1
|
Sharma P, Arora A. Basic Understanding of Liver Transplant Immunology. J Clin Exp Hepatol 2023; 13:1091-1102. [PMID: 37975047 PMCID: PMC10643508 DOI: 10.1016/j.jceh.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/14/2023] [Indexed: 11/19/2023] Open
Abstract
The liver is a specialized organ and plays an important role in our immune system. The liver constitutes parenchymal cells which are hepatocytes and cholangiocytes (60-80%) and non-parenchymal cells like liver sinusoidal endothelial cells (LSECs), hepatic satellite/Ito cells, Kupffer cells, neutrophils, mononuclear cells, T and B lymphocytes (conventional and non-conventional), natural killer cells, and natural killer T (NKT) cells. The liver mounts a rapid and strong immune response, under unfavorable conditions and acts as an immune tolerance to a variety of non-pathogenic antigens. This delicate and dynamic interaction between different kinds of immune cells in the liver maintains a balance between immune screening and immune tolerance. The liver allografts are privileged immunologically; however, allograft rejection is not uncommon and is classified as cell or antibody-mediated. Advancements in transplant immunology help in the prevention of allografts rejection by immune reactions of the host thus leading to better graft and host survival. Fewer patients may not require immunosuppression due to systemic donor-specific T-cell tolerance. The liver tolerance mechanism is poorly studied, and LSEC and unconventional lymphocytes play an important role that dampens T cell response either by inducing apoptosis of cells or inhibiting co-stimulatory pathways. Newer cell-based therapy based on Treg, dendritic cells, and mesenchymal stromal cells will probably change the future of immunosuppression. Various invasive and non-invasive biomarkers and artificial intelligence have also been investigated to predict graft survival, post-transplant complications, and immunotolerance in the future.
Collapse
Affiliation(s)
- Praveen Sharma
- Department of Gastroenterology, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil Arora
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
2
|
Du X, Li M, Huan C, Lv G. Dendritic cells in liver transplantation immune response. Front Cell Dev Biol 2023; 11:1277743. [PMID: 37900282 PMCID: PMC10606587 DOI: 10.3389/fcell.2023.1277743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs), they are considered one of the key regulatory factors in the liver immune system. There is currently much interest in modulating DC function to improve transplant immune response. In liver transplantation, DCs participate in both the promotion and inhibition of the alloreponse by adopting different phenotypes and function. Thus, in this review, we discussed the origin, maturation, migration and pathological effects of several DC subsets, including the conventional DC (cDC), plasmacytoid DC (pDC) and monocyte-derived DC (Mo-DC) in liver transplantation, and we summarized the roles of these DC subsets in liver transplant rejection and tolerance. In addition, we also outlined the latest progress in DC-based related treatment regimens. Overall, our discussion provides a beneficial resource for better understanding the biology of DCs and their manipulation to improve the immune adaptability of patients in transplant status.
Collapse
Affiliation(s)
- Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Kahan R, Cray PL, Abraham N, Gao Q, Hartwig MG, Pollara JJ, Barbas AS. Sterile inflammation in liver transplantation. Front Med (Lausanne) 2023; 10:1223224. [PMID: 37636574 PMCID: PMC10449546 DOI: 10.3389/fmed.2023.1223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Sterile inflammation is the immune response to damage-associated molecular patterns (DAMPs) released during cell death in the absence of foreign pathogens. In the setting of solid organ transplantation, ischemia-reperfusion injury results in mitochondria-mediated production of reactive oxygen and nitrogen species that are a major cause of uncontrolled cell death and release of various DAMPs from the graft tissue. When properly regulated, the immune response initiated by DAMP-sensing serves as means of damage control and is necessary for initiation of recovery pathways and re-establishment of homeostasis. In contrast, a dysregulated or overt sterile inflammatory response can inadvertently lead to further injury through recruitment of immune cells, innate immune cell activation, and sensitization of the adaptive immune system. In liver transplantation, sterile inflammation may manifest as early graft dysfunction, acute graft failure, or increased risk of immunosuppression-resistant rejection. Understanding the mechanisms of the development of sterile inflammation in the setting of liver transplantation is crucial for finding reliable biomarkers that predict graft function, and for development of therapeutic approaches to improve long-term transplant outcomes. Here, we discuss the recent advances that have been made to elucidate the early signs of sterile inflammation and extent of damage from it. We also discuss new therapeutics that may be effective in quelling the detrimental effects of sterile inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew S. Barbas
- Duke Ex-Vivo Organ Lab (DEVOL)—Division of Abdominal Transplant Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Chen W, Chen F, Gong M, Jin Z, Shu L, Wang ZW, Wang J. Comprehensive analysis of lncRNA-mediated ceRNA networkfor hepatocellular carcinoma. Front Oncol 2022; 12:1042928. [PMID: 36338699 PMCID: PMC9634570 DOI: 10.3389/fonc.2022.1042928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a high-burden cancer. The molecular mechanism of HCC has not been fully elucidated. Notably, current research has revealed a significant function for long non-coding RNAs (lncRNAs) in the prognosis of patients with HCC. Here, this study aims to construct a regulated lncRNA-mediated ceRNA network and find biological targets for the treatment of HCC. Methods Based on the RNA expression patterns from the TCGA, we did an analysis to determine which genes were expressed differently between liver tumor tissues and noncancerous tissues. Then, using bioinformatic tools, we built a lncRNA-miRNA-mRNA ceRNA network and used GO and KEGG functional analyses on the DEmRNAs connected to ceRNA networks. The main lncRNAs in the subnetwork were chosen, and we next looked at the relationships between these lncRNAs and the clinical characteristics of patients with HCC. The prognosis-related genes and immune cells were identified using Kaplan-Meier and Cox proportional hazard analyses, and CIBERSORT was utilized to separate the 22 immune cell types. CCK8 assay was performed to measure cell viability in HCC cells after lncRNA HOTTIP modulation. Results Differentially expressed mRNA and lncRNAs in HCC and paracancerous tissues were identified. There are 245 lncRNAs, 126 miRNAs, and 1980 mRNAs that are expressed differently in liver tumour tissues than in noncancerous cells. Function analysis showed that mRNAs in ceRNA network were significantly enriched in G1/S transition of mototiv cell cycle, positive regulation of cell cycle process, hepatocellular carcinoma, and cancer related pathways. CD8 T cells and T follicular helper cells had a favourable link with a 0.65 correlation coefficient. Additionally, there was a strong correlation between Eosinophils, activated NK cells, and B memory cells. Strikingly, depletion of lncRNA HOTTIP inhibited viability of HCC cells. In addition, miR-205 upregulation suppressed viability of HCC cells, while miR-205 downregulation repressed viability of HCC cells. Notably, miR-205 depletion rescued HOTTIP depletion-mediated suppression of cell viability in HCC. Conclusion A ceRNA network was created by examining the lncRNA, miRNA, and mRNA expression profiles of liver tumours from the TCGA database. LncRNA HOTTIP promoted cell viability via inhibition of miR-205 in HCC cells.
Collapse
Affiliation(s)
- Weiqing Chen
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Feihua Chen
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mouchun Gong
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhaoqing Jin
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Zhi-wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianjiang Wang, ; Zhi-wei Wang,
| | - Jianjiang Wang
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jianjiang Wang, ; Zhi-wei Wang,
| |
Collapse
|
5
|
Tranah TH, Kronsten VT, Shawcross DL. Implications and Management of Cirrhosis-Associated Immune Dysfunction Before and After Liver Transplantation. Liver Transpl 2022; 28:700-716. [PMID: 34738724 DOI: 10.1002/lt.26353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Abstract
Cirrhosis-associated immune dysfunction (CAID) describes a panacea of innate and adaptive deficits that result from the sequelae of cirrhotic portal hypertension that is similar in its manifestations regardless of etiology of chronic liver injury. CAID is associated with synchronous observations of dysregulated priming of innate immune effector cells that demonstrate a proinflammatory phenotype but are functionally impaired and unable to adequately prevent invading pathogens. CAID is mainly driven by gut-barrier dysfunction and is associated with deficits of microbial compartmentalization and homeostasis that lead to tonic activation, systemic inflammation, and exhaustion of innate-immune cells. CAID leads to a high frequency of bacterial and fungal infections in patients with cirrhosis that are often associated with acute decompensation of chronic liver disease and acute-on-chronic liver failure and carry a high mortality rate. Understanding the deficits of mucosal and systemic immunity in the context of chronic liver disease is essential to improving care for patients with cirrhosis, preventing precipitants of acute decompensation of cirrhosis, and improving morbidity and survival. In this review, we summarize the detailed dynamic immunological perturbations associated with advanced chronic liver disease and highlight the importance of recognizing immune dysregulation as a sequela of cirrhosis. Furthermore, we address the role of screening, prevention, and early treatment of infections in cirrhosis in improving patient outcomes in transplant and nontransplant settings.
Collapse
Affiliation(s)
- Thomas H Tranah
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| | - Victoria T Kronsten
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| | - Debbie L Shawcross
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Liver Studies, King's College Hospital National Health Service Foundation Trust, London, UK
| |
Collapse
|
6
|
Mori F, Giovannini M, Barni S, Trapani S, Indolfi G. De Novo Food Allergy in Pediatric Recipients of Liver Transplant. J Pediatr Gastroenterol Nutr 2022; 74:175-179. [PMID: 34724446 DOI: 10.1097/mpg.0000000000003344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ABSTRACT Allergic and atopic conditions, including food allergy, asthma, eczema and eosinophilic disease of the gastrointestinal tract after liver transplant in previously non-allergic children have been increasingly described. After a liver transplant, children can present mild to severe reactions to food allergens (ie, from urticaria-angioedema to life-threatening anaphylactic reactions). De novo post-transplant food allergy may become clinically evident in children who undergo liver transplant between a few months and a few years of transplant. The present narrative review aims to describe the spectrum of de novo post-transplant food allergy development, the current theories of pathogenesis, risk factors and to suggest possible clinical management strategies.
Collapse
Affiliation(s)
- Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital
- Department of Health Sciences, University of Florence
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital
| | | | - Giuseppe Indolfi
- Department NEUROFARBA, University of Florence and Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
7
|
Satilmis B, Sahin TT, Cicek E, Akbulut S, Yilmaz S. Hepatocellular Carcinoma Tumor Microenvironment and Its Implications in Terms of Anti-tumor Immunity: Future Perspectives for New Therapeutics. J Gastrointest Cancer 2021; 52:1198-1205. [PMID: 34625923 DOI: 10.1007/s12029-021-00725-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Hepatocellular cancer is an insidious tumor that is often diagnosed in a later stage of life. The tumor microenvironment is the key to tumorigenesis and progression. Many cellular and non-cellular components orchestrate the intricate process of hepatocarcinogenesis. The most important feature of hepatocellular cancer is the immune evasion process. The present review aims to summarize the key components of the tumor microenvironment in the immune evasion process. METHODS Google Scholar and PubMed databases have been searched for the mesh terms "Hepatocellular carcinoma" or "Liver Cancer" and "microenvironment." The articles were reviewed and the components of the tumor microenvironment were summarized. RESULTS The tumor microenvironment is composed of tumor cells and non-tumoral stromal and immune cells. HCC tumor microenvironment supports aggressive tumor behavior, provides immune evasion, and is an obstacle for current immunotherapeutic strategies. The components of the tumor microenvironment are intratumoral macrophages (tumor-associated macrophages (TAM)), bone marrow-derived suppressor cells, tumor-associated neutrophils (TAN), fibroblasts in the tumor microenvironment, and the activated hepatic stellate cells. CONCLUSION There are intricate mechanisms that drive hepatocarcinogenesis. The tumor microenvironment is at the center of all the complex and diverse mechanisms. Effective and multistep immunotherapies should be developed to target different components of the tumor microenvironment.
