1
|
So RB, Li G, Brentville V, Daly JM, Dixon JE. Combined biolistic and cell penetrating peptide delivery for the development of scalable intradermal DNA vaccines. J Control Release 2024; 367:209-222. [PMID: 38244841 DOI: 10.1016/j.jconrel.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Physical-based gene delivery via biolistic methods (such as the Helios gene gun) involve precipitation of nucleic acids onto microparticles and direct transfection through cell membranes of exposed tissue (e.g. skin) by high velocity acceleration. The glycosaminoglycan (GAG)-binding enhanced transduction (GET) system exploits novel fusion peptides consisting of cell-binding, nucleic acid condensing, and cell-penetrating domains, which enable enhanced transfection across multiple cell types. In this study, we combined chemical (GET) and physical (gene gun) DNA delivery systems, and hypothesized the combination would generate enhanced distribution and effective uptake in cells not initially transfected by biolistic penetration. Physicochemical characterization, optimization of bullet contents and transfection experiments in vitro in cell monolayers and engineered tissue demonstrated these formulations transfected efficiently, including DC2.4 dendritic cells. We incorporated these formulations into a biolistic format for gene gun by forming fireable dry bullets obtained via lyophilization (freeze drying). This system is simple and with enhanced scalability compared to conventional methods to generate bullets. Flushed GET bullet contents retained their ability to mediate transfection (17-fold greater and 13-fold greater reporter gene expression than standard spermidine bullets in the absence and presence of serum, respectively). Fired GET bullets in vitro (in cells and collagen gels) and in vivo (mice) showed increased reporter gene transfection compared to untreated controls, whilst maintaining cell viability in vitro and having no obvious toxicity in vivo. Lastly, a SARS-CoV-2 plasmid DNA vaccine with spike (S) protein-receptor binding domain (S-RBD) was delivered by gene gun using GET bullets. Specific T cell and antibody responses comparable to the conventional system were generated. The non-physical and physical combination of GET‑gold-DNA carriers using gene gun shows potential as an alternative DNA delivery method that is scalable for mass deployable vaccination and intradermal gene delivery.
Collapse
Affiliation(s)
- Roizza Beth So
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gang Li
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Victoria Brentville
- Scancell Ltd, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Janet M Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
2
|
'Stem-like' precursors are the fount to sustain persistent CD8 + T cell responses. Nat Immunol 2022; 23:836-847. [PMID: 35624209 DOI: 10.1038/s41590-022-01219-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
Abstract
Virus-specific CD8+ T cells that differentiate in the context of resolved versus persisting infections exhibit divergent phenotypic and functional characteristics, which suggests that their differentiation trajectories are governed by distinct cellular dynamics, developmental pathways and molecular mechanisms. For acute infection, it is long known that antigen-specific T cell populations contain terminally differentiated effector T cells, known as short-lived effector T cells, and proliferation-competent and differentiation-competent memory precursor T cells. More recently, it was identified that a similar functional segregation occurs in chronic infections. A failure to generate proliferation-competent precursor cells in chronic infections and tumors results in the collapse of the T cell response. Thus, these precursor cells are major therapeutic and prophylactic targets of immune interventions. These observations suggest substantial commonality between T cell responses in acute and chronic infections but there are also critical differences. We are therefore reviewing the common features and peculiarities of precursor cells in acute infections, different types of persistent infection and cancer.
