1
|
Huang L, Chen H, Nie J, Zhao Y, Miao J. Advanced dressings based on novel biological targets for diabetic wound healing: A review. Eur J Pharmacol 2025; 987:177201. [PMID: 39667426 DOI: 10.1016/j.ejphar.2024.177201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The diabetic wound is one of the most common complications of diabetes in clinic. The existing diabetic wound dressings all have bottlenecks in decreasing inflammation, stopping peripheral neuropathy, relieving local ischemia and hypoxia in diabetic wounds. These challenges are intricately linked to the roles of various growth factors, as well as matrix metalloproteinases. Thus, a comprehensive understanding of growth factors-particularly their dynamic interactions with the extracellular matrix (ECM) and cellular components-is essential. Cells and proteins that influence the synthesis of growth factors and matrix metalloproteinases emerge as potential therapeutic targets for diabetic wound management. This review discusses the latest advancements in the pathophysiology of diabetic wound healing, highlights novel biological targets, and evaluates new wound dressing strategies designed for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Lantian Huang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hangbo Chen
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Nie
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China.
| | - Jing Miao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Yan Z, Chen Q, Ren Y, Shi J, Xu Z, Xue Y, Geng Y. Maltodextrin alleviates constipation induced by loperamide hydrochloride in mice. FOOD BIOSCI 2025; 63:105675. [DOI: 10.1016/j.fbio.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Gonçalves-Pereira J, Mergulhão P, Froes F. Medications to Modify Aspiration Risk: Those That Add to Risk and Those That May Reduce Risk. Semin Respir Crit Care Med 2024; 45:694-700. [PMID: 39454640 DOI: 10.1055/s-0044-1791827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Aspiration pneumonia results from the abnormal entry of fluids into the respiratory tract. We present a review of drugs known to affect the risk of aspiration. Drugs that increase the risk of aspiration pneumonia can be broadly divided into those that affect protective reflexes (like cough and swallowing) due to direct or indirect mechanisms, and drugs that facilitate gastric dysbiosis or affect esophageal and intestinal motility. Chief among the first group are benzodiazepines and antipsychotics, while proton pump inhibitors are the most well-studied in the latter group. Pill esophagitis may also exacerbate swallowing dysfunction. On the other hand, some research has also focused on pharmaceutical modulation of the risk of aspiration pneumonia. Angiotensin-converting enzyme inhibitors have been demonstrated to be associated with a decrease in the hazard of aspiration pneumonia in high-risk patients of Chinese or Japanese origin. Drugs like amantadine, nicergoline, or folic acid have shown some promising results in stroke patients, although the available evidence is thus far not enough to allow for any meaningful conclusions. Importantly, antimicrobial prophylaxis has been proven to be ineffective. Focusing on modifiable risk factors for aspiration pneumonia is relevant since this may help to reduce the incidence of this often severe problem. Among these, several commonly used drug classes have been shown to increase the risk of aspiration pneumonia. These drugs should be withheld in the high-risk population whenever possible, alongside general measures, such as the semirecumbent position during sleep and feeding.
Collapse
Affiliation(s)
- João Gonçalves-Pereira
- Intensive Care Unit, Hospital de Vila Franca Xira, Vila Franca de Xira, Portugal
- Clínica Universitária de Medicina Intensiva, Faculdade de Medicina Lisbon University, Lisboa, Portugal
- Grupo Infeção e Desenvolvimento em Sépsis (GIS-ID), Porto, Portugal
| | - Paulo Mergulhão
- Grupo Infeção e Desenvolvimento em Sépsis (GIS-ID), Porto, Portugal
- Intensive Care Department, Hospital Lusíadas, Porto, Portugal
| | - Filipe Froes
- Grupo Infeção e Desenvolvimento em Sépsis (GIS-ID), Porto, Portugal
- Chest Department, Centro Hospitalar Universitário Lisboa Norte, Hospital Pulido Valente, Lisboa, Portugal
| |
Collapse
|
4
|
Singh MT, Thaggikuppe Krishnamurthy P, Magham SV. Harnessing the synergistic potential of NK1R antagonists and selective COX-2 inhibitors for simultaneous targeting of TNBC cells and cancer stem cells. J Drug Target 2024; 32:258-269. [PMID: 38252517 DOI: 10.1080/1061186x.2024.2309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), rendering it unresponsive to endocrine therapy and HER2 targeted treatments. Though certain chemotherapeutics targeting the cell cycle have shown efficacy to a certain extent, the presence of chemotherapy-resistant cancer stem cells (CSCs) presents a significant challenge in tackling TNBC. Multiple lines of evidence suggest the upregulation of neuropeptide Substance P (SP), its NK-1 receptor (NK1R) and the Cyclooxygenase-2 (COX-2) enzyme in TNBC patients. Upregulation of the SP/NK1R system and COX-2 influences major signalling pathways involved in cell proliferation, growth, survival, angiogenesis, inflammation, metastasis and stem cell activity. The simultaneous activation and crosstalk between the pathways activated by SP/NK1R and COX-2 consequently increase the levels of key regulators of self-renewal pathways in CSCs, promoting stemness. The combination therapy with NK1R antagonists and COX-2 inhibitors can simultaneously target TNBC cells and CSCs, thereby enhancing treatment efficacy and reducing the risk of recurrence and relapse. This review discusses the rationale for combining NK1R antagonists and COX-2 inhibitors for the better management of TNBC and a novel strategy to deliver drug cargo precisely to the tumour site to address the challenges associated with off-target binding.
Collapse
Affiliation(s)
- Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Sai Varshini Magham
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
5
|
Wang S, Naderi A, Kahale F, Ortiz G, Forouzanfar K, Chen Y, Dana R. Substance P regulates memory Th17 cell generation and maintenance in chronic dry eye disease. J Leukoc Biol 2024; 116:1446-1453. [PMID: 38916986 PMCID: PMC11599119 DOI: 10.1093/jleuko/qiae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Substance P is a neuropeptide expressed by nerves and an array of cells that serves as a critical mediator of neuroinflammation. Our recent work has demonstrated that blocking the preferred receptor for substance P, neurokinin 1 receptor, effectively suppresses the induction of acute dry eye disease by preserving regulatory T-cell function, while inhibiting antigen-presenting cell maturation and subsequent generation of effector Th17 cells. Clinically, dry eye disease is a chronic disorder characterized by sustained ocular surface inflammation, which is mediated by long-lived memory Th17 cells demonstrated in our well-established chronic dry eye disease model. The present study aimed to further understand the function of substance P in the chronic phase of dry eye disease and its role in regulating the underlying pathogenic memory Th17. In vitro culture of effector T cells isolated from acute dry eye disease with substance P led to an enhanced conversion of effector Th17 to memory Th17, while culturing memory T cells isolated from chronic dry eye disease with substance P effectively preserved the memory Th17 cells. In contrast, the addition of a neurokinin 1 receptor antagonist in the cultures abolished the substance P-mediated effects. Furthermore, in vivo treatment with the neurokinin 1 receptor antagonist during the resolution phase of acute dry eye disease significantly suppressed memory Th17 generation, and treatment in the chronic phase of dry eye disease disrupted the maintenance of memory Th17. Taken together, our results demonstrate that increased expression of substance P promotes memory Th17 generation and maintenance in chronic dry eye disease, and thus blockade of substance P represents a novel promising memory Th17-targeting strategy in treating chronic ocular surface inflammation.
Collapse
Affiliation(s)
- Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, Harbin, Heilongjiang Province, 150001, P.R. China
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Francesca Kahale
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Gustavo Ortiz
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Katayoon Forouzanfar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, United States
| |
Collapse
|
6
|
Chowdari Gurram P, Satarker S, Nampoothiri M. Recent advances in the molecular signaling pathways of Substance P in Alzheimer's disease: Link to neuroinflammation associated with toll-like receptors. Biochem Biophys Res Commun 2024; 733:150597. [PMID: 39197195 DOI: 10.1016/j.bbrc.2024.150597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
A significant quantity of substance P (SP) and its receptor, the neurokinin 1 (NK1) receptors are found in the brain. SP is a neuropeptide distributed in the central nervous system and functions as a neurotransmitter, neuromodulator, and neurotrophic factor. The concentrations of SP in the brain and cerebrospinal fluid fluctuate in individuals with Alzheimer's disease (AD). SP is an endogenous ligand for NK1 receptor, enhancing the expression of toll-like receptors (TLR) and vice versa. So, both pathways are interconnected, where activation of one pathway activates the second pathway. Researchers have observed the interaction of TLR with SP in the pathophysiology of AD. Thus, this review discusses various TLRs involved in regulating amyloid processing and its interaction with SP in AD. Further, in AD pathology, SP can regulate the non-amyloidogenic pathway. Recent studies have also demonstrated the capacity of SP in regulating voltage-gated potassium channel currents, emphasizing SP's neuroprotective ability. Therefore, we corroborate the findings linking the SP, NK1R, and TLRs in AD.
Collapse
Affiliation(s)
- Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India; KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
7
|
Xing L, Chen B, Qin Y, Li X, Zhou S, Yuan K, Zhao R, Qin D. The role of neuropeptides in cutaneous wound healing: a focus on mechanisms and neuropeptide-derived treatments. Front Bioeng Biotechnol 2024; 12:1494865. [PMID: 39539691 PMCID: PMC11557334 DOI: 10.3389/fbioe.2024.1494865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of cutaneous nerves, neuropeptides, and specific receptors richly innervates the skin and influences a variety of physiological and pathological processes. The sensory and autonomic nerve fibers secrete a variety of neuropeptides that are essential to the different phases of wound healing. In addition to initiating a neurogenic inflammatory response in the early stages of healing, neuropeptides also control wound healing by influencing immune cells, repair cells, and the growth factor network. However, the precise mechanism by which they accomplish these roles in the context of cutaneous wound healing is still unknown. Investigating the mechanisms of action of neuropeptides in wound healing and potential therapeutic applications is therefore urgently necessary. The present review discusses the process of wound healing, types of neuropeptides, potential mechanisms underlying the role of neuropeptides in cutaneous wound healing, as well as some neuropeptide-derived treatment strategies, such as hydrogels, new dressings, electro stimulation, and skin-derived precursors. Future in-depth mechanistic studies of neuropeptides in cutaneous wound healing may provide opportunities to develop therapeutic technologies that harness the roles of neuropeptides in the wound healing process.
