1
|
Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham HP, Lefranc MP, Mora T, Thomas-Vaslin V, Walczak AM, Boudinot P. The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis. Front Immunol 2013; 4:413. [PMID: 24348479 PMCID: PMC3841818 DOI: 10.3389/fimmu.2013.00413] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/12/2013] [Indexed: 01/09/2023] Open
Abstract
T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardization and ontology development. We then present the variety of available statistical analysis and modeling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of those modeling approaches. To conclude, we provide some examples of recent mathematical modeling strategies and perspectives that illustrate the active rise of a "next-generation" of repertoire analysis.
Collapse
Affiliation(s)
- Adrien Six
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Maria Encarnita Mariotti-Ferrandiz
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Wahiba Chaara
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Susana Magadan
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| | - Hang-Phuong Pham
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Institut de Génétique Humaine, UPR CNRS 1142, Université Montpellier 2 , Montpellier , France
| | - Thierry Mora
- Laboratoire de Physique Statistique, UMR8550, CNRS and Ecole Normale Supérieure , Paris , France
| | - Véronique Thomas-Vaslin
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, UMR8549, CNRS and Ecole Normale Supérieure , Paris , France
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| |
Collapse
|
2
|
Madonna R, Wu H, Shelat H, Geng YJ. CD1d-associated expression of NF-kB and cardiac dysfunction in diabetic and obese mice. Int J Immunopathol Pharmacol 2013; 26:59-73. [PMID: 23527709 DOI: 10.1177/039463201302600106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In patients with obesity and diabetes mellitus, abnormal production of inflammatory factors may result in cardiovascular dysfunction. In the current study, we tested the impact of CD1d-mediated innate immune responses on the expression and activation of NFkB in the hearts of adipose diabetic (db/db) mice. Splenocytes from adult db/db and CD1d-knockout mice of both genders and their wild-type, C57BL/6 and Balb/C counterparts were examined for tumor necrosis factor (TNF)-alpha and TNF-alpha receptor type 1. The percentage of natural killer T (NKT) cells in CD3+ T cells was compared with that in nondiabetic control mice. Despite the absence of inflammatory infiltrates, the hearts of db/db mice showed alterations in TNF-alpha receptor-1 and NFkB activity, including increased expression of both the NFkB p52 and p65 subunits. In the hearts of CD1d-knockout mice, p52 expression was reduced, while p65 expression remained largely unchanged. On echocardiography, the ratio of E to A transmitral flow velocities (an indicator of diastolic function) was significantly decreased in db/db mice after they swam for 30 minutes. These results provide evidence for CD1d-mediated NFkB activation and diastolic dysfunction in the hearts of db/db mice. Therefore, CD1d-associated abnormalities of innate immune responses and TNF-alpha production in splenic tissue may contribute to NFkB activation and cardiac dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- R Madonna
- The University of Texas Health Science Center, Houston, TX, USA
| | | | | | | |
Collapse
|
3
|
Vidlak D, Kielian T. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection. J Neuroinflammation 2012; 9:128. [PMID: 22704602 PMCID: PMC3411413 DOI: 10.1186/1742-2094-9-128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 06/15/2012] [Indexed: 01/13/2023] Open
Abstract
Although IL-17A (commonly referred to as IL-17) has been implicated in the pathogenesis of central nervous system (CNS) autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R) knockout (KO) mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25). In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT) cell and gamma-delta (γδ) T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT) animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.
Collapse
Affiliation(s)
- Debbie Vidlak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA
| | | |
Collapse
|
4
|
Zeng J, Howard JC. Spontaneous focal activation of invariant natural killer T (iNKT) cells in mouse liver and kidney. BMC Biol 2010; 8:142. [PMID: 21118540 PMCID: PMC3016249 DOI: 10.1186/1741-7007-8-142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/30/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported. RESULTS We used an interferon (IFN)-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice. CONCLUSIONS This is the first report that supplies direct evidence for explicit activation events of NKT cells in vivo and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.