Collapse
|
3
|
Baliu-Piqué M, Drylewicz J, Zheng X, Borkner L, Swain AC, Otto SA, de Boer RJ, Tesselaar K, Cicin-Sain L, Borghans JAM. Turnover of Murine Cytomegalovirus-Expanded CD8 + T Cells Is Similar to That of Memory Phenotype T Cells and Independent of the Magnitude of the Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:799-806. [PMID: 35091435 DOI: 10.4049/jimmunol.2100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
The potential of memory T cells to provide protection against reinfection is beyond question. Yet, it remains debated whether long-term T cell memory is due to long-lived memory cells. There is ample evidence that blood-derived memory phenotype CD8+ T cells maintain themselves through cell division, rather than through longevity of individual cells. It has recently been proposed, however, that there may be heterogeneity in the lifespans of memory T cells, depending on factors such as exposure to cognate Ag. CMV infection induces not only conventional, contracting T cell responses, but also inflationary CD8+ T cell responses, which are maintained at unusually high numbers, and are even thought to continue to expand over time. It has been proposed that such inflating T cell responses result from the accumulation of relatively long-lived CMV-specific memory CD8+ T cells. Using in vivo deuterium labeling and mathematical modeling, we found that the average production rates and expected lifespans of mouse CMV-specific CD8+ T cells are very similar to those of bulk memory-phenotype CD8+ T cells. Even CMV-specific inflationary CD8+ T cell responses that differ 3-fold in size were found to turn over at similar rates.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xiaoyan Zheng
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Borkner
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Arpit C Swain
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands; and
| | - Sigrid A Otto
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rob J de Boer
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands; and
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research, Partner Site, Hannover-Braunschweig, Germany
| | - José A M Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands;
| |
Collapse
|
4
|
MCMV-based vaccine vectors expressing full-length viral proteins provide long-term humoral immune protection upon a single-shot vaccination. Cell Mol Immunol 2022; 19:234-244. [PMID: 34992275 PMCID: PMC8739032 DOI: 10.1038/s41423-021-00814-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2022] Open
Abstract
Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a β-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.
Collapse
|
5
|
Welten SPM, Oderbolz J, Yilmaz V, Bidgood SR, Gould V, Mercer J, Spörri R, Oxenius A. Influenza- and MCMV-induced memory CD8 T cells control respiratory vaccinia virus infection despite residence in distinct anatomical niches. Mucosal Immunol 2021; 14:728-742. [PMID: 33479479 PMCID: PMC8075924 DOI: 10.1038/s41385-020-00373-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Induction of memory CD8 T cells residing in peripheral tissues is of interest for T cell-based vaccines as these cells are located at mucosal and barrier sites and can immediately exert effector functions, thus providing protection in case of local pathogen encounter. Different memory CD8 T cell subsets patrol peripheral tissues, but it is unclear which subset is superior in providing protection upon secondary infections. We used influenza virus to induce predominantly tissue resident memory T cells or cytomegalovirus to elicit a large pool of effector-like memory cells in the lungs and determined their early protective capacity and mechanism of reactivation. Both memory CD8 T cell pools have unique characteristics with respect to their phenotype, localization, and maintenance. However, these distinct features do not translate into different capacities to control a respiratory vaccinia virus challenge in an antigen-specific manner, although differential activation mechanisms are utilized. While influenza-induced memory CD8 T cells respond to antigen by local proliferation, MCMV-induced memory CD8 T cells relocate from the vasculature into the tissue in an antigen-independent and partially chemokine-driven manner. Together these results bear relevance for the development of vaccines aimed at eliciting a protective memory CD8 T cell pool at mucosal sites.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Josua Oderbolz
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Vural Yilmaz
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Susanna R Bidgood
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Victoria Gould
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jason Mercer
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roman Spörri
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
6
|
Abassi L, Cicin-Sain L. The avid competitors of memory inflation. Curr Opin Virol 2020; 44:162-168. [PMID: 33039898 DOI: 10.1016/j.coviro.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
Cytomegaloviruses (CMV) coevolve with their hosts and latently persist in the vast majority of adult mammals. Therefore, persistent T-cell responses to CMV antigens during virus latency offer a fascinating perspective on the evolution of the T-cell repertoire in natural settings. We addressed here the life-long interactions between CMV antigens presented on MHC-I molecules and the CD8 T-cell response. We present the mechanistic evidence from the murine model of CMV infection and put it in context of clinical laboratory results. We will highlight the remarkable parallels in T-cell responses between the two biological systems, and focus in particular on memory inflation as a result of competitive processes, both between viral antigenic peptides and between T-cell receptors on the host's cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Leila Abassi
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Germany; Centre for Individualised Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Germany; German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Germany.