Collapse
Affiliation(s)
- Liwei Xing
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bing Chen
- School of Medicine, Kunming University, Kunming, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Sitong Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Gong Q, Huang K, Li K, Tong Y, Zhao J, Wang H, Xu Z, Lin M, Lu F, Hu L. Structural and functional changes of binocular corneal innervation and ocular surface function after unilateral SMILE and tPRK. Br J Ophthalmol 2024; 108:1492-1499. [PMID: 38527771 PMCID: PMC11503038 DOI: 10.1136/bjo-2023-324358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
AIMS To evaluate the bilateral changes in the sub-basal nerve plexus of the cornea and ocular surface function after unilateral small incision lenticule extraction (SMILE) and transepithelial photorefractive keratectomy (tPRK) procedures. METHODS 34 patients were enrolled in the study and underwent unilateral SMILE (21 of 34 patients) or unilateral tPRK (13 of 34 patients). Complete ophthalmic examinations, tear film function tests and Cochet-Bonnet esthesiometry were conducted to assess the effects of the surgeries on the corneal nerves and tear function. Morphological changes were assessed using in vivo confocal microscopy to evaluate the corneal sub-basal nerve plexus and dendritic cells. ELISA was used to measure the tear neuromediators. Clinical and morphological data at each follow-up point were compared with preoperative baseline values. RESULTS All patients who underwent unilateral SMILE or tPRK procedures exhibited bilateral corneal nerve degenerative changes, decreased corneal sensitivity, worsening of dry eye symptoms and changes in bilateral tear neuromediators. In the SMILE group, bilateral corneal sensitivity was positively correlated with corneal nerve fibre length and negatively correlated with dendritic cell area. The dry eye severity was negatively correlated with corneal sensitivity. Tear levels of substance P and nerve growth factor were positively correlated with mean dendritic cell area and dry eye severity, but negatively correlated with corneal sensitivity. In the tPRK group, bilateral corneal sensitivity was positively correlated with corneal nerve fibre density. CONCLUSIONS Unilateral refractive surgery may bilaterally affect the morphology and function of corneal nerves and ocular surface status postoperatively.
Collapse
Affiliation(s)
- Qianwen Gong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaiyan Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kexin Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixuan Tong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meng Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Lu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Lan YA, Guo JX, Yao MH, Kang YT, Liao ZR, Jing YH. The Role of Neuro-Immune Interactions in the Pathology and Pathogenesis of Allergic Rhinitis. Immunol Invest 2024; 53:1013-1029. [PMID: 39042045 DOI: 10.1080/08820139.2024.2382792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) is a non-infectious inflammatory disease of the nasal mucosa mediated by IgE and involving a variety of immune cells such as mast cells. In previous studies, AR was considered as an isolated disease of the immune system. However, recent studies have found that the nervous system is closely related to the development of AR. Bidirectional communication between the nervous and immune systems plays an important role in AR. SUMMARY The nervous system and immune system depend on the anatomical relationship between nerve fibers and immune cells, as well as various neurotransmitters, cytokines, inflammatory mediators, etc. to produce bidirectional connections, which affect the development of AR. KEY MESSAGES This article reviews the impact of neuro-immune interactions in AR on the development of AR, including neuro-immune cell units.
Collapse
Affiliation(s)
- Ya-An Lan
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jia-Xi Guo
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Min-Hua Yao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yi-Ting Kang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zi-Rui Liao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
10
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
11
|
Liu L, Wang S, Blanco T, Ge H, Zhu S, Yin J, Chen Y, Dana R. Neurokinin-1 Receptor Antagonism Reduces Nonallergic Ocular Redness in a Rabbit Model. J Ocul Pharmacol Ther 2024; 40:445-451. [PMID: 38829162 DOI: 10.1089/jop.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Purpose: To evaluate the therapeutic efficacy of topical application of a neurokinin-1 receptor (NK1R) antagonist in a rabbit model of nonallergic ocular redness. Methods: Nonallergic ocular redness was induced in rabbits by a single, topical application of dapiparzole hydrochloride eye drops (0.5%, 1%, 2%, or 5%). The NK1R antagonist L-703,606 was topically applied to the eye at the same time of induction or 20 min after induction, and phosphate buffered saline (PBS) treatment served as the control. Superior bulbar conjunctival images were taken every 30 s for the first 2 min, followed by every 4 min for 8 min, and then every 10 min until 1 h. The severity of ocular redness was evaluated on the images using ImageJ-based ocular redness index (ORI) calculations. Results: The ORI scores were significantly increased after the application of 0.5%, 1%, 2%, or 5% dapiparzole at each time point evaluated, with the most severe redness induced by the 5% dapiprazole that led to a maximal mean increase in ORI score of 14 at 20 min post-induction and thus used for subsequent evaluation of therapeutic efficacy of NK1R antagonism. Topical L-703,606, when applied at the same time as dapiprazole induction, significantly suppressed the increase of ORI scores at all time points (∼40% decrease). Furthermore, when applied at 20 min after dapiprazole induction, L-703,606 rapidly and effectively suppressed the increase of ORI scores at 30, 40, 50, and 60 min (∼30% decrease). Conclusions: Topical blockade of NK1R effectively prevents and alleviates nonallergic ocular redness in a novel animal model.
Collapse
Affiliation(s)
- Lingjia Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Hongyan Ge
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuyan Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Sarthi S, Bhardwaj H, Kumar Jangde R. Advances in nucleic acid delivery strategies for diabetic wound therapy. J Clin Transl Endocrinol 2024; 37:100366. [PMID: 39286540 PMCID: PMC11404062 DOI: 10.1016/j.jcte.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
In recent years, the prevalence of diabetic wounds has significantly increased, posing a substantial medical challenge due to their propensity for infection and delayed healing. These wounds not only increase mortality rates but also lead to amputations and severe mobility issues. To address this, advancements in bioactive molecules such as genes, growth factors, proteins, peptides, stem cells, and exosomes into targeted gene therapies have emerged as a preferred strategy among researchers. Additionally, the integration of photothermal therapy (PTT), nucleic acid, and gene therapy, along with 3D printing technology and the layer-by-layer (LBL) self-assembly approach, shows promise in diabetic wound treatment. Effective delivery of small interfering RNA (siRNA) relies on gene vectors. This review provides an in-depth exploration of the pathophysiological characteristics observed in diabetic wounds, encompassing diminished angiogenesis, heightened levels of reactive oxygen species, and impaired immune function. It further examines advancements in nucleic acid delivery, targeted gene therapy, advanced drug delivery systems, layer-by-layer (LBL) techniques, negative pressure wound therapy (NPWT), 3D printing, hyperbaric oxygen therapy, and ongoing clinical trials. Through the integration of recent research insights, this review presents innovative strategies aimed at augmenting the multifaceted management of diabetic wounds, thus paving the way for enhanced therapeutic outcomes in the future.
Collapse
Affiliation(s)
- Soniya Sarthi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India
| | - Harish Bhardwaj
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India
| | - Rajendra Kumar Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh 492010, India
| |
Collapse
|
13
|
Straub RH, Cutolo M. A History of Psycho-Neuro-Endocrine Immune Interactions in Rheumatic Diseases. Neuroimmunomodulation 2024; 31:183-210. [PMID: 39168106 DOI: 10.1159/000540959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND All active scientists stand on the shoulders of giants and many other more anonymous scientists, and this is not different in our field of psycho-neuro-endocrine immunology in rheumatic diseases. Too often, the modern world of publishing forgets about the collective enterprise of scientists. Some journals advise the authors to present only literature from the last decade, and it has become a natural attitude of many scientists to present only the latest publications. In order to work against this general unempirical behavior, neuroimmunomodulation devotes the 30th anniversary issue to the history of medical science in psycho-neuro-endocrine immunology. SUMMARY Keywords were derived from the psycho-neuro-endocrine immunology research field very well known to the authors (R.H.S. has collected a list of keywords since 1994). We screened PubMed, the Cochran Library of Medicine, Embase, Scopus database, and the ORCID database to find relevant historical literature. The Snowballing procedure helped find related work. According to the historical appearance of discoveries in the field, the order of presentation follows the subsequent scheme: (1) the sensory nervous system, (2) the sympathetic nervous system, (3) the vagus nerve, (4) steroid hormones (glucocorticoids, androgens, progesterone, estrogens, and the vitamin D hormone), (5) afferent pathways involved in fatigue, anxiety, insomnia, and depression (includes pathophysiology), and (6) evolutionary medicine and energy regulation - an umbrella theory. KEY MESSAGES A brief history on psycho-neuro-endocrine immunology cannot address all relevant aspects of the field. The authors are aware of this shortcoming. The reader must see this review as a viewpoint through the biased eyes of the authors. Nevertheless, the text gives an overview of the history in psycho-neuro-endocrine immunology of rheumatic diseases.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Maurizio Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Department of Internal Medicine DIMI, Postgraduate School of Rheumatology, University of Genova, Genoa, Italy
| |
Collapse
|
14
|
Xu M, Zhu M, Qin Q, Xing X, Archer M, Ramesh S, Cherief M, Li Z, Levi B, Clemens TL, James AW. Neuronal regulation of bone and tendon injury repair: a focused review. J Bone Miner Res 2024; 39:1045-1060. [PMID: 38836494 DOI: 10.1093/jbmr/zjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, United States
| | - Thomas L Clemens
- Department of Orthopaedics, University of Maryland, Baltimore, MD 21205, United States
- Department of Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
15
|
Liu XY, Mykhailenko O, Faraone A, Waser J. Hypervalent Iodine Amino Acid Building Blocks for Bioorthogonal Peptide Macrocyclization. Angew Chem Int Ed Engl 2024; 63:e202404747. [PMID: 38807563 DOI: 10.1002/anie.202404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Ethynylbenziodoxol(on)es (EB(X)xs) reagents have emerged as useful reagents for peptide/protein modification due to their versatile reactivity and high selectivity. Herein, we report the successful introduction of ethynylbenziodoxoles (EBxs) on different amino acid building blocks (Lys/Orn/Dap), and show their compatibility with both solid phase peptide synthesis (SPPS) and solution phase peptide synthesis (SPS). The selective incorporation of the EBx core into peptide sequences enable efficient macrocyclizations under mild conditions for the synthesis of topologically unique cyclic and bicyclic peptides.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Olha Mykhailenko
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Adriana Faraone
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Akinyemi DE, Chevre R, Soehnlein O. Neuro-immune crosstalk in hematopoiesis, inflammation, and repair. Trends Immunol 2024; 45:597-608. [PMID: 39030115 DOI: 10.1016/j.it.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Innate immune cells are primary effectors during host defense and in sterile inflammation. Their production in the bone marrow is tightly regulated by growth and niche factors, and their activity at sites of inflammation is orchestrated by a network of alarmins and cytokines. Yet, recent work highlights a significant role of the peripheral nervous system in these processes. Sympathetic neural pathways play a key role in regulating blood cell homeostasis, and sensory neural pathways mediate pro- or anti-inflammatory signaling in a tissue-specific manner. Here, we review emerging evidence of the fine titration of hematopoiesis, leukocyte trafficking, and tissue repair via neuro-immune crosstalk, and how its derailment can accelerate chronic inflammation, as in atherosclerosis.