Collapse
Affiliation(s)
- Basri Satilmis
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey
| | - Tevfik Tolga Sahin
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey.
| | - Egemen Cicek
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey
| | - Sami Akbulut
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey
| | - Sezai Yilmaz
- Liver Transplant Institute and Faculty of Medicine Department of Surgery, Inonu University, Battalgazi, 44000, Malatya, Turkey
| |
Collapse
|
8
|
Nakano R, Tran LM, Geller DA, Macedo C, Metes DM, Thomson AW. Dendritic Cell-Mediated Regulation of Liver Ischemia-Reperfusion Injury and Liver Transplant Rejection. Front Immunol 2021; 12:705465. [PMID: 34262574 PMCID: PMC8273384 DOI: 10.3389/fimmu.2021.705465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Liver allograft recipients are more likely to develop transplantation tolerance than those that receive other types of organ graft. Experimental studies suggest that immune cells and other non-parenchymal cells in the unique liver microenvironment play critical roles in promoting liver tolerogenicity. Of these, liver interstitial dendritic cells (DCs) are heterogeneous, innate immune cells that appear to play pivotal roles in the instigation, integration and regulation of inflammatory responses after liver transplantation. Interstitial liver DCs (recruited in situ or derived from circulating precursors) have been implicated in regulation of both ischemia/reperfusion injury (IRI) and anti-donor immunity. Thus, livers transplanted from mice constitutively lacking DCs into syngeneic, wild-type recipients, display increased tissue injury, indicating a protective role of liver-resident donor DCs against transplant IRI. Also, donor DC depletion before transplant prevents mouse spontaneous liver allograft tolerance across major histocompatibility complex (MHC) barriers. On the other hand, mouse liver graft-infiltrating host DCs that acquire donor MHC antigen via "cross-dressing", regulate anti-donor T cell reactivity in association with exhaustion of graft-infiltrating T cells and promote allograft tolerance. In an early phase clinical trial, infusion of donor-derived regulatory DCs (DCreg) before living donor liver transplantation can induce alterations in host T cell populations that may be conducive to attenuation of anti-donor immune reactivity. We discuss the role of DCs in regulation of warm and liver transplant IRI and the induction of liver allograft tolerance. We also address design of cell therapies using DCreg to reduce the immunosuppressive drug burden and promote clinical liver allograft tolerance.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lillian M. Tran
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David A. Geller
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Camila Macedo
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Diana M. Metes
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Feng M, Zhou S, Yu Y, Su Q, Li X, Lin W. Regulation of the Migration of Distinct Dendritic Cell Subsets. Front Cell Dev Biol 2021; 9:635221. [PMID: 33681216 PMCID: PMC7933215 DOI: 10.3389/fcell.2021.635221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), a class of antigen-presenting cells, are widely present in tissues and apparatuses of the body, and their ability to migrate is key for the initiation of immune activation and tolerogenic immune responses. The importance of DCs migration for their differentiation, phenotypic states, and immunologic functions has attracted widespread attention. In this review, we discussed and compared the chemokines, membrane molecules, and migration patterns of conventional DCs, plasmocytoid DCs, and recently proposed DC subgroups. We also review the promoters and inhibitors that affect DCs migration, including the hypoxia microenvironment, tumor microenvironment, inflammatory factors, and pathogenic microorganisms. Further understanding of the migration mechanisms and regulatory factors of DC subgroups provides new insights for the treatment of diseases, such as infection, tumors, and vaccine preparation.
Collapse
Affiliation(s)
- Meng Feng
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuping Zhou
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Yu
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghong Su
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaofan Li
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Lin
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol 2020; 17:719-739. [PMID: 32759983 DOI: 10.1038/s41575-020-0334-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
In the past 40 years, liver transplantation has evolved from a high-risk procedure to one that offers high success rates for reversal of liver dysfunction and excellent patient and graft survival. The liver is the most tolerogenic of transplanted organs; indeed, immunosuppressive therapy can be completely withdrawn without rejection of the graft in carefully selected, stable long-term liver recipients. However, in other recipients, chronic allograft injury, late graft failure and the adverse effects of anti-rejection therapy remain important obstacles to improved success. The liver has a unique composition of parenchymal and immune cells that regulate innate and adaptive immunity and that can promote antigen-specific tolerance. Although the mechanisms underlying liver transplant tolerance are not well understood, important insights have been gained into how the local microenvironment, hepatic immune cells and specific molecular pathways can promote donor-specific tolerance. These insights provide a basis for the identification of potential clinical biomarkers that might correlate with tolerance or rejection and for the development of novel therapeutic targets. Innovative approaches aimed at promoting immunosuppressive drug minimization or withdrawal include the adoptive transfer of donor-derived or recipient-derived regulatory immune cells to promote liver transplant tolerance. In this Review, we summarize and discuss these developments and their implications for liver transplantation.
Collapse
Affiliation(s)
- Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Julien Vionnet
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK.,Transplantation Center, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK
| |
Collapse
|
11
|
Jiang Y, Que W, Zhu P, Li XK. The Role of Diverse Liver Cells in Liver Transplantation Tolerance. Front Immunol 2020; 11:1203. [PMID: 32595648 PMCID: PMC7304488 DOI: 10.3389/fimmu.2020.01203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the ideal treatment approach for a variety of end-stage liver diseases. However, life-long, systemic immunosuppressive treatment after transplantation is required to prevent rejection and graft loss, which is associated with severe side effects, although liver allograft is considered more tolerogenic. Therefore, understanding the mechanism underlying the unique immunologically privileged liver organ is valuable for transplantation management and autoimmune disease treatment. The unique hepatic acinus anatomy and a complex cellular network constitute the immunosuppressive hepatic microenvironment, which are responsible for the tolerogenic properties of the liver. The hepatic microenvironment contains a variety of hepatic-resident immobile non-professional antigen-presenting cells, including hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, that are insufficient to optimally prime T cells locally and lead to the removal of alloreactive T cells due to the low expression of major histocompatibility complex (MHC) molecules, costimulatory molecules and proinflammatory cytokines but a rather high expression of coinhibitory molecules and anti-inflammatory cytokines. Hepatic dendritic cells (DCs) are generally immature and less immunogenic than splenic DCs and are also ineffective in priming naïve allogeneic T cells via the direct recognition pathway in recipient secondary lymphoid organs. Although natural killer cells and natural killer T cells are reportedly associated with liver tolerance, their roles in liver transplantation are multifaceted and need to be further clarified. Under these circumstances, T cells are prone to clonal deletion, clonal anergy and exhaustion, eventually leading to tolerance. Other proposed liver tolerance mechanisms, such as soluble donor MHC class I molecules, passenger leukocytes theory and a high-load antigen effect, have also been addressed. We herein comprehensively review the current evidence implicating the tolerogenic properties of diverse liver cells in liver transplantation tolerance.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
12
|
Sendra L, Herrero MJ, Montalvá EM, Noguera I, Orbis F, Díaz A, Fernández-Delgado R, López-Andújar R, Aliño SF. Efficacy of interleukin 10 gene hydrofection in pig liver vascular isolated 'in vivo' by surgical procedure with interest in liver transplantation. PLoS One 2019; 14:e0224568. [PMID: 31689315 PMCID: PMC6830756 DOI: 10.1371/journal.pone.0224568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022] Open
Abstract
Aim Liver transplantation is the only curative strategy for final stage liver diseases. Despite the great advances achieved during the last 20 years, the recipient immune response after transplantation is not entirely controlled. This results in high rates of acute cell rejection and, approximately, 10% of early mortality. Therapeutic treatment could be improved by efficiently transfecting genes that encode natural immunosuppressant proteins, employing safe procedures that could be transferred to clinical setting. In this sense, interleukin 10 plays a central role in immune tolerance response by acting at different levels. Methods hIL10 gene was hydrofected by retrograde hydrodynamic injection in pig liver with complete vascular exclusion mediated by an ‘in vivo’ surgical procedure. Levels of IL10 DNA, RNA and protein were determined within liver tissue 1 and 10 days after the injection and, more frequently, also the interleukin-10 protein in peripheral blood. Results The procedure was safe for the animals and neither hemodynamic parameters nor liver function determinations showed relevant alterations. The hIL10 hydrofection in watertight liver mediated efficient gene transfer and this was transcribed and translated to protein, achieving up to 110 pg/ml of IL10 in peripheral blood. This value is close to that considered able to reduce the activity of TNFα by half (IL10 IC50 for TNFα = 124 pg/ml). Conclusions Results of this work suggest that IL10 liver hydrofection with vascular exclusion in vivo is a safe and transferable procedure that mediates plasma protein levels with potential clinical interest in immune modulation after transplantation.