| |
Collapse
|
7
|
Welten SPM, Yermanos A, Baumann NS, Wagen F, Oetiker N, Sandu I, Pedrioli A, Oduro JD, Reddy ST, Cicin-Sain L, Held W, Oxenius A. Tcf1 + cells are required to maintain the inflationary T cell pool upon MCMV infection. Nat Commun 2020; 11:2295. [PMID: 32385253 PMCID: PMC7211020 DOI: 10.1038/s41467-020-16219-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
Cytomegalovirus-based vaccine vectors offer interesting opportunities for T cell-based vaccination purposes as CMV infection induces large numbers of functional effector-like cells that accumulate in peripheral tissues, a process termed memory inflation. Maintenance of high numbers of peripheral CD8 T cells requires continuous replenishment of the inflationary T cell pool. Here, we show that the inflationary T cell population contains a small subset of cells expressing the transcription factor Tcf1. These Tcf1+ cells resemble central memory T cells and are proliferation competent. Upon sensing viral reactivation events, Tcf1+ cells feed into the pool of peripheral Tcf1- cells and depletion of Tcf1+ cells hampers memory inflation. TCR repertoires of Tcf1+ and Tcf1- populations largely overlap, with the Tcf1+ population showing higher clonal diversity. These data show that Tcf1+ cells are necessary for sustaining the inflationary T cell response, and upholding this subset is likely critical for the success of CMV-based vaccination approaches.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
- Department of Biosystems and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Franziska Wagen
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Nathalie Oetiker
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alessandro Pedrioli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124, Braunschweig, Germany
| | - Sai T Reddy
- Department of Biosystems and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124, Braunschweig, Germany
| | - Werner Held
- Department of Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
8
|
Advances in cytomegalovirus (CMV) biology and its relationship to health, diseases, and aging. GeroScience 2020; 42:495-504. [PMID: 32162210 PMCID: PMC7205956 DOI: 10.1007/s11357-020-00170-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) is one of the largest and most ubiquitous latent persistent viruses. Most humans are infected with CMV early in life, and all immunocompetent humans spend several decades living with CMV. In the vast majority of the hosts, CMV does not cause manifest disease, and CMV therefore can be considered part of normal aging for 50–90% of the human population worldwide. Experimental, clinical, and epidemiological studies suggest that CMV carriage can have nuanced outcomes, including both potentially harmful and potentially beneficial impacts on the host. We here present a summary of the 7th International Workshop on CMV and Immunosenescence, covering various aspects of the interplay between CMV and its mammalian hosts in the context of virus spread, immune evasion, antiviral immunity, as well as the impact on health span and aging.
Collapse
|
9
|
Vaccine Vectors Harnessing the Power of Cytomegaloviruses. Vaccines (Basel) 2019; 7:vaccines7040152. [PMID: 31627457 PMCID: PMC6963789 DOI: 10.3390/vaccines7040152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Cytomegalovirus (CMV) species have been gaining attention as experimental vaccine vectors inducing cellular immune responses of unparalleled strength and protection. This review outline the strengths and the restrictions of CMV-based vectors, in light of the known aspects of CMV infection, pathogenicity and immunity. We discuss aspects to be considered when optimizing CMV based vaccines, including the innate immune response, the adaptive humoral immunity and the T-cell responses. We also discuss the antigenic epitopes presented by unconventional major histocompatibility complex (MHC) molecules in some CMV delivery systems and considerations about routes for delivery for the induction of systemic or mucosal immune responses. With the first clinical trials initiating, CMV-based vaccine vectors are entering a mature phase of development. This impetus needs to be maintained by scientific advances that feed the progress of this technological platform.
Collapse
|
10
|
Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge. PLoS Pathog 2019; 15:e1008036. [PMID: 31525249 PMCID: PMC6763260 DOI: 10.1371/journal.ppat.1008036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections. Vaccines against influenza typically induce immune responses based on antibodies, small molecules that recognize the virus particles outside of cells and neutralize them before they infect a cell. However, influenza rapidly evolves, escaping immune recognition, and the fastest evolution is seen in the part of the virus that is recognized by antibodies. Therefore, every year we are confronted with new flu strains that are not recognized by our antibodies against the strains from previous years. The other branch of the immune system is made of killer T cells, which recognize infected cells and target them for killing. Influenza does not rapidly evolve to escape T cell killing; thus, vaccines inducing T-cell responses to influenza might provide long-term protection. We introduced an antigen from influenza into the murine cytomegalovirus (MCMV) and used it as a vaccine vector inducing killer T-cell responses of unparalleled strength. Our vector controls influenza replication and provides relief to infected mice, but only if we administered it through the nose, to activate killer T cells that will persist in the lungs close to the airways. Therefore, our data show that the subset of lung-resident killer T cells is sufficient to protect against influenza.