Collapse
Affiliation(s)
- Damilola Emmanuel Akinyemi
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| | - Raphael Chevre
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
17
|
Weaver DF. Endogenous Antimicrobial-Immunomodulatory Molecules: Networking Biomolecules of Innate Immunity. Chembiochem 2024; 25:e202400089. [PMID: 38658319 DOI: 10.1002/cbic.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Endogenous antimicrobial-immunomodulatory molecules (EAIMs) are essential to immune-mediated human health and evolution. Conventionally, antimicrobial peptides (AMPs) have been regarded as the dominant endogenous antimicrobial molecule; however, AMPs are not sufficient to account for the full spectrum of antimicrobial-immunomodulatory duality occurring within the human body. The threat posed by pathogenic microbes is pervasive with the capacity for widespread impact across many organ systems and multiple biochemical pathways; accordingly, the host needs the capacity to react with an equally diverse response. This can be attained by having EAIMs that traverse the full range of molecular size (small to large molecules) and structural diversity (including molecules other than peptides). This review identifies multiple molecules (peptide/protein, lipid, carbohydrate, nucleic acid, small organic molecule, and metallic cation) as EAIMs and discusses the possibility of cooperative, additive effects amongst the various EAIM classes during the host response to a microbial assault. This comprehensive consideration of the full molecular diversity of EAIMs enables the conclusion that EAIMs constitute a previously uncatalogued structurally diverse and collectively underappreciated immuno-active group of integrated molecular responders within the innate immune system's first line of defence.
Collapse
Affiliation(s)
- Donald F Weaver
- Departments of Chemistry and Medicine, University of Toronto, Krembil Research Institute, University Health Network, Toronto, ON, M5Y 0S8, Canada
| |
Collapse
|
18
|
Aslan ES, Meral G, Aydin E, Caglayan S, Altundag A, Demirkol S, Gormus G, Solak M, Ayaz F. The Effect of a Casein and Gluten-Free Diet on the Epigenetic Characteristics of FoxP3 in Patients With Hashimoto's Thyroiditis. Cureus 2024; 16:e63208. [PMID: 38952602 PMCID: PMC11216022 DOI: 10.7759/cureus.63208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Background Hashimoto's thyroiditis (HT) is an autoimmune thyroid disease characterized by inflammation and dysfunction of the thyroid gland, resulting in hypothyroidism, it results in impaired thyroid hormone generation and mimics hypothyroidism. The disease involves complex interactions among genetic, environmental, and epigenetic factors, particularly affecting the regulation of T regulatory (Treg) cells, including CD4 + foxp3 + T cells. Treg cells, defined as CD4 + T cells, rely on the expression of the foxp3 transcription factor, which is crucial for their development and differentiation. Disruptions in this regulation can lead to immune dysregulation and potential proinflammatory responses. The study focuses on investigating the impact of dietary patterns on the epigenetic changes in the foxp3 gene, a key player in the development of HT. The primary aim was to evaluate how eliminating gluten and casein proteins from dietary regimens may influence the methylation levels of the foxp3 gene, considering the potential link between these dietary components and the triggering of autoimmune diseases. Methods An epigenetic analysis of the foxp3 gene in HT patients who were strictly following a dietary plan compared with the control group. For the epigenetic study, a methylation analysis experiment was conducted. Results Our findings revealed a notable reduction in foxp3 gene methylation levels among HT patients who adhered to a diet excluding casein and gluten. The control maintained normal dietary guidelines and showed no significant alterations in methylation levels. Discussion The laboratory values showed a decrease in methylation levels of the foxp3 gene, with statistical significance indicated as *p<0.005, **p<0.001, ***p<0.0001, suggesting a potential enhancement in its expression which could have profound implications for immune system regulation. Disruptions in the foxp3 pathway are crucial in the development of autoimmune disorders, where altered activity hinders the regulation of T cell (Treg) development, ultimately contributing to conditions like HT disease. These findings imply that nutritional interventions, especially for individuals with HT, could potentially be a strategy for mitigating autoimmunity through epigenetic mechanisms.
Collapse
Affiliation(s)
- Elif S Aslan
- Molecular Biology and Genetics, Biruni University, Istanbul, TUR
| | - Gulsen Meral
- Molecular Biology and Genetics, Epigenetic Coaching, Norwich, GBR
- Molecular Biology and Genetics, Biruni University, Istanbul, TUR
| | - Ece Aydin
- Molecular Biology and Genetics, Biruni University, Istanbul, TUR
| | - Sinan Caglayan
- Endocrinology and Metabolic Diseases, Demiroğlu Bilim Üniversitesi, Istanbul, TUR
| | | | - Seyda Demirkol
- Computer Science with Data Science, University of Sunderland, Sunderland, GBR
| | - Gizem Gormus
- Nutrition and Dietetics, Florence Nightingale Community Hospital, Istanbul, TUR
| | | | - Furkan Ayaz
- Molecular Biology and Genetics, Biruni University, Istanbul, TUR
| |
Collapse
|
19
|
Lee JK, Kim DS, Park SY, Jung JW, Baek SW, Lee S, Kim JH, Ahn TK, Han DK. Osteoporotic Bone Regeneration via Plenished Biomimetic PLGA Scaffold with Sequential Release System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310734. [PMID: 38143290 DOI: 10.1002/smll.202310734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Achieving satisfactory bone tissue regeneration in osteoporotic patients with ordinary biomaterials is challenging because of the decreased bone mineral density and aberrant bone microenvironment. In addressing this issue, a biomimetic scaffold (PMEH/SP), incorporating 4-hexylresorcinol (4HR), and substance P (SP) into the poly(lactic-go-glycolic acid) (PLGA) scaffold with magnesium hydroxide (M) and extracellular matrix (E) is introduced, enabling the consecutive release of bioactive agents. 4HR and SP induced the phosphorylation of p38 MAPK and ERK in human umbilical vein endothelial cells (HUVECs), thereby upregulating VEGF expression level. The migration and tube-forming ability of endothelial cells can be promoted by the scaffold, which accelerates the formation and maturation of the bone. Moreover, 4HR played a crucial role in the inhibition of osteoclastogenesis by interrupting the IκB/NF-κB signaling pathway and exhibiting SP, thereby enhancing the migration and angiogenesis of HUVECs. Based on such a synergistic effect, osteoporosis can be suppressed, and bone regeneration can be achieved by inhibiting the RANKL pathway in vitro and in vivo, which is a commonly known mechanism of bone physiology. Therefore, the study presents a promising approach for developing a multifunctional regenerative material for sophisticated osteoporotic bone regeneration.
Collapse
Affiliation(s)
- Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Tae-Keun Ahn
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| |
Collapse
|
20
|
Sugioka K, Nishida T, Murakami J, Itahashi M, Yunoki M, Kusaka S. Substance P promotes transforming growth factor-β-induced collagen synthesis in human corneal fibroblasts. Am J Physiol Cell Physiol 2024; 326:C1482-C1493. [PMID: 38525537 DOI: 10.1152/ajpcell.00084.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Corneal fibroblasts maintain homeostasis of the corneal stroma by mediating the synthesis and degradation of extracellular collagen, and these actions are promoted by transforming growth factor-β (TGF-β) and interleukin-1β (IL-1β), respectively. The cornea is densely innervated with sensory nerve fibers that are not only responsible for sensation but also required for physiological processes such as tear secretion and wound healing. Loss or dysfunction of corneal nerves thus impairs corneal epithelial wound healing and can lead to neurotrophic keratopathy. The sensory neurotransmitter substance P (SP) promotes corneal epithelial wound healing by enhancing the stimulatory effects of growth factors and fibronectin. We have now investigated the role of SP in collagen metabolism mediated by human corneal fibroblasts in culture. Although SP alone had no effect on collagen synthesis or degradation by these cells, it promoted the stimulatory effect of TGF-β on collagen type I synthesis without affecting that of IL-1β on the expression of matrix metalloproteinase-1. This effect of SP on TGF-β-induced collagen synthesis was accompanied by activation of p38 mitogen-activated protein kinase (MAPK) signaling and was attenuated by pharmacological inhibition of p38 or of the neurokinin-1 receptor. Our results thus implicate SP as a modulator of TGF-β-induced collagen type I synthesis by human corneal fibroblasts, and they suggest that loss of this function may contribute to the development of neurotrophic keratopathy.NEW & NOTEWORTHY This study investigates the role of substance P (SP) in collagen metabolism mediated by human corneal fibroblasts in culture. We found that, although SP alone had no effect on collagen synthesis or degradation by corneal fibroblasts, it promoted the stimulatory effect of transforming growth factor-β on collagen type I synthesis without affecting that of interleukin-1β on the expression of matrix metalloproteinase-1.
