback inhibition. Our findings identify, to our knowledge, the first known biological function of Foxo3 isoform2 that acts as a novel osteoclastic inhibitor in bone remodeling.
Collapse
Affiliation(s)
- Cheng Xu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Gregory J Vitone
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065; and
| | - Courtney Ng
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021; .,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065; and.,Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| |
Collapse
|
10
|
Pei YF, Liu L, Liu TL, Yang XL, Zhang H, Wei XT, Feng GJ, Hai R, Ran S, Zhang L. Joint Association Analysis Identified 18 New Loci for Bone Mineral Density. J Bone Miner Res 2019; 34:1086-1094. [PMID: 30690781 DOI: 10.1002/jbmr.3681] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/01/2019] [Accepted: 01/19/2019] [Indexed: 11/09/2022]
Abstract
Bone mineral density (BMD) at various skeletal sites have shared genetic determinants. In the present study, aiming to identify shared loci associated with BMD, we conducted a joint association study of a genomewide association study (GWAS) and a meta-analysis of BMD at different skeletal sites: (i) a single GWAS of heel BMD in 142,487 individuals from the UK Biobank, and (ii) a meta-analysis of 30 GWASs of total body (TB) BMD in 66,628 individuals from the Genetic Factors for Osteoporosis (GEFOS) Consortium. The genetic correlation coefficient of the two traits was estimated to be 0.57. We performed joint association analysis with a recently developed statistical method multi-trait analysis of GWAS (MTAG) to account for trait heterogeneity and sample overlap. The joint association analysis combining samples of up to 209,115 individuals identified 18 novel loci associated with BMD at the genomewide significance level (α = 5.0 × 10-8 ), explaining an additional 0.43% and 0.60% of heel-BMD and TB-BMD heritability, respectively. The vast majority of the identified lead SNPs or their proxies exerted local expression quantitative trait loci (cis-eQTL) activity. Credible risk variants, defined as those SNPs located within 500 kilobases (kb) of the lead SNP and with p values within two orders of magnitude of the lead SNP, were enriched in transcription factor binding sites (p = 3.58 × 10-4 ) and coding regions (p = 5.71 × 10-4 ). Fifty-six candidate genes were prioritized at these novel loci using multiple sources of information, including several genes being previously reported to play a role in bone biology but not reported in previous GWASs (PPARG, FBN2, DEF6, TNFRSF19, and NFE2L1). One newly identified gene, SCMH1, was shown to upregulate the expression of several bone biomarkers, including alkaline phosphatase (ALP), collagen type 1 (COL-I), osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2), in mouse osteoblastic MC3T3-E1 cells, highlighting its regulatory role in bone formation. Our results may provide useful candidate genes for future functional investigations. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Lu Liu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Tao-Le Liu
- Center for Circadian Clock, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Jiangsu, China
| | - Xiao-Lin Yang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Xin-Tong Wei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Gui-Juan Feng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Rong Hai
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Shu Ran
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| |
Collapse
|
11
|
Abstract
Targeting microRNAs recently shows significant therapeutic promise; however, such progress is underdeveloped in treatment of skeletal diseases with osteolysis, such as osteoporosis and rheumatoid arthritis (RA). Here, we identified miR-182 as a key osteoclastogenic regulator in bone homeostasis and diseases. Myeloid-specific deletion of miR-182 protects mice against excessive osteoclastogenesis and bone resorption in disease models of ovariectomy-induced osteoporosis and inflammatory arthritis. Pharmacological treatment of these diseases with miR-182 inhibitors completely suppresses pathologic bone erosion. Mechanistically, we identify protein kinase double-stranded RNA-dependent (PKR) as a new and essential miR-182 target that is a novel inhibitor of osteoclastogenesis via regulation of the endogenous interferon (IFN)-β-mediated autocrine feedback loop. The expression levels of miR-182, PKR, and IFN-β are altered in RA and are significantly correlated with the osteoclastogenic capacity of RA monocytes. Our findings reveal a previously unrecognized regulatory network mediated by miR-182-PKR-IFN-β axis in osteoclastogenesis, and highlight the therapeutic implications of miR-182 inhibition in osteoprotection. Osteoclasts mediate bone disruption in a number of degenerative bone diseases. Here, the authors show that miR-182 regulates osteoclastogenesis via PKR and IFN-beta signaling, is correlated with rheumatoid arthritis, and that its ablation or inhibition is protective against bone erosion in mouse models of osteoporosis or inflammatory arthritis.
Collapse
|