Collapse
|
11
|
Grassmann S, Pachmayr LO, Leube J, Mihatsch L, Andrae I, Flommersfeld S, Oduro J, Cicin-Sain L, Schiemann M, Flossdorf M, Buchholz VR. Distinct Surface Expression of Activating Receptor Ly49H Drives Differential Expansion of NK Cell Clones upon Murine Cytomegalovirus Infection. Immunity 2019; 50:1391-1400.e4. [DOI: 10.1016/j.immuni.2019.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/08/2019] [Accepted: 04/25/2019] [Indexed: 12/25/2022]
|
12
|
Baumann NS, Welten SPM, Torti N, Pallmer K, Borsa M, Barnstorf I, Oduro JD, Cicin-Sain L, Oxenius A. Early primed KLRG1- CMV-specific T cells determine the size of the inflationary T cell pool. PLoS Pathog 2019; 15:e1007785. [PMID: 31083700 PMCID: PMC6532941 DOI: 10.1371/journal.ppat.1007785] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Memory T cell inflation is a process in which a subset of cytomegalovirus (CMV) specific CD8 T cells continuously expands mainly during latent infection and establishes a large and stable population of effector memory cells in peripheral tissues. Here we set out to identify in vivo parameters that promote and limit CD8 T cell inflation in the context of MCMV infection. We found that the inflationary T cell pool comprised mainly high avidity CD8 T cells, outcompeting lower avidity CD8 T cells. Furthermore, the size of the inflationary T cell pool was not restricted by the availability of specific tissue niches, but it was directly related to the number of virus-specific CD8 T cells that were activated during priming. In particular, the amount of early-primed KLRG1- cells and the number of inflationary cells with a central memory phenotype were a critical determinant for the overall magnitude of the inflationary T cell pool. Inflationary memory CD8 T cells provided protection from a Vaccinia virus challenge and this protection directly correlated with the size of the inflationary memory T cell pool in peripheral tissues. These results highlight the remarkable protective potential of inflationary CD8 T cells that can be harnessed for CMV-based T cell vaccine approaches. Cytomegalovirus induces a lifelong infection in the majority of the world's population, due to the ability of the virus to establish latency. Upon CMV infection, large numbers of effector memory T cells are induced in peripheral tissues, a process that is termed memory inflation. As inflationary T cells are highly functional, CMV-based vaccines have gained substantial interest for vaccination purposes. Here we examine factors that promote and limit memory T cell inflation. We found that there were no constraints on the availability of specific niches for inflationary T cells in tissues and that high avidity T cells predominately contribute to the inflationary T cell population in the beginning of infection. Moreover, the number of early primed KLRG1- CMV-specific T cells in the acute phase of infection set the limit for memory T cell inflation. Furthermore, we show that inflationary T cells provided protection from a pathogenic challenge in peripheral tissues such as the ovaries. Thus, inflationary T cells comprise a population of T cells that can protect peripheral tissues from pathogenic infections and their efficacy can be regulated by balancing the number of KLRG1- CMV-specific cells during priming.
Collapse
Affiliation(s)
- Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Nicole Torti
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Isabel Barnstorf
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| |
Collapse
|
13
|
Cicin-Sain L. Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol 2019; 208:339-347. [PMID: 30972476 DOI: 10.1007/s00430-019-00607-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Cytomegalovirus (CMV) infection induces powerful and sustained T-cell responses against a few selected immunodominant antigenic epitopes. This immune response was named memory inflation, because it does not contract in the long term, and may even expand over months and years of virus latency. It is by now understood that memory inflation does not occur at the expense of the naïve T-cell pool, but rather as a competitive selection process within the effector pool, where viral antigens with higher avidity of TCR binding and with earlier expression patterns outcompete those that are expressed later and bind TCRs less efficiently. It is also understood that inflationary epitopes require processing by the constitutive proteasome in non-hematopoietic cells, and this likely implies that memory inflation is fuelled by direct low-level antigenic expression in latently infected cells. This review proposes that these conditions make inflationary epitopes the optimal candidates for adoptive immunotherapy of CMV disease in the immunocompromised host. At present, functional target CMV epitopes have been defined only for the most common HLA haplotypes. Mapping the uncharacterized inflationary epitopes in less frequent HLAs may, thus, be a strategy for the identification of optimal immunotherapeutic targets in patients with uncommon haplotypes.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany. .,Centre for Individualised Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Braunschweig, Germany. .,German Centre for Infection Research (DZIF), Hannover-Braunschweig site, Braunschweig, Germany.