Collapse
Affiliation(s)
- Koji Sugioka
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma, Japan
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Teruo Nishida
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma, Japan
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Division of Cornea and Ocular Surface, Ohshima Eye Hospital, Fukuoka, Japan
| | | | | | - Mai Yunoki
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
21
|
Lan J, Deng Z, Wang Q, Li D, Fan K, Chang J, Ma Y. Neuropeptide substance P attenuates colitis by suppressing inflammation and ferroptosis via the cGAS-STING signaling pathway. Int J Biol Sci 2024; 20:2507-2531. [PMID: 38725846 PMCID: PMC11077368 DOI: 10.7150/ijbs.94548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024] Open
Abstract
Neuropeptide substance P (SP) belongs to a family of bioactive peptides and regulates many human diseases. This study aims to investigate the role and underlying mechanisms of SP in colitis. Here, activated SP-positive neurons and increased SP expression were observed in dextran sodium sulfate (DSS)-induced colitis lesions in mice. Administration of exogenous SP efficiently ameliorated the clinical symptoms, impaired intestinal barrier function, and inflammatory response. Mechanistically, SP protected mitochondria from damage caused by DSS or TNF-α exposure, preventing mitochondrial DNA (mtDNA) leakage into the cytoplasm, thereby inhibiting the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. SP can also directly prevent STING phosphorylation through the neurokinin-1 receptor (NK1R), thereby inhibiting the activation of the TBK1-IRF3 signaling pathway. Further studies revealed that SP alleviated the DSS or TNF-α-induced ferroptosis process, which was associated with repressing the cGAS-STING signaling pathway. Notably, we identified that the NK1R inhibition reversed the effects of SP on inflammation and ferroptosis via the cGAS-STING pathway. Collectively, we unveil that SP attenuates inflammation and ferroptosis via suppressing the mtDNA-cGAS-STING or directly acting on the STING pathway, contributing to improving colitis in an NK1R-dependent manner. These findings provide a novel mechanism of SP regulating ulcerative colitis (UC) disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunfei Ma
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Chen S, Li Y, Song W, Cheng Y, Gao Y, Xie L, Huang M, Yan X. Insulin eye drops improve corneal wound healing in STZ-induced diabetic mice by regulating corneal inflammation and neuropeptide release. BMC Ophthalmol 2024; 24:155. [PMID: 38594682 PMCID: PMC11003036 DOI: 10.1186/s12886-024-03436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
INTRODUCTION In recent years, insulin eye drops have attracted increasing attention from researchers and ophthalmologists. The aim of this study was to investigate the efficacy and possible mechanism of action of insulin eye drops in diabetic mice with corneal wounds. METHODS A type 1 diabetes model was induced, and a corneal epithelial injury model of 2.5 mm was established. We used corneal fluorescein staining, hematoxylin-eosin (H-E) staining and the Cochet-Bonnet esthesiometer to examine the process of wound healing. Subsequently, the expression levels of Ki-67, IL-1β, β3-tubulin and neuropeptides, including substance P (SP) and calcitonin gene-related peptide (CGRP), were examined at 72 h after corneal injury. RESULTS Fluorescein staining demonstrated an acceleration of the recovery of corneal epithelial injury in diabetic mice compared with the saline treatment, which was further evidenced by the overexpression of Ki-67. Moreover, 72 h of insulin application attenuated the expression of inflammatory cytokines and neutrophil infiltration. Remarkably, the results demonstrated that topical insulin treatment enhanced the density of corneal epithelial nerves, as well as neuropeptide SP and CGRP release, in the healing cornea via immunofluorescence staining. CONCLUSIONS Our results indicated that insulin eye drops may accelerate corneal wound healing and decrease inflammatory responses in diabetic mice by promoting nerve regeneration and increasing levels of neuropeptides SP and CGRP.
Collapse
Affiliation(s)
- Shudi Chen
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Yingsi Li
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Luoying Xie
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Meiting Huang
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China.
| |
Collapse
|
23
|
Niemeyer CS, Harlander-Locke M, Bubak AN, Rzasa-Lynn R, Birlea M. Trigeminal Postherpetic Neuralgia: From Pathophysiology to Treatment. Curr Pain Headache Rep 2024; 28:295-306. [PMID: 38261232 PMCID: PMC10940365 DOI: 10.1007/s11916-023-01209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
PURPOSE OF REVIEW Trigeminal postherpetic neuralgia (TG-PHN) is a neuropathic pain condition complicating herpes zoster (HZ) attributed to the trigeminal nerve. It poses significant challenges due to its persistent and debilitating nature. This review explores the clinical characteristics of TG-PHN, analyzes its pathophysiological underpinnings, and addresses existent and potential therapies. RECENT FINDINGS TG-PHN is one of the most common and complex PHN locations. It has distinguishing clinical and pathophysiological characteristics, starting with viral triggered injuries to the trigeminal ganglion (TG) and peripheral tissue and involving the ascending and descending brain modulation pathways. Current therapies include vaccines, oral and topical medications, and interventional approaches, like nerve blocks and neurostimulation. This review covers TG-PHN's clinical and physiological components, treatment options, and potential future targets for improved management. By exploring the complexities of this condition, we aim to contribute to developing more effective and targeted therapies for patients suffering from trigeminal PHN.
Collapse
Affiliation(s)
- Christy S Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Harlander-Locke
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew N Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachael Rzasa-Lynn
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marius Birlea
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
24
|
Rezzonico Jost T, Lozito A, Mangani D, Raimondi A, Klinger F, Morone D, Klinger M, Grassi F, Vinci V. CD304 + adipose tissue-derived mesenchymal stem cell abundance in autologous fat grafts highly correlates with improvement of localized pain syndromes. Pain 2024; 165:811-819. [PMID: 37943081 DOI: 10.1097/j.pain.0000000000003092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/06/2023] [Indexed: 11/10/2023]
Abstract
ABSTRACT Surgery, burns or surgery-free accident are leading causes of scars with altered tissue consistency, a reduced degree of motion and pain. Autologous fat grafting can dramatically improve tissue consistency and elasticity but less frequently results in the reduction of pain. Therefore, we analyzed different cell populations present within the adipose tissue to be engrafted and correlated them with the reduction of pain after surgery. Here, we identify a population of CD3 - CD4 - CD304 + cells present in grafted adipose tissue, whose abundance highly correlates with pain improvement shortly after surgery ( r2 = 0.7243****) as well as persistently over time (3 months later: r2 = 0.6277****, 1 year later: r2 = 0.5346***, and 4 years later: r2 = 0.5223***). These cells are characterized by the absence of the hematopoietic marker CD45, whereas they express CD90 and CD34, which characterize mesenchymal stem cells (MSCs); the concomitant presence of CD10 and CD73 in the plasma membrane supports a function of these cells in pain reduction. We deduce that the enrichment of this adipose tissue-derived MSC subset could enhance the therapeutic properties of adipose grafts and ameliorate localized pain syndromes.
Collapse
Affiliation(s)
- Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alessia Lozito
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Davide Mangani
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Raimondi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Klinger
- Department of Health Sciences, University of Milan, Ospedale San Paolo, Milan, Italy
| | - Diego Morone
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marco Klinger
- Plastic Surgery Unit, Department of Medical Biotechnology and Translational Medicine BIOMETRA, Humanitas Clinical and Research Hospital, Reconstructive and Aesthetic Plastic Surgery School, University of Milan, Rozzano, MI, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Valeriano Vinci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
- Humanitas Clinical and Research Center-IRCCS, Rozzano, MI, Italy
| |
Collapse
|
25
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
26
|
Liebmann K, Castillo MA, Jergova S, Best TM, Sagen J, Kouroupis D. Modification of Mesenchymal Stem/Stromal Cell-Derived Small Extracellular Vesicles by Calcitonin Gene Related Peptide (CGRP) Antagonist: Potential Implications for Inflammation and Pain Reversal. Cells 2024; 13:484. [PMID: 38534328 DOI: 10.3390/cells13060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
During the progression of knee osteoarthritis (OA), the synovium and infrapatellar fat pad (IFP) can serve as source for Substance P (SP) and calcitonin gene-related peptide (CGRP), two important pain-transmitting, immune, and inflammation modulating neuropeptides. Our previous studies showed that infrapatellar fat pad-derived mesenchymal stem/stromal cells (MSC) acquire a potent immunomodulatory phenotype and actively degrade Substance P via CD10 both in vitro and in vivo. On this basis, our hypothesis is that CD10-bound IFP-MSC sEVs can be engineered to target CGRP while retaining their anti-inflammatory phenotype. Herein, human IFP-MSC cultures were transduced with an adeno-associated virus (AAV) vector carrying a GFP-labelled gene for a CGRP antagonist peptide (aCGRP). The GFP positive aCGRP IFP-MSC were isolated and their sEVs' miRNA and protein cargos were assessed using multiplex methods. Our results showed that purified aCGRP IFP-MSC cultures yielded sEVs with cargo of 147 distinct MSC-related miRNAs. Reactome analysis of miRNAs detected in these sEVs revealed strong involvement in the regulation of target genes involved in pathways that control pain, inflammation and cartilage homeostasis. Protein array of the sEVs cargo demonstrated high presence of key immunomodulatory and reparative proteins. Stimulated macrophages exposed to aCGRP IFP-MSC sEVs demonstrated a switch towards an alternate M2 status. Also, stimulated cortical neurons exposed to aCGRP IFP-MSC sEVs modulate their molecular pain signaling profile. Collectively, our data suggest that yielded sEVs can putatively target CGRP in vivo, while containing potent anti-inflammatory and analgesic cargo, suggesting the promise for novel sEVs-based therapeutic approaches to diseases such as OA.