Collapse
Affiliation(s)
- Jia Zeng
- Institute for Genetics, University of Cologne, Zuelpicher Strasse 47a, 50674 Cologne, Germany
| | | |
Collapse
|
5
|
Mallevaey T, Scott-Browne JP, Matsuda JL, Young MH, Pellicci DG, Patel O, Thakur M, Kjer-Nielsen L, Richardson SK, Cerundolo V, Howell AR, McCluskey J, Godfrey DI, Rossjohn J, Marrack P, Gapin L. T cell receptor CDR2 beta and CDR3 beta loops collaborate functionally to shape the iNKT cell repertoire. Immunity 2009; 31:60-71. [PMID: 19592274 PMCID: PMC2965025 DOI: 10.1016/j.immuni.2009.05.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/21/2009] [Accepted: 05/22/2009] [Indexed: 12/12/2022]
Abstract
Mouse type I natural killer T cell receptors (iNKT TCRs) use a single V alpha 14-J alpha 18 sequence and V beta s that are almost always V beta 8.2, V beta 7, or V beta 2, although the basis of this differential usage is unclear. We showed that the V beta bias occurred as a consequence of the CDR2 beta loops determining the affinity of the iNKT TCR for CD1d-glycolipids, thus controlling positive selection. Within a conserved iNKT-TCR-CD1d docking framework, these inherent V beta-CD1d affinities are further modulated by the hypervariable CDR3 beta loop, thereby defining a functional interplay between the two iNKT TCR CDR beta loops. These V beta biases revealed a broadly hierarchical response in which V beta 8.2 > V beta 7 > V beta 2 in the recognition of diverse CD1d ligands. This restriction of the iNKT TCR repertoire during thymic selection paradoxically ensures that each peripheral iNKT cell recognizes a similar spectrum of antigens.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Thierry Mallevaey
- Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - James P. Scott-Browne
- Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Jennifer L. Matsuda
- Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Mary H. Young
- Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Daniel G. Pellicci
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Onisha Patel
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Meena Thakur
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Lars Kjer-Nielsen
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Vincenzo Cerundolo
- Tumour Immunology Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - James McCluskey
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dale I. Godfrey
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- The Protein Crystallography Unit, ARC Centre of Excellence in Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Philippa Marrack
- Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
- Howard Hughes Medical Institute, University of Colorado Denver school of Medicine, Denver, CO 80220, USA
- Department of Medicine, University of Colorado Denver school of Medicine, Denver, CO 80220, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver school of Medicine, Denver, CO 80220, USA
| | - Laurent Gapin
- Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
6
|
Zajonc DM, Kronenberg M. Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells. Immunol Rev 2009; 230:188-200. [DOI: 10.1111/j.1600-065x.2009.00802.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Démoulins T, Abdallah A, Kettaf N, Baron ML, Gerarduzzi C, Gauchat D, Gratton S, Sékaly RP. Reversible blockade of thymic output: an inherent part of TLR ligand-mediated immune response. THE JOURNAL OF IMMUNOLOGY 2008; 181:6757-69. [PMID: 18981093 DOI: 10.4049/jimmunol.181.10.6757] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
TLRs constitute a first set of sensors that detect viral nucleic acids including dsRNA which triggers TLR3. We report the early, direct, and detrimental effect of polyinosine-polycytidilic acid treatment on T cell development. Inhibition of thymopoiesis was targeted to several thymocyte subpopulations. First, both a blockade of the double negative (DN)1-DN2 transition and a severe down-regulation of DN3-DN4 thymocyte proliferation were observed. In addition, an important decrease in the absolute numbers of double-positive thymocytes, concomitant with an increase in frequencies of apoptotic cells in this population were shown. This inhibition of thymopoiesis resulted in a reduced thymic output, as evidenced by a drop of the absolute numbers of naive T cells and TCR excision circles levels. The decrease in thymic cellularity and defects in thymic development were severely reduced, but not completely abolished in IFN-alpha/betaR(-/-) mice, showing a direct contribution of type I IFNs, known to be massively up-regulated in viral infections, to the inhibition of T cell development. Strikingly, the TCR repertoire in treated mice was biased toward shorter CDR3 lengths as a result of a decreased expression of TdT and Rag2. However, thymic integrity remained intact since thymopoiesis was restored both quantitatively and qualitatively 14 days after the cessation of polyinosine-polycytidilic acid treatment. These results demonstrate a novel immunomodulatory role for virally encoded TLR ligands and RNA sensors; they further illustrate the diversity of mechanisms that viruses use to interfere with the development of a pathogen-specific immune responses.
Collapse
Affiliation(s)
- Thomas Démoulins
- Laboratoire d'Immunologie, Centre de Recherches du Centre Hospitalier de l'Université de Montréal, Saint-Luc, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wingender G, Kronenberg M. Invariant natural killer T cells in the response to bacteria: the advent of specific antigens. Future Microbiol 2006; 1:325-40. [PMID: 17661645 DOI: 10.2217/17460913.1.3.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in diverse immune reactions, ranging from self-tolerance and development of autoimmunity to responses to pathogens and tumors. Although some degree of autoreactivity of iNKT cells has been shown, it remained controversial whether the T-cell antigen receptor expressed by these cells could recognize microbial antigens, hampering the investigation of their physiological role during tolerance and immunity. Several recent publications have now defined natural antigens for the majority of iNKT cells in some Proteobacteria and in Borrelia burgdorferi, demonstrating specificity of these cells for microbes in addition to self-reactivity. The characterization of natural antigens from bacteria, and the iNKT cell response to bacteria containing them, are decisive steps toward the clarification of the natural role of iNKT cells in host defense against pathogens, and will likely spur numerous findings in the near future.