Collapse
Affiliation(s)
- Luis Sendra
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Gene Therapy Unit, Department of Pharmacology, Universitat de Valencia, Valencia, Spain
| | - María José Herrero
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Gene Therapy Unit, Department of Pharmacology, Universitat de Valencia, Valencia, Spain
| | - Eva María Montalvá
- Unit of Experimental Hepatology and Liver Transplantation, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- HPB Surgery and Transplant Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Inmaculada Noguera
- SCSIE, Central Services of Experimental Support, Universitat de Valencia, Valencia, Spain
| | - Francisco Orbis
- HPB Surgery and Transplant Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Ana Díaz
- SCSIE, Central Services of Experimental Support, Universitat de Valencia, Valencia, Spain
| | - Rafael Fernández-Delgado
- Pediatrics Unit, Department of Pediatrics, Obstetrics and Gynecology, Universitat de Valencia, Valencia, Spain
| | - Rafael López-Andújar
- Unit of Experimental Hepatology and Liver Transplantation, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- HPB Surgery and Transplant Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Salvador F Aliño
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Gene Therapy Unit, Department of Pharmacology, Universitat de Valencia, Valencia, Spain
- Clinical Pharmacology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
13
|
Boor PPC, Bosma BM, Tran KTC, van der Laan LJW, Hagenaars H, IJzermans JNM, Metselaar HJ, Kwekkeboom J. Characterization of Antigen-Presenting Cell Subsets in Human Liver-Draining Lymph Nodes. Front Immunol 2019; 10:441. [PMID: 30930897 PMCID: PMC6428028 DOI: 10.3389/fimmu.2019.00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
T-cell immunity in the liver is tightly regulated to prevent chronic liver inflammation in response to antigens and toxins derived from food and intestinal bacterial flora. Since the main sites of T cell activation in response to foreign components entering solid tissues are the draining lymph nodes (LN), we aimed to study whether Antigen-Presenting Cell (APC) subsets in human liver lymph-draining LN show features that may contribute to the immunologically tolerant liver environment. Healthy liver LN, iliac LN, spleen and liver perfusates were obtained from multi-organ donors, while diseased liver LN were collected from explanted patient livers. Inguinal LN were obtained from kidney transplant recipients. Mononuclear cells were isolated from fresh tissues, and immunophenotypic and functional characteristics of APC subsets were studied using flowcytometry and in ex vivo cultures. Healthy liver-draining LN contained significantly lower relative numbers of CD1c+ conventional dendritic cells (cDC2), plasmacytoid DC (PDC), and CD14+CD163+DC-SIGN+ macrophages (MF) compared to inguinal LN. Compared to spleen, both types of LN contained low relative numbers of CD141hi cDC1. Both cDC subsets in liver LN showed a more activated/mature immunophenotype than those in inguinal LN, iliacal LN, spleen and liver tissue. Despite their more mature status, cDC2 isolated from hepatic LN displayed similar cytokine production capacity (IL-10, IL-12, and IL-6) and allogeneic T cell stimulatory capacity as their counterparts from spleen. Liver LN from patients with inflammatory liver diseases showed a further reduction of cDC1, but had increased relative numbers of PDC and MF. In steady state conditions human liver LN contain relatively low numbers of cDC2, PDC, and macrophages, and relative numbers of cDC1 in liver LN decline during liver inflammation. The paucity of cDC in liver LN may contribute to immune tolerance in the liver environment.
Collapse
Affiliation(s)
- Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Brenda M Bosma
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Khe T C Tran
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Hanneke Hagenaars
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
14
|
Huang H, Lu Y, Zhou T, Gu G, Xia Q. Innate Immune Cells in Immune Tolerance After Liver Transplantation. Front Immunol 2018; 9:2401. [PMID: 30473690 PMCID: PMC6237933 DOI: 10.3389/fimmu.2018.02401] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Currently, liver transplantation is the most effective treatment for end-stage liver disease. Immunosuppressive agents are required to be taken after the operations, which have significantly reduced rejection rates and improved the short-term (<1 year) survival rates. However, post-transplant complications related to the immunosuppressive therapy have led to the development of new protocols aimed at protecting renal function and preventing de novo cancer and dysmetabolic syndrome. Donor specific immune tolerance, which means the mature immune systems of recipients will not attack the grafts under the conditions without any immunosuppression therapies, is considered the optimal state after liver transplantation. There have been studies that have shown that some patients can reach this immune tolerance state after liver transplantation. The intrahepatic immune system is quite different from that in other solid organs, especially the innate immune system. It contains a variety of liver specific cells, such as liver-derived dendritic cells, Kupffer cells, liver sinusoidal endothelial cells, liver-derived natural killer (NK) cells, natural killer T (NKT) cells, and so on. Depending on their specific structures and functions, these intrahepatic innate immune cells play important roles in the development of intrahepatic immune tolerance. In this article, in order to have a deeper understanding of the tolerogenic functions of liver, we summarized the molecular mechanisms of immune tolerance induced by intrahepatic innate immune cells after liver transplantation.
Collapse
Affiliation(s)
- Hongting Huang
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yefeng Lu
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tao Zhou
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guangxiang Gu
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Xia
- Department of Hepatic Surgery and Liver Transplantation Center, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
15
|
Marcus N, Amir AZ, Grunebaum E, Dipchand A, Hebert D, Ng VL, Walters T, Avitzur Y. De Novo Allergy and Immune-Mediated Disorders Following Solid-Organ Transplantation-Prevalence, Natural History, and Risk Factors. J Pediatr 2018; 196:154-160.e2. [PMID: 29395171 DOI: 10.1016/j.jpeds.2017.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 11/15/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To describe the prevalence, natural course, outcome, and risk factors of post-transplant de novo allergy and autoimmunity. STUDY DESIGN A cross-sectional, cohort study of all children (<18 years) who underwent a solid-organ transplantation, between 2000 and 2012, in a single transplant center, with a follow-up period of 6 months or more post-transplant and without history of allergy or immune-mediated disorder pretransplant. RESULTS A total of 626 eligible patients were screened, and 273 patients (160 males; 59%) met the inclusion criteria; this included 111 liver, 103 heart, 52 kidney, and 7 multivisceral recipients. Patients were followed for a median period of 3.6 years. A total of 92 (34%) patients (42 males, 46%) developed allergy or autoimmune disease after transplantation, with a high prevalence among liver (41%), heart (40%), and multivisceral (57%) transplant recipients compared with kidney recipients (4%; P < .001). Post-transplant allergies included eczema (n = 44), food allergy (22), eosinophilic gastrointestinal disease (11), and asthma (28). Autoimmunity occurred in 18 (6.6%) patients, presenting mainly as autoimmune cytopenia (n = 10). In a multivariate analysis, female sex, young age at transplantation, family history of allergy, Epstein-Barr virus infection, and elevated eosinophil count >6 months post-transplantation were associated with an increased risk for allergy or autoimmunity. Two patients (0.7%) died from autoimmune hemolytic anemia and hemophagocytic lymphohistiocytosis, and 52 episodes of post-transplant allergy, autoimmunity, and immune-mediated disorders (37%) did not improve over time. CONCLUSIONS Allergy and autoimmunity are common in pediatric liver, heart, and multivisceral transplant recipients and pose a significant health burden. Further studies are required to clarify the mechanisms behind this post-transplant immune dysregulation.
Collapse
Affiliation(s)
- Nufar Marcus
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Kipper Institute for Allergy and Immunology, Schneider Children's Medical Center of Israel, University of Tel-Aviv, Tel-Aviv, Israel
| | - Achiya Z Amir
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; The Pediatric Gastroenterology, Hepatology & Nutrition Clinic, Tel-Aviv Medical Center, University of Tel-Aviv, Tel-Aviv, Israel
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Anne Dipchand
- Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Diane Hebert
- Division of Nephrology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vicky L Ng
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Walters
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Ono Y, Perez-Gutierrez A, Nakao T, Dai H, Camirand G, Yoshida O, Yokota S, Stolz DB, Ross MA, Morelli AE, Geller DA, Thomson AW. Graft-infiltrating PD-L1 hi cross-dressed dendritic cells regulate antidonor T cell responses in mouse liver transplant tolerance. Hepatology 2018; 67:1499-1515. [PMID: 28921638 PMCID: PMC5856603 DOI: 10.1002/hep.29529] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 01/07/2023]
Abstract
UNLABELLED Although a key role of cross-dressing has been established in immunity to viral infection and more recently in the instigation of transplant rejection, its role in tolerance is unclear. We investigated the role of intragraft dendritic cells (DCs) and cross-dressing in mouse major histocompatibility complex (MHC)-mismatched liver transplant tolerance that occurs without therapeutic immunosuppression. Although donor interstitial DCs diminished rapidly after transplantation, they were replaced in the liver by host DCs that peaked on postoperative day (POD) 7 and persisted indefinitely. Approximately 60% of these recipient DCs displayed donor MHC class I, indicating cross-dressing. By contrast, only a very minor fraction (0%-2%) of cross-dressed DCs (CD-DCs) was evident in the spleen. CD-DCs sorted from liver grafts expressed much higher levels of T cell inhibitory programed death ligand 1 (PD-L1) and high levels of interleukin-10 compared with non-CD-DCs (nCD-DCs) isolated from the graft. Concomitantly, high incidences of programed death protein 1 (PD-1)hi T cell immunoglobulin and mucin domain containing 3 (TIM-3)+ exhausted graft-infiltrating CD8+ T cells were observed. Unlike nCD-DCs, the CD-DCs failed to stimulate proliferation of allogeneic T cells but markedly suppressed antidonor host T cell proliferation. CD-DCs were much less evident in allografts from DNAX-activating protein of 12 kDa (DAP12)-/- donors that were rejected acutely. CONCLUSION These findings suggest that graft-infiltrating PD-L1hi CD-DCs may play a key role in the regulation of alloimmunity and in the induction of liver transplant tolerance. (Hepatology 2018;67:1499-1515).
Collapse
Affiliation(s)
- Yoshihiro Ono
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angelica Perez-Gutierrez
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Toshimasa Nakao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helong Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geoffrey Camirand
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Osamu Yoshida
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shinichiro Yokota
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donna Beer Stolz
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark A. Ross
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adrian E. Morelli
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Corresponding author: Angus W. Thomson, PhD DSc, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392, Fax: (412)-624-1172,
| |
Collapse
|
17
|
Li C, Guo H, Dai F, Huo X, Li Z, Zhang S, Fu R, He Z, Gu M, Du X, Chen Z. SREBP‑2 expression pattern contributes to susceptibility of Mongolian gerbils to hypercholesterolemia. Mol Med Rep 2018; 17:3288-3296. [PMID: 29257228 DOI: 10.3892/mmr.2017.8195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/17/2017] [Indexed: 11/05/2022] Open
Abstract
Gerbils are susceptible to dietary cholesterol and prone to hypercholesterolemia and non‑alcoholic fatty liver disease. The present study aimed to explore the role of sterol regulatory element binding protein (SREBP)‑2 and 3‑hydroxy‑3‑methylglutaryl CoA reductase (HMGCR) in hypercholesterolemia susceptibility in gerbils. Male gerbils were fed the normal diet or a high‑fat diet (HFD) for 2 weeks, or the HFD for 2 weeks followed with the normal diet for an additional 2 weeks. Serum lipid levels and hepatic fat deposition were measured, and mRNA and protein levels of SREBP‑2 and HMGCR were evaluated by quantitative polymerase chain reaction and Western blotting. In addition, the role of SREBP‑2 function in cholesterol synthesis from the gerbil primary hepatic cells was also investigated by modulation of SERBP‑2 expression via the transfection of SREBP‑2 overexpression and knockdown plasmids, respectively. The data demonstrated that the total cholesterol and low‑density lipoprotein cholesterol levels in the gerbil serum samples were rapidly and significantly elevated in response to HFD. In addition, the effect of the HFD was rapidly attenuated in the gerbils following a return to the normal diet. HMGCR expression and activation were not altered by dietary cholesterol consumption in the livers from the gerbils in model or recovery groups. HMGCR expression and activation were effectively regulated in cultured hepatic cells from the gerbils. These results indicated that the activation of SREBP‑2 to HMGCR was not terminated in gerbil livers during cholesterol intake. Therefore, stable SREBP‑2 expression contributes to the susceptibility of gerbils to hypercholesterolemia.