Collapse
Affiliation(s)
- Kevin Liebmann
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Mario A Castillo
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stanislava Jergova
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA
| | - Jacqueline Sagen
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
27
|
Jiang Y, Shen L, Wang B. Non-electrophysiological techniques targeting transient receptor potential (TRP) gene of gastrointestinal tract. Int J Biol Macromol 2024; 262:129551. [PMID: 38367416 DOI: 10.1016/j.ijbiomac.2024.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
28
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
29
|
Gour N, Yong HM, Magesh A, Atakkatan A, Andrade F, Lajoie S, Dong X. A GPCR-neuropeptide axis dampens hyperactive neutrophils by promoting an alternative-like polarization during bacterial infection. Immunity 2024; 57:333-348.e6. [PMID: 38295799 PMCID: PMC10940224 DOI: 10.1016/j.immuni.2024.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
The notion that neutrophils exist as a homogeneous population is being replaced with the knowledge that neutrophils adopt different functional states. Neutrophils can have a pro-inflammatory phenotype or an anti-inflammatory state, but how these states are regulated remains unclear. Here, we demonstrated that the neutrophil-expressed G-protein-coupled receptor (GPCR) Mrgpra1 is a negative regulator of neutrophil bactericidal functions. Mrgpra1-mediated signaling was driven by its ligand, neuropeptide FF (NPFF), which dictated the balance between pro- and anti-inflammatory programming. Specifically, the Mrgpra1-NPFF axis counter-regulated interferon (IFN) γ-mediated neutrophil polarization during acute lung infection by favoring an alternative-like polarization, suggesting that it may act to balance overzealous neutrophilic responses. Distinct, cross-regulated populations of neutrophils were the primary source of NPFF and IFNγ during infection. As a subset of neutrophils at steady state expressed NPFF, these findings could have broad implications in various infectious and inflammatory diseases. Therefore, a neutrophil-intrinsic pathway determines their cellular fate, function, and magnitude of infection.
Collapse
Affiliation(s)
- Naina Gour
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Aishwarya Magesh
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Aishwarya Atakkatan
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Stephane Lajoie
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
30
|
Bonelli F, Campestre F, Lasagni Vitar RM, Demirsoy IH, Fonteyne P, Ferrari G. Aprepitant Restores Corneal Sensitivity and Reduces Pain in DED. Transl Vis Sci Technol 2024; 13:9. [PMID: 38345550 PMCID: PMC10866158 DOI: 10.1167/tvst.13.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose This study aims to assess the efficacy of two aprepitant formulations (X1 and X2), in a preclinical model of dry eye disease (DED) induced by benzalkonium chloride (BAK). Methods Two aprepitant formulations were tested on 7 to 8-week-old male mice for their efficacy. In vivo corneal fluorescein staining assessed epithelial damage as the primary end point on days 0, 3, 5, 7, 9, 12, and 14 using slit-lamp microscopy. The DED model was induced with 0.2% BAK twice daily for the first week and once daily for the next week. Mice were randomly assigned to 5 treatment groups: Aprepitant X1 (n = 10) and X2 (n = 10) formulation, 2 mg/mL dexamethasone (n = 10), control vehicle X (n = 10), 0.2% hyaluronic acid (n = 10), or no treatment (n = 10). Eye wiping, phenol red, and Cochet Bonnet tests assessed ocular pain, tear fluid secretion, and nerve function. After 7 days, the mice were euthanized to quantify leukocyte infiltration and corneal nerve density. Results Topical aprepitant X1 reduced BAK-induced corneal damage and pain compared to gel vehicle X (P = 0.007) and dexamethasone (P = 0.021). Aprepitant X1 and X2 improved corneal sensitivity versus gel vehicle X and dexamethasone (P < 0.001). Aprepitant X1 reduced leukocyte infiltration (P < 0.05) and enhanced corneal nerve density (P < 0.001). Tear fluid secretion remained statistically unchanged in both the X1 and X2 groups. Conclusions Aprepitant formulation X1 reduced pain, improved corneal sensitivity and nerve density, ameliorated epitheliopathy, and reduced leukocyte infiltration in male mouse corneas. Translational Relevance Aprepitant emerges as a safe, promising therapeutic prospect for the amelioration of DED's associated symptoms.
Collapse
Affiliation(s)
- Filippo Bonelli
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology–Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Fabiola Campestre
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ibrahim Halil Demirsoy
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
31
|
Li M, Zhong X, Xu W. Substance P Increases STAT6-Mediated Transcription Activation of Lymphocyte Cytosolic Protein 2 to Sustain M2 Macrophage Predominance in Pediatric Asthma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:238-252. [PMID: 37995836 DOI: 10.1016/j.ajpath.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Substance P (SP) is a neuropeptide released by neurons and participates in various biological processes, including inflammation. M2 macrophages are major immune cells associated with type 2 inflammation in asthma. This study investigated the effect of SP on macrophage phenotype in pediatric asthma and the underpinning factors. Asthmatic children exhibited an increased level of SP, along with a higher proportion of M2 macrophages in their bronchoalveolar lavage fluid. Flow cytometry revealed that SP treatment enhanced the M2 polarization of 12-O-tetradecanoylphorbol 13-acetate-treated THP-1 cells (macrophages) in vitro. By contrast, the administration of a neutralizing antibody of SP reduced the M2 macrophage population, mitigated inflammatory cell infiltration in mouse lung tissues, and decreased the population of immune cells in the mouse bronchoalveolar lavage fluid. SP up-regulated the expression of STAT6, which, in turn, activated the transcription of lymphocyte cytosolic protein 2 (LCP2). The population of macrophages and allergic inflammatory responses in mice were reduced by STAT6 inhibition but restored by LCP2 overexpression. Collectively, the present study demonstrated that SP sustains M2 macrophage predominance and allergic inflammation in pediatric asthma by enhancing STAT6-dependent transcription activation of LCP2.
Collapse
Affiliation(s)
- Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning, China.
| | - Xiao Zhong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning, China
| | - Wenting Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Liaoning, China
| |
Collapse
|
32
|
Park DS, Oh S, Jin YJ, Na MH, Kim M, Kim JH, Hyun DY, Cho KH, Hong YJ, Kim JH, Ahn Y, Hermida-Prieto M, Vázquez-Rodríguez JM, Gutiérrez-Chico JL, Mariñas-Pardo L, Lim KS, Park JK, Byeon DH, Cho YN, Kee SJ, Sim DS, Jeong MH. Preliminary Investigation on Efficacy and Safety of Substance P-Coated Stent for Promoting Re-Endothelialization: A Porcine Coronary Artery Restenosis Model. Tissue Eng Regen Med 2024; 21:53-64. [PMID: 37973692 PMCID: PMC10764706 DOI: 10.1007/s13770-023-00608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/10/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Current polymer-based drug-eluting stents (DESs) have fundamental issues about inflammation and delayed re-endothelializaton of the vessel wall. Substance-P (SP), which plays an important role in inflammation and endothelial cells, has not yet been applied to coronary stents. Therefore, this study compares poly lactic-co-glycolic acid (PLGA)-based everolimus-eluting stents (PLGA-EESs) versus 2-methacryloyloxyethyl phosphorylcholine (MPC)-based SP-eluting stents (MPC-SPs) in in-vitro and in-vivo models. METHODS The morphology of the stent surface and peptide/drug release kinetics from stents were evaluated. The in-vitro proliferative effect of SP released from MPC-SP is evaluated using human umbilical vein endothelial cell. Finally, the safety and efficacy of the stent are evaluated after inserting it into a pig's coronary artery. RESULTS Similar to PLGA-EES, MPC-SP had a uniform surface morphology with very thin coating layer thickness (2.074 μm). MPC-SP showed sustained drug release of SP for over 2 weeks. Endothelial cell proliferation was significantly increased in groups treated with SP (n = 3) compared with the control (n = 3) and those with everolimus (n = 3) (SP: 118.9 ± 7.61% vs. everolimus: 64.3 ± 12.37% vs. the control: 100 ± 6.64%, p < 0.05). In the animal study, the percent stenosis was higher in MPC-SP group (n = 7) compared to PLGA-EES group (n = 7) (MPC-SP: 28.6 ± 10.7% vs. PLGA-EES: 16.7 ± 6.3%, p < 0.05). MPC-SP group showed, however, lower inflammation (MPC-SP: 0.3 ± 0.26 vs. PLGA-EES: 1.2 ± 0.48, p < 0.05) and fibrin deposition (MPC-SP: 1.0 ± 0.73 vs. PLGA-EES: 1.5 ± 0.59, p < 0.05) around the stent strut. MPC-SP showed more increased expression of cluster of differentiation 31, suggesting enhanced re-endothelialization. CONCLUSION Compared to PLGA-EES, MPC-SP demonstrated more decreased inflammation of the vascular wall and enhanced re-endothelialization and stent coverage. Hence, MPC-SP has the potential therapeutic benefits for the treatment of coronary artery disease by solving limitations of currently available DESs.
Collapse
Affiliation(s)
- Dae Sung Park
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- The Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Seok Oh
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Yu Jeong Jin
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
| | - Mi Hyang Na
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
| | - Munki Kim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
| | - Jeong Ha Kim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
| | - Dae Young Hyun
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Kyung Hoon Cho
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Joon Hong
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju Han Kim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Youngkeun Ahn
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Manuel Hermida-Prieto
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - José Manuel Vázquez-Rodríguez
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Juan Luis Gutiérrez-Chico
- Bundeswehrzentralkrankenhaus (Federal Army Central Military Hospital), Koblenz, Germany
- Universidad Alfonso X el Sabio, Madrid, Spain
| | - Luis Mariñas-Pardo
- Facultad de Ciencias de La Salud, Universidad Internacional de Valencia (VIU), Valencia, Spain
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Korea
| | | | | | - Young-Nan Cho
- Department of Clinical Laboratory Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Clinical Laboratory Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Doo Sun Sim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea.
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Myung Ho Jeong
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea.