Collapse
MESH Headings
- Animals
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Bacteria/immunology
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Models, Immunological
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Gerhard Wingender
- La Jolla Institute for Allergy & Immunology (LIAI), Division of Developmental Immunology, San Diego, CA 92037, USA.
| | | |
Collapse
|
9
|
Ferreira C, Furmanski A, Millrain M, Bartok I, Guillaume P, Lees R, Simpson E, MacDonald HR, Dyson J. TCR-alpha CDR3 loop audition regulates positive selection. THE JOURNAL OF IMMUNOLOGY 2006; 177:2477-85. [PMID: 16888009 DOI: 10.4049/jimmunol.177.4.2477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
How positive selection molds the T cell repertoire has been difficult to examine. In this study, we use TCR-beta-transgenic mice in which MHC shapes TCR-alpha use. Differential AV segment use is directly related to the constraints placed on the composition of the CDR3 loops. Where these constraints are low, efficient selection of alphabeta pairs follows. This mode of selection preferentially uses favored AV-AJ rearrangements and promotes diversity. Increased constraint on the alpha CDR3 loops leads to inefficient selection associated with uncommon recombination events and limited diversity. Further, the two modes of selection favor alternate sets of AJ segments. We discuss the relevance of these findings to the imprint of self-MHC restriction and peripheral T cell activation.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Clonal Deletion
- Complementarity Determining Regions/genetics
- Female
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- H-2 Antigens/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic/genetics
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
Collapse
Affiliation(s)
- Cristina Ferreira
- Transplantation Biology Group, Department of Immunology, Imperial College, Hammersmith Hospital, Du Cane Road, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kawachi I, Maldonado J, Strader C, Gilfillan S. MR1-restricted V alpha 19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. THE JOURNAL OF IMMUNOLOGY 2006; 176:1618-27. [PMID: 16424191 DOI: 10.4049/jimmunol.176.3.1618] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells reside primarily in the gut lamina propria and require commensal flora for selection/expansion. They are restricted by the highly conserved MHC class I-related molecule MR1 and, like most NK T cells, express an invariant TCRalpha chain. Although they probably contribute to gut immunity, MAIT cells have not been functionally characterized because they are so rare. To create a model in which they are more abundant, we generated transgenic mice expressing only the TCRalpha chain (Valpha19i) that defines MAIT cells. By directly comparing Valpha19i transgenic mice on MR1+/+ and MR1-/- backgrounds, we were able to distinguish and characterize a population of Valpha19i T cells dependent on MR1 for development. MR1-restricted Valpha19i transgenic T cells recapitulate what is known about MAIT cell development. Furthermore, a relatively high proportion of transgenic MAIT cells express NK1.1, and most have a cell surface phenotype similar to that of Valpha14i NK T cells. Finally, MR1-restricted Valpha19i T cells secrete IFN-gamma, IL-4, IL-5, and IL-10 following TCR ligation, and we provide evidence for what may be two functionally distinct MAIT cell populations. These data strongly support the idea that MAIT cells contribute to the innate immune response in the gut mucosa.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cytokines/biosynthesis
- Cytokines/metabolism
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Immunity, Innate
- Immunophenotyping
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Mice
- Mice, Transgenic
- Minor Histocompatibility Antigens
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Izumi Kawachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
11
|
Jerud ES, Bricard G, Porcelli SA. CD1d-Restricted Natural Killer T Cells: Roles in Tumor Immunosurveillance and Tolerance. Transfus Med Hemother 2006. [DOI: 10.1159/000090193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
12
|
Zajonc DM, Cantu C, Mattner J, Zhou D, Savage PB, Bendelac A, Wilson IA, Teyton L. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat Immunol 2005; 6:810-8. [PMID: 16007091 PMCID: PMC2045075 DOI: 10.1038/ni1224] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/01/2005] [Indexed: 12/20/2022]
Abstract
Natural killer T cells express a conserved, semi-invariant alphabeta T cell receptor that has specificity for self glycosphingolipids and microbial cell wall alpha-glycuronosylceramide antigens presented by CD1d molecules. Here we report the crystal structure of CD1d in complex with a short-chain synthetic variant of alpha-galactosylceramide at a resolution of 2.2 A. This structure elucidates the basis for the high specificity of these microbial ligands and explains the restriction of the alpha-linkage as a unique pathogen-specific pattern-recognition motif. Comparison of the binding of altered lipid ligands to CD1d and T cell receptors suggested that the differential T helper type 1-like and T helper type 2-like properties of natural killer T cells may originate largely from differences in their 'loading' in different cell types and hence in their tissue distribution in vivo.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigens, CD1/biosynthesis