Collapse
Affiliation(s)
- Changlong Li
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Honggang Guo
- Zhejiang Center of Laboratory Animals, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Fangwei Dai
- Zhejiang Center of Laboratory Animals, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Xueyun Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Zhenkun Li
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Shuangyue Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, P.R. China
| | - Zhengming He
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing 100050, P.R. China
| | - Meng Gu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaoyan Du
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Zhenwen Chen
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
18
|
Chan CC, Lai CW, Wu CJ, Chen LC, Tao MH, Kuo ML. Liver-Specific Allergen Gene Transfer by Adeno-Associated Virus Suppresses Allergic Airway Inflammation in Mice. Hum Gene Ther 2017; 27:631-42. [PMID: 27178525 DOI: 10.1089/hum.2015.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, eosinophilic infiltration, and elevated IgE production. Various novel strategies for managing asthma have been explored, such as DNA vaccines, T-cell peptides, and allergen-specific immunotherapy. A principal goal of most immunotherapeutic approaches is active and long-term allergen-specific tolerance. Liver-specific gene transfer using adeno-associated virus (AAV) has been shown to favorably induce tolerogenic responses to therapeutic products in various experimental models. AAV8 has strong liver tropism and induces immune tolerance in mice. The present study aimed to determine whether hepatocyte-specific allergen expression by pseudotyped AAV2/8 alleviates asthmatic symptoms in ovalbumin (OVA)-sensitized mice. Mice were intravenously injected with AAV2/8 vector carrying membrane-bound OVA transgene under transcriptional control of a hepatocyte-specific alpha 1 antitrypsin promoter (AAV2/8-OVA) and then sensitized with OVA. AAV2/8-OVA specifically transduced the OVA transgene in the liver. Airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and Th2 cytokines were significantly suppressed in both the lungs and secondary lymphoid organs of asthmatic mice infected with AAV2/8-OVA. Significant reduction of OVA-specific antibodies was detected in the bronchoalveolar lavage fluid from AAV2/8-OVA-treated mice. Moreover, AAV2/8-OVA treatment prominently promoted the expression of Foxp3, IL-10, and TGF-β in the liver. Enhanced Foxp3 expression was also detected in the lungs of asthmatic mice after AAV2/8-OVA treatment. Taken together, these results suggest that the induction of immune tolerance by hepatic AAV gene transfer may be beneficial for modulating allergic asthma.
Collapse
Affiliation(s)
- Cheng-Chi Chan
- 1 Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan, Taiwan
| | - Chin-Wen Lai
- 2 Institute of Biomedical Sciences , Academia Sinica, Taipei, Taiwan .,3 Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University , Taoyuan, Taiwan
| | - Chia-Jen Wu
- 2 Institute of Biomedical Sciences , Academia Sinica, Taipei, Taiwan
| | - Li-Chen Chen
- 4 Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital , Taoyuan, Taiwan
| | - Mi-Hua Tao
- 2 Institute of Biomedical Sciences , Academia Sinica, Taipei, Taiwan
| | - Ming-Ling Kuo
- 1 Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan, Taiwan .,4 Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital , Taoyuan, Taiwan .,5 Department of Microbiology and Immunology, College of Medicine, Chang Gung University , Taoyuan, Taiwan .,6 Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University , Taoyuan, Taiwan
| |
Collapse
|
19
|
Moreno-Cubero E, Larrubia JR. Specific CD8 + T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis. World J Gastroenterol 2016; 22:6469-6483. [PMID: 27605882 PMCID: PMC4968127 DOI: 10.3748/wjg.v22.i28.6469] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8+ T cell response. This process involves enhancement of negative co-stimulatory molecules, such as programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 2B4, Tim-3, CD160 and LAG-3, which is linked to intrahepatic overexpression of some of the cognate ligands, such as PD-L1, on antigen presenting cells and thereby favouring a tolerogenic environment. Therapies that disrupt these negative signalling mechanisms represent promising therapeutic tools with the potential to restore reactivity of the specific CD8+ T cell response. In this review we discuss the impressive in vitro and in vivo results that have been recently achieved in HCC, CHB and CHC by blocking these negative receptors with monoclonal antibodies against these immune checkpoint modulators. The article mainly focuses on the role of CTLA-4 and PD-1 blocking monoclonal antibodies, the first ones to have reached clinical practice. The humanized monoclonal antibodies against CTLA-4 (tremelimumab and ipilimumab) and PD-1 (nivolumab and pembrolizumab) have yielded good results in testing of HCC and chronic viral hepatitis patients. Trelimumab, in particular, has shown a significant increase in the time to progression in HCC, while nivolumab has shown a remarkable effect on hepatitis C viral load reduction. The research on the role of ipilimumab, nivolumab and pembrolizumab on HCC is currently underway.
Collapse
|
20
|
Zimmermann HW, Bruns T, Weston CJ, Curbishley SM, Liaskou E, Li KK, Resheq YJ, Badenhorst PW, Adams DH. Bidirectional transendothelial migration of monocytes across hepatic sinusoidal endothelium shapes monocyte differentiation and regulates the balance between immunity and tolerance in liver. Hepatology 2016; 63:233-46. [PMID: 26473398 PMCID: PMC6016741 DOI: 10.1002/hep.28285] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED Monocytes are versatile cells that can fulfill proinflammatory and anti-inflammatory functions when recruited to the liver. Recruited monocytes differentiate into tissue macrophages and dendritic cells, which sample antigens and migrate to lymph nodes to elicit T-cell responses. The signals that determine monocyte differentiation and the role of hepatic sinusoidal endothelial cells (HSECs) in this process are poorly understood. HSECs are known to modulate T-cell activation, which led us to investigate whether transendothelial migration of monocytes across HSECs influences their phenotype and function. Subsets of blood-derived monocytes were allowed to transmigrate across human HSECs into a collagen matrix. Most migrated cells remained in the subendothelial matrix, but ~10% underwent spontaneous basal to apical transendothelial migration. The maturation, cytokine secretion, and T-cell stimulatory capacity of reverse transmigrating (RT) and subendothelial (SE) monocytes were compared. SE monocytes were mainly CD16(-) , whereas 75%-80% of RT monocytes were CD16(+) . SE monocytes derived from the CD14(++) CD16(-) subset and exhibited high phagocytic activity, whereas RT monocytes originated from CD14(++) CD16(+) and CD14(+) CD16(++) monocytes, displayed an immature dendritic cell-like phenotype (CD11c(pos) HLA-DR(pos) CD80lo CD86lo ), and expressed higher levels of chemokine (C-C motif) receptor 8. Consistent with a dendritic cell phenotype, RT monocytes secreted inflammatory cytokines and induced antigen-specific CD4(+) T-cell activation. In contrast, SE monocytes suppressed T-cell proliferation and activation and exhibited endotoxin tolerance. Transcriptome analysis underscored the functional differences between SE and RT monocytes. CONCLUSIONS Migration across HSECs shapes the subsequent fate of monocytes, giving rise to anergic macrophage-like cells in tissue and the release of immunocompetent pre-dendritic cells into the circulation.
Collapse
Affiliation(s)
- Henning W Zimmermann
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom,Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tony Bruns
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom,Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany,Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany
| | - Chris J Weston
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Stuart M Curbishley
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Evaggelia Liaskou
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Ka-Kit Li
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Yazid J Resheq
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom,Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paul W. Badenhorst
- School of Immunity and Infection, University of Birmingham, Birmingham, UK
| | - David H Adams
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Tang Y, Dong W, Wan K, Zhang L, Li C, Zhang L, Liu N. Exopolysaccharide Produced by Lactobacillus Plantarum Induces Maturation of Dendritic Cells in BALB/c Mice. PLoS One 2015; 10:e0143743. [PMID: 26599612 PMCID: PMC4658202 DOI: 10.1371/journal.pone.0143743] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/09/2015] [Indexed: 01/18/2023] Open
Abstract
Lactobacillus plantarum (L. plantarum) exopolysaccharide (EPS) is an important bioactive component in fermented functional foods. However, there is a lack of data concerning the effects of L. plantarum EPS on maturation of mouse dendritic cells (DCs). In this study, we purified L. plantarum EPS and examined its effects on cytokines production by dendritic cells in serum and intestinal fluid of BALB/c mice, then investigated its effects on phenotypic and functional maturation of mouse bone marrow-derived dendritic cells (BMDCs). Cytokines (nitric oxide, IL-12p70, IL-10 and RANTES) in serum and intestinal fluid were analyzed by enzyme linked immunosorbent assay (ELISA) after the mice received EPS for 2, 5 and 7 days, respectively. DCs derived from bone marrow of BALB/c mouse were treated with EPS, then the phenotypic maturation of BMDCs was analyzed using flow cytometer and the functional maturation of BMDCs was analyzed by ELISA, and, lastly, mixed lymphocyte proliferation was performed. We found the molecular weight of purified EPS was approximately 2.4×106 Da and it was composed of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in a molar ratio of 2:1:1:10:4:205:215. We observed that L. plantarum EPS enriched production of nitric oxide, IL-12p70 and RANTES, and decreased the secretion of IL-10 in the serum or intestinal fluid as well as in the supernatant of DCs treated with the EPS. The EPS also up-regulated the expression of MHC II and CD86 on DCs surface and promoted T cells to proliferate in vitro. Our data provide direct evidence to suggest that L. plantarum EPS can effectively induce maturation of DCs in mice.
Collapse
Affiliation(s)
- Yanjun Tang
- Key Laboratory of Dairy Science, Ministry of Education; College of Food Science, Northeast Agricultural University, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Harbin, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Dong
- Key Laboratory of Dairy Science, Ministry of Education; College of Food Science, Northeast Agricultural University, Harbin, China
| | - Keyu Wan
- Key Laboratory of Dairy Science, Ministry of Education; College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ligang Zhang
- Key Laboratory of Dairy Science, Ministry of Education; College of Food Science, Northeast Agricultural University, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education; College of Food Science, Northeast Agricultural University, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Harbin, China
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education; College of Food Science, Northeast Agricultural University, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Harbin, China
| | - Ning Liu
- Key Laboratory of Dairy Science, Ministry of Education; College of Food Science, Northeast Agricultural University, Harbin, China
- National Dairy Engineering & Research Center, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Harbin, China
| |
Collapse
|
22
|
Eckert C, Klein N, Kornek M, Lukacs-Kornek V. The complex myeloid network of the liver with diverse functional capacity at steady state and in inflammation. Front Immunol 2015; 6:179. [PMID: 25941527 PMCID: PMC4403526 DOI: 10.3389/fimmu.2015.00179] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022] Open
Abstract
In recent years, it has been an explosion of information regarding the role of various myeloid cells in liver pathology. Macrophages and dendritic cell (DC) play crucial roles in multiple chronic liver diseases such as fibrosis and non-alcoholic fatty liver disease (NAFLD). The complexity of myeloid cell populations and the missing exclusive marker combination make the interpretation of the data often extremely difficult. The current review aims to summarize the multiple roles of macrophages and DCs in chronic liver diseases, especially pointing out how these cells influence liver immune and parenchymal cells thereby altering liver function and pathology. Moreover, the review outlines the currently known marker combinations for the identification of these cell populations for the study of their role in liver immunology.