| |
Collapse
|
14
|
Méndez AC, Rodríguez-Rojas C, Del Val M. Vaccine vectors: the bright side of cytomegalovirus. Med Microbiol Immunol 2019; 208:349-363. [PMID: 30900089 DOI: 10.1007/s00430-019-00597-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Cytomegaloviruses (CMVs) present singular features that are particularly advantageous for human vaccine development, a current medical need. Vaccines that induce neutralizing antibodies are among the most successful and efficacious available. However, chronic and persistent human infections, pathogens with high variability of exposed proteins, as well as tumors, highlight the need for developing novel vaccines inducing strong and long-lasting cellular immune responses mediated by effector or effector memory CD8+ cytotoxic T lymphocytes. CMVs induce the most potent CD8+ T lymphocyte response to a pathogen known in each of their hosts, maintain and even increase it for life for selected antigens, in what is known as the ever growing inflationary memory, and maintain an effector memory status due to recent and repeated antigen stimulation that endows these inflationary T lymphocytes with superior and faster protective potency. In addition to these CMV singularities, this family of viruses has two more common favorable features: they can superinfect an already infected host, which is needed in face of the high CMV prevalence, and they can harbor very large segments of foreign DNA at many different genomic sites. All these properties endow CMVs with a singular potential to be used as human vaccine vectors. Current developments with most of the recombinant CMV-based vaccine candidates that have been tested in animal models against clinically relevant viral and bacterial infections and for their use in tumor immunotherapy are reviewed herein. Since CMV vectors should be designed to avoid the risk of disease in immunocompromised individuals, special attention is also paid to attenuated vectors. Taken together, the results support the future use of CMV-based vaccine vectors to induce protective CD8+ T lymphocyte responses in humans, mainly against viral infections and as anti-tumor vaccines.
Collapse
Affiliation(s)
- Andrea C Méndez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | | | - Margarita Del Val
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
15
|
Generation, maintenance and tissue distribution of T cell responses to human cytomegalovirus in lytic and latent infection. Med Microbiol Immunol 2019; 208:375-389. [PMID: 30895366 PMCID: PMC6647459 DOI: 10.1007/s00430-019-00598-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Understanding how the T cell memory response directed towards human cytomegalovirus (HCMV) develops and changes over time while the virus persists is important. Whilst HCMV primary infection and periodic reactivation is well controlled by T cell responses in healthy people, when the immune system is compromised such as post-transplantation, during pregnancy, or underdeveloped such as in new-born infants and children, CMV disease can be a significant problem. In older people, HCMV infection is associated with increased risk of mortality and despite overt disease rarely being seen there are increases in HCMV-DNA in urine of older people suggesting that there is a change in the efficacy of the T cell response following lifelong infection. Therefore, understanding whether phenomenon such as “memory inflation” of the immune response is occurring in humans and if this is detrimental to the overall health of individuals would enable the development of appropriate treatment strategies for the future. In this review, we present the evidence available from human studies regarding the development and maintenance of memory CD8 + and CD4 + T cell responses to HCMV. We conclude that there is only limited evidence supportive of “memory inflation” occurring in humans and that future studies need to investigate immune cells from a broad range of human tissue sites to fully understand the nature of HCMV T cell memory responses to lytic and latent infection.