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
33
|
Gruber N, Gesell-May S, Scholler D, Zablotski Y, May A. Evaluation of substance P as a biomarker for pain in equine colic. J Equine Vet Sci 2024; 132:104979. [PMID: 38072227 DOI: 10.1016/j.jevs.2023.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
Equine colic is an important condition associated with acute abdominal pain and one of the leading causes of death in horses. As such, objectively evaluating pain is of interest for attending veterinarians. Pain scales for assessment are present, but no single pain-specific biomarker has been reported. The aim of this study was to determine if substance P (SP) could be a reliable biomarker to reflect pain and serve as a parameter to predict outcome in equine colic. The hypothesis was that horses displaying severe colic signs present with higher values of SP in contrast to those with mild colic signs. Thirty warmblood horses, aged between 3 and 20 years were recruited; evenly distributed (10 horses each) in three colic groups (mild, moderate, severe). To classify the colic signs, the horses were graded by the Equine Acute Abdominal Pain Scale (EAAPS). Clinical examination and EAAPS were performed at arrival in the hospital. Blood samples were collected four times in hourly intervals commencing from arrival. For comparison, already established parameters for prognosticating equine colic (heart rate, serum cortisol, and blood lactate concentration) were also measured. The assumption of increasing SP concentrations along with pain could not be confirmed. SP did not show any association with heart rate, cortisol, lactate, or EAAPS. Whereas the established parameters increased according to the EAAPS, SP remained stable in individual horses regardless of clinical signs, treatment, and disease progression. Consequently, SP was not a reliable parameter to reflect painful conditions or to predict outcome in equine colic.
Collapse
Affiliation(s)
- Nina Gruber
- Equine Hospital, Ludwig Maximilians University Munich, Sonnenstrasse 14, 85764 Oberschleissheim, Germany
| | | | - Dominik Scholler
- Equine Hospital, Ludwig Maximilians University Munich, Sonnenstrasse 14, 85764 Oberschleissheim, Germany
| | - Yury Zablotski
- Clinic for Ruminants, Ludwig Maximilians University Munich, Sonnenstrasse 13, 85764 Oberschleissheim, Germany
| | - Anna May
- Equine Hospital, Ludwig Maximilians University Munich, Sonnenstrasse 14, 85764 Oberschleissheim, Germany.
| |
Collapse
|
34
|
Wu J, Xiong W, Li J, Liao H, Chai J, Huang X, Lai S, Kozlov S, Chu X, Xu X. Peptide TK-HR from the Skin of Chinese Folk Medicine Frog Hoplobatrachus Rugulosus Accelerates Wound Healing via the Activation of the Neurokinin-1 Receptor. J Med Chem 2023; 66:16002-16017. [PMID: 38015459 DOI: 10.1021/acs.jmedchem.3c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Wound healing is a complex process and remains a considerable challenge in clinical trials due to the lack of ideal therapeutic drugs. Here, a new peptide TK-HR identified from the skin of the frog Hoplobatrachus rugulosus was tested for its ability to heal cutaneous wounds in mice. Topical application of TK-HR at doses of 50-200 μg/mL significantly accelerated wound closure without causing any adverse effects in the animals. In vitro and in vivo investigations proved the regulatory role of the peptide on neutrophils, macrophages, keratinocytes, and vein endothelial cells involved in the inflammatory, proliferative, and remodeling phases of wound healing. Notably, TK-HR activated the MAPK and TGF-β-Smad signaling pathways by acting on NK1R in RAW264.7 cells and mice. The current work has identified that TK-HR is a potent wound healing regulator that can be applied for the treatment of wounds, including diabetic foot ulcers and infected wounds, in the future.
Collapse
Affiliation(s)
- Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jinqiao Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hang Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shian Lai
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Sergey Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
35
|
Jafarinezhad S, Assaran Darban R, Javid H, Hashemy SI. The SP/NK1R system promotes the proliferation of breast cancer cells through NF-κB-mediated inflammatory responses. Cell Biochem Biophys 2023; 81:787-794. [PMID: 37740877 DOI: 10.1007/s12013-023-01171-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/24/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Numerous molecules have been introduced to participate in the formation of breast cancer, the most common malignancy in women. Among them, neuropeptide substance P (SP) and its related receptor neurokinin-1 receptor (NK1R) have attracted unprecedented attention in tumorigenesis processes. In this study, we investigated the effect of the SP/NK1R pathway on the induction of oxidative stress in breast cancer and examine the therapeutic potential of NK1R inhibition in this malignancy. METHODS MCF-7 cells were treated with varying concentrations of SP and aprepitant, an FDA-approved NK1R antagonist, either as a single drug or in a combined modality. Resazurin assay was used to evaluate the anti-cancer ability of aprepitant. The alteration in the intracellular levels of reactive oxygen species (ROS) and gene expression were determined using ROS assay and the qRT-PCR analysis, respectively. RESULTS The stimulation of the SP/NK1R axis in the MCF-7 cells was coupled with the accumulation of ROS as well as upregulation of NF-κB and its related pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and IL-6. In contrast, the suppression of NK1R by aprepitant halted the viability of MCF-7 cells, at least partly due to p53-mediated upregulation of p21. Moreover, aprepitant attenuated the oncogenic properties of SP by preventing the oxidative property of this neuropeptide. CONCLUSION Overall, our results suggest that the SP/NK1R pathway might play a critical role in breast cancer pathogenesis, probably through inducing ROS/NF-κB-mediated inflammatory responses. Moreover, it seems that blockage of the axis has promising therapeutic value against breast cancer cells. Schematic representation proposed for the plausible mechanism by which the stimulation of the SP/NK1R might induce oxidative stress in breast cancer-derived MCF-7 cells. Once SP interacts with NK1R, this signaling axis could disturb the balance between the expression of p53 and NF-κB, an event that leads to the accumulation of ROS within MCF-7 cells. The produced ROS, in turn, elevates the expression of pro-inflammatory cytokines (TNF-α and IL-6) and downregulates the expression of p21. On the other hand, aprepitant, an antagonist of NK1R, could reduce the survival of proliferative capacity of MCF-7 cells by decreasing the intracellular levels of ROS and p53-mediated up-regulation of p21. Along with the effect on p53, aprepitant could also reduce the expression of NF-κB and its related pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Samine Jafarinezhad
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Assaran Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Ebrahimi S, Erfani B, Alalikhan A, Ghorbani H, Farzadnia M, Afshari AR, Mashkani B, Hashemy SI. The In Vitro Pro-inflammatory Functions of the SP/NK1R System in Prostate Cancer: a Focus on Nuclear Factor-Kappa B (NF-κB) and Its Pro-inflammatory Target Genes. Appl Biochem Biotechnol 2023; 195:7796-7807. [PMID: 37093533 DOI: 10.1007/s12010-023-04495-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Prostate cancer is one of the main global health threats for men which is in close association with chronic inflammation. Neuropeptide substance P (SP), acting through neurokinin receptor (NK-1R), induces various pro-inflammatory responses which are strongly involved in the pathogenesis of several diseases as well as cancer. Therefore, we aimed to investigate the pro-inflammatory functions of the SP/NK1R complex in prostate cancer and the therapeutic effects of its inhibition by NK-1R antagonist, aprepitant, in vitro. MTT assay was conducted for the cytotoxicity assessment of aprepitant in prostate cancer cells. The protein expression levels were evaluated by Western blot assay. Quantitative real-time PCR (qRT-PCR) was applied to measure mRNA expression levels of pro-inflammatory cytokines. Concurrently, the protein concentrations of pro-inflammatory cytokines were also analyzed by enzyme-linked immunosorbent assay. We observed that SP increased the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), while treatment with aprepitant reduced the effects of SP. We also indicated that SP increased the protein levels of nuclear factor-kappa B (NF-κB), as the main regulator of inflammatory processes, and also an NF-κB target gene, cyclooxygenase 2 (COX-2) in prostate cancer cells, while treatment with aprepitant reversed these effects. Taken together, our findings highlight the importance of the SP/NK1R system in the modulation of pro-inflammatory responses in prostate cancer cells and suggest that aprepitant may be developed as a novel anti-inflammatory agent for the management of cancer-associated inflammation.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Erfani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Ghorbani
- Kidney Transplantation Complication Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Farzadnia
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - BaratAli Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Israr F, Masood Ul Hasan S, Hussain M, Qazi FUR, Hasan A. Investigating In Situ Expression of Neurotrophic Factors and Partner Proteins in Irreversible Pulpitis. J Endod 2023; 49:1668-1675. [PMID: 37660765 DOI: 10.1016/j.joen.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION In situ assessments of neurotrophic factors and their associated molecular partners have not been explored to date, particularly in humans. The present investigation aimed to explore the expressional dysregulation of neurotrophic factors (nerve growth factor [NGF], brain derived neurotrophic factor [BDNF], and NT4/5), their receptors (TrkA and TrkB), and their modulators (USP36 and Nedd4-2) directly in irreversibly inflamed human pulp tissues. METHODS Forty samples each of healthy and irreversibly inflamed pulp were extirpated for the study. Immunohistochemical examinations were carried out for the anatomic changes and expression of neurotrophic factors and partner proteins. Expression was digitally quantified using the IHC profiler module of ImageJ and deduced as optical density. Statistical analyses were carried out by GraphPad Prism. RESULTS Decrease in nuclear and vessel diameters was observed in irreversibly inflamed pulp tissues. NGF and BDNF were found to be significantly upregulated in symptomatic irreversible pulpitis (SIP), whereas no significant difference was observed in the expression of TrkA and TrkB. Expression of Nedd4-2, USP36, and TrkA was found positively correlated with the NGF in healthy pulp tissues. However, in SIP, positive correlation was only observed between the expression of USP36 and NGF. Among the ligands, BDNF expression was found positively correlated with NGF in healthy pulp but not with NT4/5. In the case of SIP, no correlation was observed between any neurotrophic factors. CONCLUSIONS Upregulation of NGF, BDNF, USP36 and Nedd4-2 in SIP indicates dysregulation in the molecular events underlying the disease biology and could be exploited as potential markers for the disease diagnosis.