Collapse
Affiliation(s)
- Christoph Eckert
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Niklas Klein
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Miroslaw Kornek
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | | |
Collapse
|
23
|
Qian ZD, Huang LL, Zhu XM. An immunohistochemical study of CD83- and CD1a-positive dendritic cells in the decidua of women with recurrent spontaneous abortion. Eur J Med Res 2015; 20:2. [PMID: 25563385 PMCID: PMC4301856 DOI: 10.1186/s40001-014-0076-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 12/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are more and more women with recurrent spontaneous abortion (RSA). The mechanism of RSA is still unclear. Immunological factors have been postulated to play a role in the etiology of RSA. Dendritic cells (DCs) are the most potent antigen-presenting cells in the immune system, and the decidual DCs may take part in the occurrence of RSA. The difference in maturity status of decidual DCs among women with RSA and women with normal pregnancies is worthy of studying for its application to prevention and therapy. METHODS The EnVision two-step immunohistochemical staining technique was used to detect the expression of CD83 and CD1a in the decidua of women with RSA (30 cases) and normal pregnancies (30 cases). The maturity status, distribution and quantity of DCs in the two groups were observed. Observation of the staining and cell counting were done using microscope within 30 randomly selected high-power fields (HPF, 40 × 10). All data analyses were conducted with SPSS 17.0 and the statistical significance was set at P <0.05. RESULTS The decidua from the two groups contained DCs that stained with the anti-CD83 and anti-CD1a antibody. Most of the decidual CD83(+)DCs from two groups were located in the stroma. There were more CD83(+)DCs clustered with other DCs in the stroma from women with RSA than normal pregnancies. Most of the CD1a(+)DCs in the decidua from the two groups are located close to maternal glandular epithelium. No difference in the location of CD1a(+)DCs was found in the decidua between two groups. The number of decidual CD83(+)DCs was statistically significantly higher in RSA women than in normal early pregnant women (14.20 ± 13.34/30 HPF versus 4.77 ± 2.64/30 HPF; t = 3.800, P = 0.001). The number of CD1a(+)DCs in the decidua was statistically significantly lower in RSA women compared with normal early pregnant women (3.97 ± 3.75/30 HPF versus 7.60 ± 6.08/30 HPF; t = 2.786, P = 0.008). CONCLUSIONS These findings suggest that the increase in the number of mature DCs and the decrease in the quantity of immature DCs in the decidua may be related to RSA. The maturation of decidual DCs may play an important role in the pathogenesis of RSA.
Collapse
Affiliation(s)
- Zhi-Da Qian
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang Province, 310006, People's Republic of China.
| | - Li-Li Huang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang Province, 310006, People's Republic of China.
| | - Xiao-Ming Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang Province, 310006, People's Republic of China.
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, People's Republic of China.
| |
Collapse
|
24
|
Buonaguro L, Tagliamonte M, Petrizzo A, Damiano E, Tornesello ML, Buonaguro FM. Cellular prognostic markers in hepatocellular carcinoma. Future Oncol 2015; 11:1591-1598. [PMID: 26043213 DOI: 10.2217/fon.15.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the five big killers worldwide and is frequently associated with chronic hepatitis B and C virus (HBV and HCV) infections. Tumor microenvironment consists of a complex network of cells and factors that plays a key role in the tumor progression and prognosis. This is true also for HCC. Several studies have shown strikingly strong correlation between HCC clinical prognosis and intratumoral infiltration of cells affecting tumor growth, invasion, angiogenesis and metastasis. None of such cells is yet validated for routine diagnostic and prognostic assessment. The present review aims at providing a state-of-the-art of such studies.
Collapse
|
25
|
Yoshida O, Kimura S, Dou L, Matta B, Yokota S, Stolz D, Geller D, Thomson AW. DAP12 deficiency in liver allografts results in enhanced donor DC migration, augmented effector T cell responses and abrogation of transplant tolerance. Am J Transplant 2014; 14:1791-805. [PMID: 24935196 PMCID: PMC4107008 DOI: 10.1111/ajt.12757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 01/25/2023]
Abstract
Liver interstitial dendritic cells (DC) have been implicated in immune regulation and tolerance induction. We found that the transmembrane immuno-adaptor DNAX-activating protein of 12 kDa (DAP12) negatively regulated conventional liver myeloid (m) DC maturation and their in vivo migratory and T cell allostimulatory ability. Livers were transplanted from C57BL/6(H2(b) ) (B6) WT or DAP12(-/-) mice into WT C3H (H2(k) ) recipients. Donor mDC (H2-K(b+) CD11c(+) ) were quantified in spleens by flow cytometry. Anti-donor T cell reactivity was evaluated by ex vivo carboxyfluorescein diacetate succinimidyl ester-mixed leukocyte reaction and delayed-type hypersensitivity responses, while T effector and regulatory T cells were determined by flow analysis. A threefold to fourfold increase in donor-derived DC was detected in spleens of DAP12(-/-) liver recipients compared with those given WT grafts. Moreover, pro-inflammatory cytokine gene expression in the graft, interferon gamma (IFNγ) production by graft-infiltrating CD8(+) T cells and systemic levels of IFNγ were all elevated significantly in DAP12(-/-) liver recipients. DAP12(-/-) grafts also exhibited reduced incidences of CD4(+) Foxp3(+) cells and enhanced CD8(+) T cell IFNγ secretion in response to donor antigen challenge. Unlike WT grafts, DAP12(-/-) livers failed to induce tolerance and were rejected acutely. Thus, DAP12 expression in liver grafts regulates donor mDC migration to host lymphoid tissue, alloreactive T cell responses and transplant tolerance.
Collapse
Affiliation(s)
- O. Yoshida
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - S. Kimura
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - L. Dou
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Hepatic Surgery Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - B.M. Matta
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - S. Yokota
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - D.B. Stolz
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - D.A. Geller
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A. W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA,Corresponding author: Angus W. Thomson PhD DSc Starzl Transplantation Institute University of Pittsburgh School of Medicine 200 Lothrop Street, W1540 BST Pittsburgh, PA 15261
| |
Collapse
|
26
|
Abstract
The liver is the largest organ in the body and is generally regarded by nonimmunologists as having little or no lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and it is instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena, which if not controlled by regulatory lymphoid populations, may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events that lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discuss selected, but not all, immune-mediated liver disease and attempt to place these data in the context of human autoimmunity.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | |
Collapse
|
27
|
Origassa CST, Câmara NOS. Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury. World J Hepatol 2013; 5:541-9. [PMID: 24179613 PMCID: PMC3812456 DOI: 10.4254/wjh.v5.i10.541] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/08/2012] [Accepted: 11/25/2012] [Indexed: 02/06/2023] Open
Abstract
The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.
Collapse
Affiliation(s)
- Clarice Silvia Taemi Origassa
- Clarice Silvia Taemi Origassa, Laboratory of Experimental and Clinical Immunology, Nephrology Division, Medicine Department, Federal University of São Paulo, 04039-032 São Paulo, Brazil
| | | |
Collapse
|
28
|
Buonaguro L, Petrizzo A, Tagliamonte M, Tornesello ML, Buonaguro FM. Challenges in cancer vaccine development for hepatocellular carcinoma. J Hepatol 2013; 59:897-903. [PMID: 23714157 DOI: 10.1016/j.jhep.2013.05.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy, representing the third and fifth leading cause of death from cancer worldwide in men and women, respectively. The main risk factor for the development of HCC is the hepatitis B and C virus (HBV and HCV) infection; non-viral causes (e.g., alcoholism and aflatoxin) are additional risk factors. HCC prognosis is generally poor because of the low effectiveness of available treatments and the overall 5-year survival rate is approximately 5-6%. In this framework, immunotherapeutic interventions, including cancer vaccines, may represent a novel and effective therapeutic tool. However, only few immunotherapy trials for HCC have been conducted so far with contrasting results, suggesting that improvements in several aspects of the immunotherapy approaches need to be implemented. In particular, identification of novel specific tumor antigens and evaluation of most advanced combinatorial strategies could result in unprecedented clinical outcomes with great beneficial effect for HCC patients. The state of the art in immunotherapy strategies for HCC and future perspectives are reported in the present review.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Naples, Italy.
| | | | | | | | | |
Collapse
|
29
|
Doherty JE, Woodard LE, Bear AS, Foster AE, Wilson MH. An adaptable system for improving transposon-based gene expression in vivo via transient transgene repression. FASEB J 2013; 27:3753-62. [PMID: 23752206 DOI: 10.1096/fj.13-232090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transposons permit permanent cellular genome engineering in vivo. However, transgene expression falls rapidly postdelivery due to a variety of mechanisms, including immune responses. We hypothesized that delaying initial transgene expression would improve long-term transgene expression by using an engineered piggyBac transposon system that can regulate expression. We found that a 2-part nonviral Tet-KRAB inducible expression system repressed expression of a luciferase reporter in vitro. However, we also observed nonspecific promoter-independent repression. Thus, to achieve temporary transgene repression after gene delivery in vivo, we utilized a nonintegrating version of the repressor plasmid while the gene of interest was delivered in an integrating piggyBac transposon vector. When we delivered the luciferase transposon and repressor to immunocompetent mice by hydrodynamic injection, initial luciferase expression was repressed by 2 orders of magnitude. When luciferase expression was followed long term in vivo, we found that expression was increased >200-fold compared to mice that received only the luciferase transposon and piggyBac transposase. We found that repression of early transgene expression could prevent the priming of luciferase-specific T cells in vivo. Therefore, transient transgene repression postgene delivery is an effective strategy for inhibiting the antitransgene immune response and improving long-term expression in vivo without using immunosuppression.
Collapse
Affiliation(s)
- Joseph E Doherty
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
30
|
Li F, Tian Z. The liver works as a school to educate regulatory immune cells. Cell Mol Immunol 2013; 10:292-302. [PMID: 23604044 DOI: 10.1038/cmi.2013.7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 12/24/2022] Open
Abstract
Because of its unique blood supply, the liver maintains a special local immune tolerogenic microenvironment. Moreover, the liver can impart this immune tolerogenic effect on other organs, thus inducing systemic immune tolerance. The network of hepatic regulatory cells is an important mechanism underlying liver tolerance. Many types of liver-resident antigen-presenting cells (APCs) have immune regulatory function, and more importantly, they can also induce the differentiation of circulating immune cells into regulatory cells to further extend systemic tolerance. Thus, the liver can be seen as a type of 'school', where liver APCs function as 'teachers' and circulating immune cells function as 'students.'