Collapse
|
16
|
Welten SPM, Baumann NS, Oxenius A. Fuel and brake of memory T cell inflation. Med Microbiol Immunol 2019; 208:329-338. [PMID: 30852648 DOI: 10.1007/s00430-019-00587-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/24/2022]
Abstract
Memory T cell inflation is a process in which a large number of effector memory T cells accumulates in peripheral tissues. This phenomenon is observed upon certain low level persistent virus infections, but it is most commonly described upon infection with the β-herpesvirus Cytomegalovirus. Due to the induction of this large pool of functional effector CD8 T cells in peripheral tissues, the interest in using CMV-based vaccine vectors for vaccination purposes is rising. However, the exact mechanisms of memory T cell inflation are not yet fully understood. It is clear that repetitive exposure to antigen is a key determinant for memory inflation, and therefore the viral inoculum dose and the subsequent number of viral reactivation events strongly impact on the magnitude of the inflationary T cell pool. In addition, the number of CMV-specific CD8 T cells that is able to sense these reactivation events affects the size of the inflationary T cell pool. In the following, we will discuss factors that either promote or limit T cell inflation from both the virus and host perspective. These factors mostly operate by influencing the amount of available antigen or by affecting the T cell pool that is able to respond to the antigen. Furthermore, we will discuss the recent use of CMV-based vaccines in pre-clinical experimental settings, where these vectors have shown promising results by inducing prolonged effector memory T cell responses to foreign-introduced epitopes and thereby provided protection from subsequent virus or tumour challenges.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
17
|
Welten SPM, Sandu I, Baumann NS, Oxenius A. Memory CD8 T cell inflation vs tissue-resident memory T cells: Same patrollers, same controllers? Immunol Rev 2019; 283:161-175. [PMID: 29664565 DOI: 10.1111/imr.12649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The induction of long-lived populations of memory T cells residing in peripheral tissues is of considerable interest for T cell-based vaccines, as they can execute immediate effector functions and thus provide protection in case of pathogen encounter at mucosal and barrier sites. Cytomegalovirus (CMV)-based vaccines support the induction and accumulation of a large population of effector memory CD8 T cells in peripheral tissues, in a process called memory inflation. Tissue-resident memory (TRM ) T cells, induced by various infections and vaccination regimens, constitute another subset of memory cells that take long-term residence in peripheral tissues. Both memory T cell subsets have evoked substantial interest in exploitation for vaccine purposes. However, a direct comparison between these two peripheral tissue-localizing memory T cell subsets with respect to their short- and long-term ability to provide protection against heterologous challenge is pending. Here, we discuss communalities and differences between TRM and inflationary CD8 T cells with respect to their development, maintenance, function, and protective capacity. In addition, we discuss differences and similarities between the transcriptional profiles of TRM and inflationary T cells, supporting the notion that they are distinct memory T cell populations.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Morabito KM, Ruckwardt TJ, Bar-Haim E, Nair D, Moin SM, Redwood AJ, Price DA, Graham BS. Memory Inflation Drives Tissue-Resident Memory CD8 + T Cell Maintenance in the Lung After Intranasal Vaccination With Murine Cytomegalovirus. Front Immunol 2018; 9:1861. [PMID: 30154789 PMCID: PMC6102355 DOI: 10.3389/fimmu.2018.01861] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Tissue-resident memory T (TRM) cells provide first-line defense against invading pathogens encountered at barrier sites. In the lungs, TRM cells protect against respiratory infections, but wane more quickly than TRM cells in other tissues. This lack of a sustained TRM population in the lung parenchyma explains, at least in part, why infections with some pathogens, such as influenza virus and respiratory syncytial virus (RSV), recur throughout life. Intranasal (IN) vaccination with a murine cytomegalovirus (MCMV) vector expressing the M protein of RSV (MCMV-M) has been shown to elicit robust populations of CD8+ TRM cells that accumulate over time and mediate early viral clearance. To extend this finding, we compared the inflationary CD8+ T cell population elicited by MCMV-M vaccination with a conventional CD8+ T cell population elicited by an MCMV vector expressing the M2 protein of RSV (MCMV-M2). Vaccination with MCMV-M2 induced a population of M2-specific CD8+ TRM cells that waned rapidly, akin to the M2-specific CD8+ TRM cell population elicited by infection with RSV. In contrast to the natural immunodominance profile, however, coadministration of MCMV-M and MCMV-M2 did not suppress the M-specific CD8+ T cell response, suggesting that progressive expansion was driven by continuous antigen presentation, irrespective of the competitive or regulatory effects of M2-specific CD8+ T cells. Moreover, effective viral clearance mediated by M-specific CD8+ TRM cells was not affected by the coinduction of M2-specific CD8+ T cells. These data show that memory inflation is required for the maintenance of CD8+ TRM cells in the lungs after IN vaccination with MCMV.