Collapse
Affiliation(s)
- Fatima Israr
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Masood Ul Hasan
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
| | - Fazal Ur Rehman Qazi
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Arshad Hasan
- Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
38
|
Makowska K, Lech P, Gonkowski S. Bisphenol A Effects on Neurons' Neurochemical Character in the Urinary Bladder Intramural Ganglia of Domestic Pigs. Int J Mol Sci 2023; 24:16792. [PMID: 38069115 PMCID: PMC10706807 DOI: 10.3390/ijms242316792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Bisphenol A (BPA), a substance globally used to produce plastics, is part of many everyday items, including bottles, food containers, electronic elements, and others. It may penetrate the environment and living organisms, negatively affecting, among others, the nervous, immune, endocrine, and cardiovascular systems. Knowledge of the impact of BPA on the urinary bladder is extremely scarce. This study investigated the influence of two doses of BPA (0.05 mg/kg body weight (b.w.)/day and 0.5 mg/kg b.w./day) given orally for 28 days on the neurons situated in the ganglia located in the urinary bladder trigone using the typical double immunofluorescence method. In the study, an increase in the percentage of neurons containing substance P (SP), galanin (GAL), a neuronal isoform of nitric oxide synthase (nNOS-used as the marker of nitrergic neurons), and/or cocaine- and amphetamine-regulated transcript (CART) peptide was noted after BPA administration. The severity of these changes depended on the dose of BPA and the type of neuronal factors studied. The most visible changes were noted in the cases of SP- and/or GAL-positive neurons after administering a higher dose of BPA. The results have shown that oral exposure to BPA, lasting even for a short time, affects the intramural neurons in the urinary bladder wall, and changes in the neurochemical characterisation of these neurons may be the first signs of BPA-induced pathological processes in this organ.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| | - Piotr Lech
- Agri Plus sp. Z o.o., Marcelinska Street 92, 60-324 Pozan, Poland
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|
39
|
Nguyen LP, Cho M, Nguyen TU, Park HK, Nguyen HT, Mykhailova K, Hurh S, Kim HR, Seong JY, Lee CS, Ham BJ, Hwang JI. Neurokinin-2 receptor negatively modulates substance P responses by forming complex with Neurokinin-1 receptor. Cell Biosci 2023; 13:212. [PMID: 37968728 PMCID: PMC10652611 DOI: 10.1186/s13578-023-01165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Tachykinins and their cognate receptors, neurokinin receptors (NKs) including NK1, NK2, and NK3 play vital roles in regulating various physiological processes including neurotransmission, nociception, inflammation, smooth muscle contractility, and stimulation of endocrine and exocrine gland secretion. Their abnormal expression has been reported to be associated with neurological disorders, inflammation, and cancer. Even though NKs are expressed in the same cells with their expression being inversely correlated in some conditions, there is no direct evidence to prove their interaction. Understanding the functional crosstalk between NKs in mediated downstream signaling and cellular responses may elucidate the roles of each receptor in pathophysiology. RESULTS In this study, we showed that NKs were co-expressed in some cells. However, different from NK3, which only forms homodimerization, we demonstrated a direct interaction between NK1 and NK2 at the protein level using co-immunoprecipitation and NanoBiT-based protein interaction analysis. Through heterodimerization, NK2 downregulated substance P-stimulated NK1 signals, such as intracellular Ca2+ mobilization and ERK phosphorylation, by enhancing β-arrestin recruitment, even at the ligand concentration that could not activate NK2 itself or in the presence of NK1 specific antagonist, aprepitant. In A549 cells with receptors deleted and reconstituted, NK2 exerted a negative effect on substance P/NK1-mediated cell migration. CONCLUSION Our study has provided the first direct evidence of an interaction between NK1 and NK2, which highlights the functional relevance of their heterodimerization in cellular responses. Our findings demonstrated that through dimerization, NK2 exerts negative effects on downstream signaling and cellular response mediated by NK1. Moreover, this study has significant implications for understanding the complexity of GPCR dimerization and its effect on downstream signaling and cellular responses. Given the important roles of tachykinins and NKs in pathophysiology, these insights may provide clues for developing NKs-targeting drugs.
Collapse
Affiliation(s)
- Lan Phuong Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minyeong Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Thai Uy Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hee-Kyung Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Huong Thi Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kateryna Mykhailova
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sunghoon Hurh
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hong-Rae Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Cheol Soon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Ko JH, Kim SN. Effect of acupuncture on pain and substance P levels in middle-aged women with chronic neck pain. Front Neurol 2023; 14:1267952. [PMID: 37928143 PMCID: PMC10620714 DOI: 10.3389/fneur.2023.1267952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic neck pain is a leading health issue affecting a significant proportion of the global population. Multiple treatment options for chronic neck pain include anti-inflammatory drugs and analgesics. Acupuncture has been widely used for the treatment of chronic pain. In this study, we aimed to determine the efficacy of acupuncture for female patients with chronic neck pain. Twenty-three participants were enrolled in the study, and participants waited 4 weeks without acupuncture treatment and then received 4 weeks of treatment. One-way ANOVA with repeated measures was used to determine differences in the visual analogue scale (VAS), neck disability index (NDI), and substance P (SP) over time. The subjects' pain intensity and degree of disability due to neck pain were measured as primary outcomes. SP in the blood was also analyzed as a secondary outcome. There was no significant difference between the VAS score and NDI value of baseline and after 4 weeks waiting. However, there was an improvement in both VAS and NDI after 4 weeks treatment. SP level was decreased after 4 weeks treatment. We could conclude that acupuncture is effective in alleviating chronic neck pain. Moreover, our findings revealed the efficacy of acupuncture on chronic pain with potential underlying biological mechanisms.
Collapse
Affiliation(s)
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Kashio S, Masuda S, Miura M. Involvement of neuronal tachykinin-like receptor at 86C in Drosophila disc repair via regulation of kynurenine metabolism. iScience 2023; 26:107553. [PMID: 37636053 PMCID: PMC10457576 DOI: 10.1016/j.isci.2023.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Neurons contribute to the regeneration of projected tissues; however, it remains unclear whether they are involved in the non-innervated tissue regeneration. Herein, we showed that a neuronal tachykinin-like receptor at 86C (TkR86C) is required for the repair of non-innervated wing discs in Drosophila. Using a genetic tissue repair system in Drosophila larvae, we performed genetic screening for G protein-coupled receptors to search for signal mediatory systems for remote tissue repair. An evolutionarily conserved neuroinflammatory receptor, TkR86C, was identified as the candidate receptor. Neuron-specific knockdown of TkR86C impaired disc repair without affecting normal development. We investigated the humoral metabolites of the kynurenine (Kyn) pathway regulated in the fat body because of their role as tissue repair-mediating factors. Neuronal knockdown of TkR86C hampered injury-dependent changes in the expression of vermillion in the fat body and humoral Kyn metabolites. Our data indicate the involvement of TkR86C neurons upstream of Kyn metabolism in non-autonomous tissue regeneration.
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Masuda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
43
|
Wang F, Zhong W, Yang Q, Zhao W, Liu X, Rao B, Lin X, Zhang J. Distribution and synaptic organization of substance P-like immunoreactive neurons in the mouse retina. Brain Struct Funct 2023; 228:1703-1724. [PMID: 37481742 DOI: 10.1007/s00429-023-02688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Substance P (SP), a neuroprotective peptidergic neurotransmitter, is known to have immunoreactivity (IR) localized to amacrine and/or ganglion cells in a variety of species' retinas, but it has not yet been studied in the mouse retina. Thus, we investigated the distribution and synaptic organization of SP-IR by confocal and electron microscopy immunocytochemistry in the mouse retina. SP-IR was distributed in the inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Most of the SP-IR somas belonged to amacrine cells (2.5% of all) in the INL and their processes stratified into the S1, S3, and S5 layers of the IPL, with the most intense band in the S5 layer. Some SP-IR somas can also be observed in the GCL, which were identified as displaced amacrine cells (82%, 1269/1550) and ganglion cells (18%, 281/1550) by antibodies against AP2α and RBPMS, respectively. Such SP-IR ganglion cells (1.2% of all RGCs) can be further divided into 3 subgroups expressing SP/α-Synuclein (α-Syn), SP/GAD67, and/or SP/GAD67/α-Syn. Possible physiological and pathological roles of these ganglion cells are discussed. Further, electron microscopy evidence demonstrates that SP-IR amacrine cells receive major inputs from other SP-IR amacrine cell processes (146/242 inputs) and output mostly to SP-negative amacrine cell processes (291/673 outputs), suggesting series inhibition among amacrine cells. These results reveal for the first time an explicit distribution, novel ganglion cell features, and synaptic organization of SP-IR in the mouse retina, which is important for the future use of mouse models to study the roles of SP in healthy and diseased (including Parkinson's disease) retinal states.
Collapse
Affiliation(s)
- Fenglan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenhui Zhong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingwen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenna Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoqing Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bilin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xin Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jun Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
44
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
45
|
Ahn D, Kim H, Lee B, Hahm DH. Psychological Stress-Induced Pathogenesis of Alopecia Areata: Autoimmune and Apoptotic Pathways. Int J Mol Sci 2023; 24:11711. [PMID: 37511468 PMCID: PMC10380371 DOI: 10.3390/ijms241411711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune dermatological disease with multifactorial etiology and is characterized by reversible hair loss in patches. AA may be closely related to emotional stress and influenced by psychological factors as part of its pathophysiology; however, its etiology remains predominantly unknown. This review aimed to elucidate the association between AA occurrence and the neuropeptide substance P (SP) and corticotropin-releasing hormone (CRH), which are secreted during emotional stress, and have been understood to initiate and advance the etiopathogenesis of AA. Therefore, this review aimed to explain how SP and CRH initiate and contribute to the etiopathogenesis of AA. To assess the etiopathogenesis of AA, we conducted a literature search on PubMed and ClinicalTrials.gov. Overall, several authors described interactions between the hair follicles (HFs) and the stress-associated signaling substances, including SP and CRH, in the etiology of AA; this was attributed to the understanding in that AA can occur without the loss of HFs, similar to that observed in hereditary hair loss with age. Most studies demonstrated that the collapse of "immune privilege" plays a crucial role in the development and exacerbation of the AA; nonetheless, a few studies indicated that substances unrelated to autoimmunity may also cause apoptosis in keratocytes, leading to the development of AA. We investigated both the autoimmune and apoptotic pathways within the etiology of AA and assessed the potential interactions between the key substances of both pathways to evaluate potential therapeutic targets for the treatment of AA. Clinical trials of marketed/unreviewed intervention drugs for AA were also reviewed to determine their corresponding target pathways.