Collapse
Affiliation(s)
- Fenglei Li
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | | |
Collapse
|
31
|
Dunham RM, Thapa M, Velazquez VM, Elrod EJ, Denning TL, Pulendran B, Grakoui A. Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013. [PMID: 23359509 DOI: 10.4049/jimmunol.1201937.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The liver has long been described as immunosuppressive, although the mechanisms underlying this phenomenon are incompletely understood. Hepatic stellate cells (HSCs), a population of liver nonparenchymal cells, are potent producers of the regulatory T cell (Treg)-polarizing molecules TGF-β1 and all-trans retinoic acid, particularly during states of inflammation. HSCs are activated during hepatitis C virus infection and may therefore play a role in the enrichment of Tregs during infection. We hypothesized that Ag presentation in the context of HSC activation will induce naive T cells to differentiate into Foxp3(+) Tregs. To test this hypothesis, we investigated the molecular interactions between murine HSCs, dendritic cells, and naive CD4(+) T cells. We found that HSCs alone do not present Ag to naive CD4(+) T cells, but in the presence of dendritic cells and TGF-β1, preferentially induce functional Tregs. This Treg induction was associated with retinoid metabolism by HSCs and was dependent on all-trans retinoic acid. Thus, we conclude that HSCs preferentially generate Foxp3(+) Tregs and, therefore, may play a role in the tolerogenic nature of the liver.
Collapse
Affiliation(s)
- Richard M Dunham
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Dai FZ, Yang J, Chen XB, Xu MQ. Zinc finger protein A20 inhibits maturation of dendritic cells resident in rat liver allograft. J Surg Res 2013; 183:885-93. [PMID: 23481562 DOI: 10.1016/j.jss.2013.01.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/20/2013] [Accepted: 01/30/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND In organ transplant field, although viewed traditionally as instigators of organ allograft rejection, donor-derived interstitial dendritic cells (DCs), including those resident in liver, or host DCs have also been implicated in transplant tolerance in experimental models. This functional dichotomy of DC is governed by various factors, the most important of which appears to be their stage of maturation. This study was designed to examine the effect of zinc finger protein A20 on maturation of DCs resident in rat liver allograft. MATERIALS AND METHODS Allogeneic (Dark Agouti [DA] rat to Lewis rat) liver transplantation was performed. Adenovirus carrying the full length of A20 was introduced into liver allografts by ex vivo perfusion via the portal vein during preservation (group A20), physiological saline (group PS), and empty Ad vector rAdEasy (group rAdEasy) that served as controls. Acute liver allograft rejection was assessed, and DCs resident in liver allografts were isolated on day 7 after transplantation. Nuclear factor kappa B (NF-κB)-binding activities, surface expression of costimulatory molecules (CD40, CD80, and CD86), expression of interleukin (IL) 12 messenger RNA (mRNA), and allocostimulatory capacity of DCs were measured with electrophoretic mobility shift assay, flow cytometry, reverse transcription-polymerase chain reaction, and mixed lymphocyte reaction (MLR), respectively. RESULTS Ex vivo transfer of A20 adenovirus by portal vein infusion resulted in overexpression of A20 protein in liver allograft after transplantation. On day 7 after transplantation, histologic examination revealed a mild rejection in group A20 but a more severe rejection in group PS and group rAdEasy. DCs from group A20 liver allografts exhibited features of immature DC with detectable but very low level of NF-κB activity, IL-12 mRNA expression, and surface expression of costimulatory molecules (CD40, CD80, and CD86), whereas DCs from group rAdEasy and group PS liver allograft displayed features of mature DC with high level of NF-κB activity, IL-12 mRNA expression, and surface expression of costimulatory molecules (CD40, CD80, and CD86). DCs from group PS and group rAdEasy liver allograft were potent inducers of DNA synthesis and interferon γ production in MLR, and DCs from group A20 liver allografts induced only minimal levels of cell proliferation and interferon γ production in MLR. CONCLUSIONS These data suggest that A20 overexpression could effectively inhibit maturation of DCs resident in liver allograft and consequently suppress acute liver allograft rejection.
Collapse
Affiliation(s)
- Fu-Zhen Dai
- Liver Transplantation Division, Department of Liver and Vascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | |
Collapse
|
33
|
Dunham RM, Thapa M, Velazquez VM, Elrod EJ, Denning TL, Pulendran B, Grakoui A. Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. THE JOURNAL OF IMMUNOLOGY 2013; 190:2009-16. [PMID: 23359509 DOI: 10.4049/jimmunol.1201937] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The liver has long been described as immunosuppressive, although the mechanisms underlying this phenomenon are incompletely understood. Hepatic stellate cells (HSCs), a population of liver nonparenchymal cells, are potent producers of the regulatory T cell (Treg)-polarizing molecules TGF-β1 and all-trans retinoic acid, particularly during states of inflammation. HSCs are activated during hepatitis C virus infection and may therefore play a role in the enrichment of Tregs during infection. We hypothesized that Ag presentation in the context of HSC activation will induce naive T cells to differentiate into Foxp3(+) Tregs. To test this hypothesis, we investigated the molecular interactions between murine HSCs, dendritic cells, and naive CD4(+) T cells. We found that HSCs alone do not present Ag to naive CD4(+) T cells, but in the presence of dendritic cells and TGF-β1, preferentially induce functional Tregs. This Treg induction was associated with retinoid metabolism by HSCs and was dependent on all-trans retinoic acid. Thus, we conclude that HSCs preferentially generate Foxp3(+) Tregs and, therefore, may play a role in the tolerogenic nature of the liver.
Collapse
Affiliation(s)
- Richard M Dunham
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Derkow K, Müller A, Eickmeier I, Seidel D, Rust Moreira MV, Kruse N, Klugewitz K, Mintern J, Wiedenmann B, Schott E. Failure of CD4 T-cells to respond to liver-derived antigen and to provide help to CD8 T-cells. PLoS One 2011; 6:e21847. [PMID: 21779338 PMCID: PMC3136477 DOI: 10.1371/journal.pone.0021847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/07/2011] [Indexed: 01/24/2023] Open
Abstract
CD4 T-cell help is required for the induction of efficient CD8 T-cells responses and the generation of memory cells. Lack of CD4 T-cell help may contribute to an exhausted CD8 phenotype and viral persistence. Little is known about priming of CD4 T-cells by liver-derived antigen. We used TF-OVA mice expressing ovalbumin in hepatocytes to investigate CD4 T-cell priming by liver-derived antigen and the impact of CD4 T-cell help on CD8 T-cell function. Naïve and effector CD4 T-cells specific for ovalbumin were transferred into TF-OVA mice alone or together with naïve ovalbumin-specific CD8 T-cells. T-cell activation and function were analyzed. CD4 T-cells ignored antigen presented by liver antigen-presenting cells (APCs) in vitro and in vivo but were primed in the liver-draining lymph node and the spleen. No priming occurred in the absence of bone-marrow derived APCs capable of presenting ovalbumin in vivo. CD4 T-cells primed in TF-OVA mice displayed defective Th1-effector function and caused no liver damage. CD4 T-cells were not required for the induction of hepatitis by CD8 T-cells. Th1-effector but not naïve CD4 T-cells augmented the severity of liver injury caused by CD8 T-cells. Our data demonstrate that CD4 T-cells fail to respond to liver-derived antigen presented by liver APCs and develop defective effector function after priming in lymph nodes and spleen. The lack of CD4 T-cell help may be responsible for insufficient CD8 T-cell function against hepatic antigens.
Collapse
Affiliation(s)
- Katja Derkow
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin Berlin, Campus Charité Mitte (CCM), Berlin, Germany
| | - Anja Müller
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Berlin, Germany
| | - Ira Eickmeier
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Berlin, Germany
| | - Daniel Seidel
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Berlin, Germany
| | - Marcos Vicinius Rust Moreira
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Berlin, Germany
| | - Nils Kruse
- Department of Gastroenterology and Infectious Diseases, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Katja Klugewitz
- Department of Gastroenterology and Infectious Diseases, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Justine Mintern
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Berlin, Germany
| | - Eckart Schott
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Berlin, Germany
- * E-mail:
| |
Collapse
|
35
|
Shahin D, Toraby EE, Abdel-Malek H, Boshra V, Elsamanoudy AZ, Shaheen D. Effect of peroxisome proliferator-activated receptor gamma agonist (pioglitazone) and methotrexate on disease activity in rheumatoid arthritis (experimental and clinical study). CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2011; 4:1-10. [PMID: 21339857 PMCID: PMC3040074 DOI: 10.4137/cmamd.s5951] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the combined effect of both pioglitazone and methotrexate on disease activity of rheumatoid arthritis in a biphasic study; experimental and clinical. METHODS EXPERIMENTALLY: 50 rats were divided into 5 equal groups; controls, experimental arthritis, methorexate treated (0.1 mg/Kg daily), pioglitazone-treated (10 mg/kg daily), and methotrexate and pioglitazone treated. Clinically: forty-nine diabetic rheumatoid arthritis patients were included. Patients group consisted of 28 patients and they received pioglitazone 30 mg orally beside their usual treatment. Control group consisted of 21 patients and they continued their usual treatment plus placebo. Disease activity was assessed using DAS28 score. Patients were followed up for 3 months. RESULTS Pioglitazone produced a significant improvement of serum oxidative stress parameters (P < 0.05), and inflammatory cytokines in the treated arthritic group (P < 0.05). Clinically, the pioglitazone treated group showed significant improvement in DAS28 (P = 0.001) and C-reactive protein (P < 0.0001) compared to placebo group. CONCLUSION The concomitant use of the PPAR γ agonist pioglitazone and methotrexate appears to be promising therapeutic strategy for rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Dina Shahin
- Department of Internal Medicine, Rheumatology and Immunology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | | | | | | | | | | |
Collapse
|
36
|
Sumpter TL, Packiam V, Turnquist HR, Castellaneta A, Yoshida O, Thomson AW. DAP12 promotes IRAK-M expression and IL-10 production by liver myeloid dendritic cells and restrains their T cell allostimulatory ability. THE JOURNAL OF IMMUNOLOGY 2011; 186:1970-80. [PMID: 21257958 DOI: 10.4049/jimmunol.1000527] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Freshly isolated hepatic dendritic cells (DC) are comparatively immature, relatively resistant to maturation, and can downmodulate effector T cell responses. Molecular mechanisms that underlie these properties are ill defined. DNAX-activating protein of 12 kDa (DAP12) is an ITAM-bearing transmembrane adaptor protein that integrates signals through several receptors, including triggering receptor expressed on myeloid cells-1, -2, and CD200R. Notably, DC propagated from DAP12-deficient mice exhibit enhanced maturation in response to TLR ligation. Given the constitutive exposure of liver DC to endotoxin draining from the gut, we hypothesized that DAP12 might regulate liver DC maturation. We show that DAP12 is expressed by freshly isolated liver, spleen, kidney, and lung myeloid DC. Moreover, inhibition of DAP12 expression by liver DC using small interfering RNA promotes their phenotypic and functional maturation, resulting in enhanced TNF-α, IL-6, and IL-12p70 production, reduced secretion of IL-10, and enhanced CD4(+) and CD8(+) T cell proliferation. Furthermore, DAP12 silencing correlates with decreased STAT3 phosphorylation in mature liver DC and with diminished expression of the IL-1R-associated kinase-M, a negative regulator of TLR signaling. These findings highlight a regulatory role for DAP12 in hepatic DC maturation, and suggest a mechanism whereby this function may be induced/maintained.