Collapse
Affiliation(s)
- Kaitlyn M Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Tracy J Ruckwardt
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Erez Bar-Haim
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Deepika Nair
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Syed M Moin
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Cicin-Sain L, Arens R. Exhaustion and Inflation at Antipodes of T Cell Responses to Chronic Virus Infection. Trends Microbiol 2017; 26:498-509. [PMID: 29249600 DOI: 10.1016/j.tim.2017.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Viruses that have coevolved with their host establish chronic infections that are well tolerated by the host. Other viruses, that are partly adapted to their host, may induce chronic infections where persistent replication and viral antigen expression occur. The former induce highly functional and resilient CD8T cell responses called memory inflation. The latter induce dysfunctional and exhausted responses. The reasons compelling T cell responses towards inflationary or exhausted responses are only partly understood. In this review we compare the two conditions and describe mechanistic similarities and differences. We also provide a list of potential reasons why exhaustion or inflation occur in different virus infections. We propose that T cell-mediated transcriptional repression of viral gene expression provides a critical feature of inflation that allows peaceful virus and host coexistence. The virus is controlled, but its genome is not eradicated. If this mechanism is not available, as in the case of RNA viruses, the virus and the host are compelled to an arms race. If virus proliferation and spread proceed uncontrolled for too long, T cells are forced to strike a balance between viral control and tissue destruction, losing antiviral potency and facilitating virus persistence.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Virology, Medical School Hannover, Hannover, Germany; German Center for Infection Research (DZIF), Partner site Hannover/Braunschweig, Germany.
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Treat BR, Bidula SM, Ramachandran S, St Leger AJ, Hendricks RL, Kinchington PR. Influence of an immunodominant herpes simplex virus type 1 CD8+ T cell epitope on the target hierarchy and function of subdominant CD8+ T cells. PLoS Pathog 2017; 13:e1006732. [PMID: 29206240 PMCID: PMC5736228 DOI: 10.1371/journal.ppat.1006732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/19/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) latency in sensory ganglia such as trigeminal ganglia (TG) is associated with a persistent immune infiltrate that includes effector memory CD8+ T cells that can influence HSV-1 reactivation. In C57BL/6 mice, HSV-1 induces a highly skewed CD8+ T cell repertoire, in which half of CD8+ T cells (gB-CD8s) recognize a single epitope on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize, in varying proportions, 19 subdominant epitopes on 12 viral proteins. The gB-CD8s remain functional in TG throughout latency, while non-gB-CD8s exhibit varying degrees of functional compromise. To understand how dominance hierarchies relate to CD8+ T cell function during latency, we characterized the TG-associated CD8+ T cells following corneal infection with a recombinant HSV-1 lacking the immunodominant gB498-505 epitope (S1L). S1L induced a numerically equivalent CD8+ T cell infiltrate in the TG that was HSV-specific, but lacked specificity for gB498-505. Instead, there was a general increase of non-gB-CD8s with specific subdominant epitopes arising to codominance. In a latent S1L infection, non-gB-CD8s in the TG showed a hierarchy targeting different epitopes at latency compared to at acute times, and these cells retained an increased functionality at latency. In a latent S1L infection, these non-gB-CD8s also display an equivalent ability to block HSV reactivation in ex vivo ganglionic cultures compared to TG infected with wild type HSV-1. These data indicate that loss of the immunodominant gB498-505 epitope alters the dominance hierarchy and reduces functional compromise of CD8+ T cells specific for subdominant HSV-1 epitopes during viral latency.
Collapse
Affiliation(s)
- Benjamin R. Treat
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah M. Bidula
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srividya Ramachandran
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anthony J. St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Immunology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert L. Hendricks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - Paul R. Kinchington
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|