Collapse
Affiliation(s)
- Dongkyun Ahn
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungjun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Bombi Lee
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
46
|
Kouroupis D, Kaplan LD, Huard J, Best TM. CD10-Bound Human Mesenchymal Stem/Stromal Cell-Derived Small Extracellular Vesicles Possess Immunomodulatory Cargo and Maintain Cartilage Homeostasis under Inflammatory Conditions. Cells 2023; 12:1824. [PMID: 37508489 PMCID: PMC10377825 DOI: 10.3390/cells12141824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phenotype and actively degrade substance P (SP) via neutral endopeptidase CD10 (neprilysin). Our hypothesis is that IFP-MSC robust immunomodulatory therapeutic effects are largely exerted via their CD10-bound small extracellular vesicles (IFP-MSC sEVs) by attenuating synoviocyte pro-inflammatory activation and articular cartilage degradation. Herein, IFP-MSC sEVs were isolated from CD10High- and CD10Low-expressing IFP-MSC cultures and their sEV miRNA cargo was assessed using multiplex methods. Functionally, we interrogated the effect of CD10High and CD10Low sEVs on stimulated by inflammatory/fibrotic cues synoviocyte monocultures and cocultures with IFP-MSC-derived chondropellets. Finally, CD10High sEVs were tested in vivo for their therapeutic capacity in an animal model of acute synovitis/fat pad fibrosis. Our results showed that CD10High and CD10Low sEVs possess distinct miRNA profiles. Reactome analysis of miRNAs highly present in sEVs showed their involvement in the regulation of six gene groups, particularly those involving the immune system. Stimulated synoviocytes exposed to IFP-MSC sEVs demonstrated significantly reduced proliferation and altered inflammation-related molecular profiles compared to control stimulated synoviocytes. Importantly, CD10High sEV treatment of stimulated chondropellets/synoviocyte cocultures indicated significant chondroprotective effects. Therapeutically, CD10High sEV treatment resulted in robust chondroprotective effects by retaining articular cartilage structure/composition and PRG4 (lubricin)-expressing cartilage cells in the animal model of acute synovitis/IFP fibrosis. Our study suggests that CD10High sEVs possess immunomodulatory miRNA attributes with strong chondroprotective/anabolic effects for articular cartilage in vivo. The results could serve as a foundation for sEV-based therapeutics for the resolution of detrimental aspects of immune-mediated inflammatory joint changes associated with conditions such as osteoarthritis (OA).
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA;
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| |
Collapse
|
47
|
Sumioka T, Matsumoto KI, Reinach PS, Saika S. Tenascins and osteopontin in biological response in cornea. Ocul Surf 2023; 29:131-149. [PMID: 37209968 DOI: 10.1016/j.jtos.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The structural composition, integrity and regular curvature of the cornea contribute to the maintenance of its transparency and vision. Disruption of its integrity caused by injury results in scarring, inflammation and neovascularization followed by losses in transparency. These sight compromising effects is caused by dysfunctional corneal resident cell responses induced by the wound healing process. Upregulation of growth factors/cytokines and neuropeptides affect development of aberrant behavior. These factors trigger keratocytes to first transform into activated fibroblasts and then to myofibroblasts. Myofibroblasts express extracellular matrix components for tissue repair and contract the tissue to facilitate wound closure. Proper remodeling following primary repair is critical for restoration of transparency and visual function. Extracellular matrix components contributing to the healing process are divided into two groups; a group of classical tissue structural components and matrix macromolecules that modulate cell behaviors/activities besides being integrated into the matrix structure. The latter components are designated as matricellular proteins. Their functionality is elicited through mechanisms which modulate the scaffold integrity, cell behaviors, activation/inactivation of either growth factors or cytoplasmic signaling regulation. We discuss here the functional roles of matricellular proteins in mediating injury-induced corneal tissue repair. The roles are described of major matricellular proteins, which include tenascin C, tenascin X and osteopontin. Focus is directed towards dealing with their roles in modulating individual activities of wound healing-related growth factors, e. g., transforming growth factor β (TGF β). Modulation of matricellular protein functions could encompass a potential novel strategy to improve the outcome of injury-induced corneal wound healing.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Peter Sol Reinach
- Department of Biological. Sciences SUNY Optometry, New York, NY, 10036, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan
| |
Collapse
|
48
|
Xu P, Lin X, Dong X, Liu Y, Wang Z, Wang S. Trigeminal nerve-derived substance P regulates limbal stem cells by the PI3K-AKT pathway. iScience 2023; 26:106688. [PMID: 37187698 PMCID: PMC10176256 DOI: 10.1016/j.isci.2023.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Trigeminal nerve-derived substance P (SP), a widespread neuropeptide, is known to maintain the corneal epithelial homeostasis and promote the closure of wound healing. Using comprehensive in vivo and in vitro assays and RNA-sequencing analysis, we aimed to unveil the positive effects of SP on the biological characteristics of limbal stem cells (LSCs) and the underlying mechanism. SP enhanced the proliferation and stemness of LSCs in vitro. Correspondingly, it rescued corneal defects, corneal sensitivity, and the expression of LSC-positive markers in a neurotrophic keratopathy (NK) mouse model in vivo. Topical injection of a neurokinin-1 receptor (NK1R) antagonist caused similar pathological changes as in corneal denervated mice and attenuated LSC-positive markers levels. Mechanistically, we revealed that SP regulated LSCs functions by modulating the PI3K-AKT pathway. Our findings showed that the trigeminal nerve regulates LSCs by releasing SP, which may provide new insights into the regulation of LSCs' fate and stem cell therapy.
Collapse
Affiliation(s)
- Peipei Xu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiongshi Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xing Dong
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
- Corresponding author
| | - Shuangyong Wang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Corresponding author
| |
Collapse
|
49
|
Zheng G, Harms AK, Tail M, Zhang H, Nimmo A, Skutella T, Kiening K, Unterberg A, Zweckberger K, Younsi A. Effects of a neurokinin-1 receptor antagonist in the acute phase after thoracic spinal cord injury in a rat model. Front Mol Neurosci 2023; 16:1128545. [PMID: 37251648 PMCID: PMC10213275 DOI: 10.3389/fnmol.2023.1128545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Disruption of the blood-spinal cord barrier (BSCB) with subsequent edema formation and further neuroinflammation contributes to aggravation of spinal cord injury (SCI). We aimed to observe the effect of antagonizing the binding of the neuropeptide Substance-P (SP) to its neurokinin-1 (NK1) receptor in a rodent SCI model. Methods Female Wistar rats were subjected to a T9 laminectomy with or without (Sham) a T9 clip-contusion/compression SCI, followed by the implantation of an osmotic pump for the continuous, seven-day-long infusion of a NK1 receptor antagonist (NRA) or saline (vehicle) into the intrathecal space. The animals were assessed via MRI, and behavioral tests were performed during the experiment. 7 days after SCI, wet & dry weight and immunohistological analyses were conducted. Results Substance-P inhibition via NRA showed limited effects on reducing edema. However, the invasion of T-lymphocytes and the number of apoptotic cells were significantly reduced with the NRA treatment. Moreover, a trend of reduced fibrinogen leakage, endothelial and microglial activation, CS-GAG deposition, and astrogliosis was found. Nevertheless, only insignificant general locomotion recovery could be observed in the BBB open field score and the Gridwalk test. In contrast, the CatWalk gait analysis showed an early onset of recovery in several parameters. Conclusion Intrathecal administration of NRA might reinforce the integrity of the BSCB in the acute phase after SCI, potentially attenuating aspects of neurogenic inflammation, reducing edema formation, and improving functional recovery.
Collapse
Affiliation(s)
- Guoli Zheng
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Kathrin Harms
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mohamed Tail
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hao Zhang
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alan Nimmo
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, Australia
| | - Thomas Skutella
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Karl Kiening
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Zweckberger
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
50
|
Chen FX, Wan Q, Fang J, Peng L, Li QL, Hu J. The Src1-PGC1α-AP1 complex-dependent secretion of substance P induces inflammation and apoptosis in encephalomyocarditis virus-infected mice. Cytokine 2023; 165:156186. [PMID: 36989655 DOI: 10.1016/j.cyto.2023.156186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Substance P (SP), a neuropeptide consisting of 11 amino acid residues, is involved in the pathogenesis of encephalomyocarditis virus (EMCV)-induced myocarditis by stimulating the production of proinflammatory cytokines. However, the underlying mechanism that regulates SP production is still unknown. In this study, we report the transcriptional regulation of the Tachykinin Precursor 1 (TAC1) gene that encodes SP by a transcriptional complex composed of Steroid Receptor Coactivator 1 (Src1), Peroxisome proliferator-activated receptor-gamma coactivator 1 (PGC1α), and Activator Protein 1 (AP1) transcription factor. Infection of mice with EMCV induced the accumulation of PGC1α and increased TAC1 expression, thereby promoting the secretion of SP, initiating apoptosis, and elevating proinflammatory cytokine levels. In vitro overexpression of the Src1-PGC1α-AP1 members also induced TAC1 expression, increased the SP concentration, initiated apoptosis, and elevated proinflammatory cytokine concentrations. Depletion or inhibition of the Src1-PGC1α-AP1 complex reversed these effects. The administration of gossypol, an Src1 inhibitor, or SR1892, a PGC1α inhibitor, to EMCV-infected mice attenuated myocarditis. Taken together, our results reveal that the upregulation of TAC1 and the secretion of SP in EMCV-induced myocarditis are dependent on the Src1-PGC1α-AP1 complex. Targeting the Src1-PGC1α-AP1 complex may represent a new therapeutic strategy for myocarditis.
Collapse
Affiliation(s)
- Fa-Xiu Chen
- Department of Geriatrics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China; Department of Geriatrics, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi, China
| | - Qin Wan
- Department of Geriatrics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China; Department of Geriatrics, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi, China
| | - Jing Fang
- Department of Geriatrics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China; Department of Geriatrics, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi, China
| | - Le Peng
- Department of Geriatrics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China; Department of Geriatrics, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi, China
| | - Qing-Ling Li
- Department of Geriatrics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China; Department of Geriatrics, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi, China.
| | - Jian Hu
- Department of Geriatrics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China; Department of Geriatrics, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi, China.
| |
Collapse
|