Collapse
Affiliation(s)
- Tina L Sumpter
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The demands that are imposed on the liver as a result of its function as a metabolic organ that extracts nutrients and clears gut-derived microbial products from the blood are met by a unique microanatomical and immunological environment. The inherent tolerogenicity of the liver and its role in the regulation of innate and adaptive immunity are mediated by parenchymal and non-parenchymal antigen-presenting cells (APCs), cell-autonomous molecular pathways and locally produced factors. Here, we review the central role of liver APCs in the regulation of hepatic immune function and also consider how recent insights may be applied in strategies to target liver tolerance for disease therapy.
Collapse
|
38
|
Donaghy L, Cabillic F, Corlu A, Rostan O, Toutirais O, Guguen-Guillouzo C, Guiguen C, Gangneux JP. Immunostimulatory properties of dendritic cells after Leishmania donovani infection using an in vitro model of liver microenvironment. PLoS Negl Trop Dis 2010; 4:e703. [PMID: 20544029 PMCID: PMC2882335 DOI: 10.1371/journal.pntd.0000703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/12/2010] [Indexed: 12/24/2022] Open
Abstract
Background Recent advances demonstrated that liver dendritic cells (DCs) promote immunologic hyporesponsiveness that may contribute to hepatic tolerance. Although there has been significant work on the phenotypic and functional roles of such DCs, the impact of liver microenvironment on the immune properties of infected DC is still poorly explored, probably because of the limitations of modelization. Methodology/Principal Findings Here, we hypothesized that DC tolerogenic properties have an impact on the antimicrobial response, particularly during the infection by the protozoan parasite Leishmania donovani. Indeed, a lymphocytic Th2 environment was reported to favour the growth and proliferation of L. donovani. We first modelized an adequate monocyte-differentiated DC model, either in rat liver epithelial cell- or in a human hepatic non-parenchymal cell-conditioned medium in order to infect them further. We established that DCs differentiated in a hepatic microenvironment displayed a CD14+/CD16+/CD123+ phenotype, secreted low IL-12p70 and had an impaired capacity to stimulate allogeneic T lymphocyte proliferation and IFNγ secretion. We then infected DCs with L. donovani in the in vitro-defined hepatic microenvironment. The infection of hepatic DCs restored their capacity to stimulate allogeneic T-cell proliferation and to induce lymphocytic secretion of IFNγ. Such characteristics were recently shown to favour granuloma formation in mice liver. Conclusions/Significance Our results suggest that the specific immunostimulatory properties of infected hepatic DCs might amplify the granuloma maturation, which warrants the effective control of infection in the liver during visceral leishmaniasis. Because of its location and function, the liver is continuously exposed to a wide range of antigens. Pathogenic microorganisms must be eliminated while a large number of dietary or commensal organism antigens and hepatic metabolites must be tolerated. Therefore, the liver has developed a specialized immune system that favours tolerance rather than immunity and liver dendritic cells (DCs) act as a major cell subtype in promoting this response. Our work aimed to examine if such immunologic hyporesponsiveness has an impact on the control of the hepatic burden of Leishmania donovani, a protozoan parasite that grows in liver and spleen tissues after infection (called visceral leishmaniasis in South America and Mediterranean basin, and Kala Azar in South East Asia). We first modelized an original model of hepatic DCs and infected them with Leishmania donovani. In contrast to control DCs, infection of hepatic DCs restored the alterate capacity of non-infected liver DCs to stimulate allogeneic T cell proliferation and IFNγ secretion. Such characteristics were recently shown to favour granuloma formation in mouse liver. This research provides an explanation for the observation that Leishmania parasite growth is controlled in the liver via an efficient granuloma response.
Collapse
Affiliation(s)
- Ludovic Donaghy
- Université de Rennes 1, Rennes, France
- Inserm U522, Régulation des Equilibres Fonctionnels du Foie Normal et Pathologique, Rennes, France
| | - Florian Cabillic
- Université de Rennes 1, Rennes, France
- EE 341 Biothérapies Innovantes, Rennes, France
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Anne Corlu
- Université de Rennes 1, Rennes, France
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France
| | - Octavie Rostan
- Université de Rennes 1, Rennes, France
- EA SeRAIC 4427, IRSET, Rennes, France
| | - Olivier Toutirais
- Université de Rennes 1, Rennes, France
- EE 341 Biothérapies Innovantes, Rennes, France
| | | | - Claude Guiguen
- Université de Rennes 1, Rennes, France
- Laboratoire de Parasitologie-Mycologie, CHU Rennes, Rennes, France
| | - Jean-Pierre Gangneux
- Université de Rennes 1, Rennes, France
- EA SeRAIC 4427, IRSET, Rennes, France
- Laboratoire de Parasitologie-Mycologie, CHU Rennes, Rennes, France
- * E-mail:
| |
Collapse
|
39
|
Sumpter TL, Lunz JG, Demetris AJ, Thomson AW. Molecular regulation of hepatic dendritic cell function and its relation to liver transplant outcome. Transplantation 2010; 88:S40-4. [PMID: 19667960 DOI: 10.1097/tp.0b013e3181af7c0d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Studies on liver interstitial dendritic cells (DC) indicate that the maturation and function of these important antigen-presenting cells may be suppressed by continual exposure to microbial products from the gut, in particular, bacterial lipopolysaccharide. New evidence is emerging for a role of specific intracellular regulators of signal transduction and of cytokines in the hepatic microenvironment, which may contribute to a hyporesponsive state in liver DC. Analysis of signaling molecule expression within DC in liver transplant tissue is likely to uncover its relation to allograft outcome.
Collapse
Affiliation(s)
- Tina L Sumpter
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
40
|
Bosma BM, Metselaar HJ, Gerrits JH, van Besouw NM, Mancham S, Groothuismink ZMA, Boor PPC, van der Laan LJW, Tilanus HW, Kuipers EJ, Kwekkeboom J. Migration of allosensitizing donor myeloid dendritic cells into recipients after liver transplantation. Liver Transpl 2010; 16:12-22. [PMID: 19866483 DOI: 10.1002/lt.21961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is thought, but there is no evidence, that myeloid dendritic cells (MDCs) of donor origin migrate into the recipient after clinical organ transplantation and sensitize the recipient's immune system by the direct presentation of donor allo-antigens. Here we show prominent MDC chimerism in the recipient's circulation early after clinical liver transplantation (LTx) but not after renal transplantation (RTx). MDCs that detach from human liver grafts produce large amounts of pro-inflammatory [tumor necrosis factor alpha and interleukin 6 (IL-6)] and anti-inflammatory (IL-10) cytokines upon activation with various stimuli, express higher levels of toll-like receptor 4 than blood or splenic MDCs, and are sensitive to stimulation with a physiological concentration of lipopolysaccharide (LPS). Upon stimulation with LPS, MDCs detaching from liver grafts prime allogeneic T cell proliferation and production of interferon gamma but not of IL-10. Soluble factors secreted by liver graft MDCs amplify allogeneic T helper 1 responses. In conclusion, after clinical LTx, but not after RTx, prominent numbers of donor-derived MDCs migrate into the recipient's circulation. MDCs detaching from liver grafts produce pro-inflammatory and anti-inflammatory cytokines and are capable of stimulating allogeneic T helper 1 responses, and this suggests that MDC chimerism after clinical LTx may contribute to liver graft rejection rather than acceptance.
Collapse
Affiliation(s)
- Brenda M Bosma
- Department of Gastroenterology and Hepatology, University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fu BM, He XS, Yu S, Hu AB, Zhang J, Ma Y, Tam NL, Huang JF. A tolerogenic semimature dendritic cells induce effector T-cell hyporesponsiveness by activation of antigen-specific CD4+CD25+ T regulatory cells that promotes skin allograft survival in mice. Cell Immunol 2009; 261:69-76. [PMID: 20038461 DOI: 10.1016/j.cellimm.2009.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 10/26/2009] [Accepted: 11/13/2009] [Indexed: 01/16/2023]
Abstract
Semimature dendritic cells (smDCs) can induce autoimmune tolerance by activation of host antigen-specific CD4(+)CD25(+) regulatory T (Treg) cells. We hypothesized that donor smDCs injected into recipients would induce effector T-cell hyporesponsiveness by activating CD4(+)CD25(+)Treg cells, and promote skin allograft survival. Myeloid smDCs were derived from C57BL/6J mice (donors) in vitro. BALB/c mice (recipients) were injected with smDCs to generate antigen-specific CD4(+)CD25(+)Treg cells in vivo. Allograft survival was prolonged when BALB/c recipients received either C57BL/6J smDCs prior to grafting or C57BL/6J smDC-derived CD4(+)CD25(+)Treg cells post-grafting, and skin flaps from these grafts showed the highest IL-10 production regardless of rapamycin treatments. Our findings confirm that smDCs constitute an independent subgroup of DCs that play a key role for inducing CD4(+)CD25(+)Treg cells to express high IL-10 levels, which induce hyporesponsiveness of effector T cells. Pre-treating recipients with donor smDCs may have potential for transplant tolerance induction.
Collapse
Affiliation(s)
- Bi-mang Fu
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guang Zhou, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
LoDuca PA, Hoffman BE, Herzog RW. Hepatic gene transfer as a means of tolerance induction to transgene products. Curr Gene Ther 2009; 9:104-14. [PMID: 19355868 DOI: 10.2174/156652309787909490] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The liver is a preferred target organ for gene therapy not only for liver-specific diseases but also for disorders that require systemic delivery of a protein. Diseases that could benefit from hepatic gene transfer include hemophilia, metabolic disorders, lysosomal storage disorders, and others. For a successful delivery of the transgene and sustained expression, the protocol must avoid immune responses in order to be efficacious. A growing number of studies have demonstrated that liver-directed transfer can induce transgene product-specific immune tolerance. Tolerance obtained via this route requires optimal engineering of the vector to eliminate transgene expression in antigen presenting cells while restricting high levels of therapeutic expression to hepatocytes. Innate immune responses may prevent tolerance induction, cause toxicity, and have to be minimized. Discussed in our review is the crucial role of CD4(+)CD25(+) regulatory T cells in tolerance to the hepatocyte-derived gene product, the immunobiology of the liver and our current understanding of its tolerogenic properties, current and proposed research as to the mechanisms behind the liver's unique cellular environment, as well as development of the tools for tolerance induction such as advanced vector systems.
Collapse
Affiliation(s)
- Paul A LoDuca
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
43
|
Chen Y, Liu H, Liu Z, Liang S, Chen J, Long F, Peng Y, Yan L, Gong J. Blockade of inducible costimulator pathway to prevent acute rejection in rat liver transplantation. Am J Surg 2009; 198:244-9. [PMID: 19628063 DOI: 10.1016/j.amjsurg.2008.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 10/20/2022]
Abstract
BACKGROUND The role of inducible costimulator (ICOS) in transplantation immunity remains unclear. METHODS A Lewis-to-Brown-Norway (BN) rat liver transplant model was used to explore the effect of ICOS blockade by small interference RNA. Recipient survival rate, number of CD25/ICOS-positive cells, ICOS mRNA and protein levels, and interferon-gamma and tumor-necrosis factor-alpha levels were determined. RESULTS Recipient survival was significantly prolonged in rats treated with RNA interference. On day 7 after transplantation, there was a diminished frequency of CD25/ICOS-positive cells and an increased frequency of apoptotic T cells. Furthermore, we found that ICOS blockade could inhibit mRNA and protein expression of ICOS, decrease plasma levels of interferon-gamma and tumor-necrosis factor-alpha, suppress cell infiltration into grafts, and promote tolerance in the interference group. CONCLUSIONS Our data demonstrate that RNA interference is a potent tool to down-modulate ICOS expression and protect allografts from acute rejection.
Collapse
Affiliation(s)
- Yong Chen
- Department of Hepatobliliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ma LL, Gao X, Liu L, Xiang Z, Blackwell TS, Williams P, Chari RS, Yin DP. CpG oligodeoxynucleotide triggers the liver inflammatory reaction and abrogates spontaneous tolerance. Liver Transpl 2009; 15:915-23. [PMID: 19642135 PMCID: PMC2817947 DOI: 10.1002/lt.21771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Liver allografts are spontaneously accepted in the liver transplantation mouse model; however, the basis for this tolerance and the conditions that abrogate spontaneous tolerance to liver allografts are incompletely understood. We examined the role of CpG oligodeoxynucleotide (ODN) in triggering the liver inflammatory reaction and allograft rejection. Bioluminescence imaging quantified the activation of nuclear transcriptional factor kappaB (NF-kappaB) at different time points post-transplantation. Intrahepatic lymphocyte subsets were analyzed by immunofluorescence assay and flow cytometry. The results showed that liver allografts survived for more than 100 days without a requirement for any immunosuppressive therapy. Donor-matched cardiac allografts were permanently accepted, whereas third-party cardiac grafts were rejected with delayed kinetics; this confirmed donor-specific tolerance. NF-kappaB activation in the liver allografts was transiently increased on day 1 and diminished by day 4; in comparison, it was elevated up to 10 days post-transplantation in the cardiac allografts. When CpG ODN was administered at a high dose (50 microg per mouse x 1) to the recipients on day 7 post-transplantation, it induced an acute liver inflammatory reaction with elevated NF-kappaB activation in both allogeneic and syngeneic liver grafts. Multiple doses of CpG ODN (10 microg per mouse x 3) elicited acute rejection of the liver allografts with significant T cell infiltration in the liver allografts, reduced T regulatory cells, and enhanced interferon gamma-producing cells in the intrahepatic infiltrating lymphocytes. These data demonstrate that CpG ODN initiates an inflammatory reaction and abrogates spontaneous tolerance in the liver transplantation mouse model. Liver Transpl 15:915-923, 2009. (c) 2009 AASLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deng-Ping Yin
- Address for Correspondence: Deng Ping Yin, MD, PhD, Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, Telephone number: (615)343-6990, Fax number: (312)343-1355,
| |
Collapse
|
45
|
Bamboat ZM, Stableford JA, Plitas G, Burt BM, Nguyen HM, Welles AP, Gonen M, Young JW, DeMatteo RP. Human liver dendritic cells promote T cell hyporesponsiveness. THE JOURNAL OF IMMUNOLOGY 2009; 182:1901-11. [PMID: 19201843 DOI: 10.4049/jimmunol.0803404] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver is believed to promote tolerance, which may be beneficial due to its constant exposure to foreign Ags from the portal circulation. Although dendritic cells (DCs) are critical mediators of immune responses, little is known about human liver DCs. We compared freshly purified liver DCs from surgical specimens with autologous blood DCs. Liver and blood DCs were equally immature, but had distinct subset compositions. BDCA-1(+) DCs represented the most prevalent liver DC subset, whereas the majority of peripheral blood DCs were CD16(+). Upon TLR4 ligation, blood DCs secreted multiple proinflammatory cytokines, whereas liver DCs produced substantial amounts of IL-10. Liver DCs induced less proliferation of allogeneic T cells both in a primary MLR and after restimulation. Similarly, Ag-specific CD4(+) T cells were less responsive to restimulation when initially stimulated by autologous liver DCs rather than blood DCs. In addition, liver DCs generated more suppressive CD4(+)CD25(+)FoxP3(+) T regulatory cells and IL-4-producing Th2 cells via an IL-10-dependent mechanism. Our findings are critical to understanding hepatic immunity and demonstrate that human liver DCs promote immunologic hyporesponsiveness that may contribute to hepatic tolerance.
Collapse
Affiliation(s)
- Zubin M Bamboat
- Hepatopancreatobiliary Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Levy Y, Davidovits M, Cleper R, Shapiro R. New-onset post-transplantation food allergy in children--is it attributable only to the immunosuppressive protocol? Pediatr Transplant 2009; 13:63-9. [PMID: 18179638 DOI: 10.1111/j.1399-3046.2007.00883.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New-onset post-transplantation food allergy has been described mainly after liver transplantation, and its pathogenesis was attributed to the immunomodulatory effects of tacrolimus therapy. The aim of the present study was to evaluate the association of food allergy with solid organ transplantation in our center. The medical records of children who underwent kidney transplantation and children who underwent liver or liver and kidney transplantation from 1986 to 2005 were reviewed. A total of 189 children (124 after kidney transplantation, 65 after liver or liver and kidney transplantation) received tacrolimus as part of the immunosuppressive regimen. New-onset post-transplantation food allergy was documented in four of them: two with liver transplants and two with combined kidney and liver transplants. The absence of new-onset food allergy in the children with isolated kidney transplants is compatible with other reports in the literature. This study supports the concept that the functioning liver itself, and not only tacrolimus immunosuppression, is a main contributor to food allergy in this patient population.
Collapse
Affiliation(s)
- Yael Levy
- Kipper Institute of Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | | | | | | |
Collapse
|
47
|
Karimi MH, Ebadi P, Pourfathollah AA, Soheili ZS, Samiee S, Ataee Z, Tabei SZ, Moazzeni SM. Immune modulation through RNA interference-mediated silencing of CD40 in dendritic cells. Cell Immunol 2009; 259:74-81. [DOI: 10.1016/j.cellimm.2009.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 05/12/2009] [Accepted: 05/22/2009] [Indexed: 11/30/2022]
|
48
|
Chen Y, Yan T, Shi LJ, Liu Z, Liang SY, Luan XF, Long FW, Chen J, Peng Y, Yan LN, Gong JP. Knockdown of interleukin-2 by shRNA-mediated RNA interference prolongs liver allograft survival. J Surg Res 2008; 159:582-7. [PMID: 19589546 DOI: 10.1016/j.jss.2008.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/20/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
Interleukin-2 (IL-2) plays a central role in T-cell activation, expansion, and homeostasis. The failure of IL-2 biosynthesis may play a critical role in tolerance induction. We tested the effect of IL-2 blockade by short hairpin RNA (shRNA) on regulating acute rejection in rat liver transplantation. To this end, we successfully designed and selected an effective interference plasmid, pIL-2B. The IL-2 mRNA expression level in the pIL-2B group was one-fifth of that in the no transfection group. Lewis to BN orthotopic liver transplant model was used to explore the effect of knockdown IL-2 by shRNA in vivo. Recipients treated with pIL-2-shRNA survived longer (median survival time of 16 d range 7-21 d) than those with empty vector (11; range 5-13) or saline (9; range 5-13) (P<0.05), and was inferior to those with CsA (24; range 13-36, P<0.05). The IL-2-shRNA attenuated acute rejection with decreased apoptosis of hepatocytes and reduced cytokine production of IL-2, tumor necrosis factor-alpha (TNF-alpha), and interferon-gamma (IFN-gamma) in the graft. Our results suggest that IL-2 targeting using RNA interference approach may be of potential interest in organ transplantation.
Collapse
Affiliation(s)
- Yong Chen
- Chongqing Key Laboratory of Hepatobliliary Surgery and Department of Hepatobliliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Forrester JV, Xu H, Lambe T, Cornall R. Immune privilege or privileged immunity? Mucosal Immunol 2008; 1:372-81. [PMID: 19079201 DOI: 10.1038/mi.2008.27] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immune privilege is a concept that has come of age. Where previously it was considered to be a passive phenomenon restricted to certain specialized tissues, it is now viewed as comprising several mechanisms, both active and passive, shared in many aspects with emerging notions of the mechanisms of peripheral tolerance. The relative degrees of immune privilege vary from tissue to tissue depending on the number and strength of each of the mechanisms contained in that tissue. Immune privilege can be generated in non-privileged sites such as the skin and allografts, and is a property of the tissue itself. We therefore propose that, in addition to canonical central and peripheral tolerance mechanisms, there is a third route whereby the organism promotes self-antigen non-reactivity centered on the specific properties of each tissue and varying accordingly (relative degrees of immune privilege). This third mechanism of inducing immunological tolerance, as it is a local tissue phenomenon, might have particular therapeutic significance, for instance in devising strategies for induction of immunity to tumors by disrupting immune privilege or in preventing graft rejection by promoting immune privilege.
Collapse
Affiliation(s)
- J V Forrester
- Department of Ophthalmology, University of Aberdeen, Aberdeen, Scotland.
| | | | | | | |
Collapse
|
50
|
Abstract
The liver has been considered as a tolerogenic organ in the sense that favors the induction of peripheral tolerance. The administration of antigens (Ags) via the portal vein causes tolerance, which is termed portal vein tolerance and can explain the occurrence of tolerogenic responses in the liver. Here we discuss the fundamental mechanisms accounting for portal vein tolerance. Antigen-presenting cells (APCs) in the liver, especially dendritic cells and sinusoidal endothelial cells, have limited the ability to produce pro-inflammatory cytokines upon stimulation with endotoxin, an effect that could be due to the continuous exposure to bacterial Ags derived from intestinal microflora. Ag presentation by liver APCs results in T cell tolerance through clonal deletion and selection of regulatory T cells. Thus, APCs with immunosuppressive functions are associated with the achievement of portal vein tolerance via the induction of clonal deletion and generation of regulatory T cells.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, and Department of Clinical Bio-Regulatory Science, Kyoto University Graduate School of Medicine, Kyoto, and Department of Gastroeneterology and Hepatology, Kinki University Graduate School of Medicine, Osaka, Japan
| | | | | | | |
Collapse
|