- Antigens, CD1d
- Cell Wall/metabolism
- Crystallography, X-Ray
- Dose-Response Relationship, Drug
- Flow Cytometry
- Galactosylceramides/chemistry
- Glycosphingolipids/chemistry
- Hot Temperature
- Humans
- Isoelectric Focusing
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Ligands
- Lipids/chemistry
- Lymphocyte Activation
- Mice
- Models, Chemical
- Models, Molecular
- Mutation
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombinant Proteins/chemistry
- Structure-Activity Relationship
- Surface Plasmon Resonance
- Temperature
- Th1 Cells/metabolism
- Th2 Cells/metabolism
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- Dirk M. Zajonc
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
| | - Carlos Cantu
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
| | - Jochen Mattner
- University of Chicago, Committee on Immunology, 5841 S. Maryland Av., Chicago, IL 60637
| | - Dapeng Zhou
- University of Chicago, Committee on Immunology, 5841 S. Maryland Av., Chicago, IL 60637
| | - Paul B. Savage
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
| | - Albert Bendelac
- University of Chicago, Committee on Immunology, 5841 S. Maryland Av., Chicago, IL 60637
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
- Brigham Young University, C100 Benson Science Building, Provo, UT 84602-5700
| | - Luc Teyton
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
| |
Collapse
|
13
|
Abstract
Natural killer T (NKT) cells constitute a conserved T cell sublineage with unique properties, including reactivity for a synthetic glycolipid presented by CD1d, expression of an invariant T cell antigen receptor (TCR) alpha chain, and unusual requirements for thymic selection. They rapidly produce many cytokines after stimulation and thus influence diverse immune responses and pathogenic processes. Because of intensive research effort, we have learned much about factors promoting the development and survival of NKT cells, regulation of their cytokine production, and the means by which they influence dendritic cells and other cell types. Despite this progress, knowledge of the natural antigen(s) they recognize and their physiologic role remain incomplete. The activation of NKT cells paradoxically can lead either to suppression or stimulation of immune responses, and we cannot predict which will occur. Despite this uncertainty, many investigators are hopeful that immune therapies can be developed based on NKT cell stimulation.
Collapse
Affiliation(s)
- Mitchell Kronenberg
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| |
Collapse
|
14
|
Arrunategui-Correa V, Lenz L, Kim HS. CD1d-independent regulation of NKT cell migration and cytokine production upon Listeria monocytogenes infection. Cell Immunol 2005; 232:38-48. [PMID: 15922714 DOI: 10.1016/j.cellimm.2005.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/21/2004] [Accepted: 01/18/2005] [Indexed: 11/29/2022]
Abstract
Natural killer T (NKT) cells are a unique T-cell population that is positively selected by CD1d-expressing cells. In this study, we examined the kinetics of conventional CD4+TCRbeta+ and CD4-TCRbeta+ cells along with various NKT cell populations from WT and CD1d KO mice after oral Listeria monocytogenes (Lm) infection at different time points in tissue compartments. We found that CD4+TCRbeta+ cells expressing NK1.1+ (NKT) were constitutively expressed in the lung of both strains of mice, but disappeared after infection. In contrast, CD4-TCRbeta+ NK1.1+ cells migrated to the spleen. Here, we demonstrated that endogenous IL-12 was predominantly expressed in the spleen of CD1d KO mice 2 days after infection, whereas IL-4 was predominantly expressed in the liver of WT mice. Higher levels of IFN-gamma were expressed in MLN of CD1d KO but not in WT mice on day 5. Thus, tissue-specific ligands orchestrate the localization and activation of NKT cells to control immune response to Listeria, which may explain the difference in disease susceptibility.
Collapse
Affiliation(s)
- Victor Arrunategui-Correa
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | | | | |
Collapse
|
15
|
Prell C, Konstantopoulos N, Heinzelmann B, Frankenberger B, Reinhardt D, Schendel DJ, Krauss-Etschmann S. Frequency of Valpha24+CD161+ natural killer T cells and invariant TCRAV24-AJ18 transcripts in atopic and non-atopic individuals. Immunobiology 2004; 208:367-80. [PMID: 14748510 DOI: 10.1078/0171-2985-00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Th2 cells play a central role in type I allergies. However, the source of interleukin-4 which may lead to a Th1/Th2 imbalance is unknown. Valpha24+CD161+ Natural killer T (NKT) cells secrete high amounts of interleukin-4 and/or interferon-gamma and are assumed to participate in the initiation of Th1/Th2 immune responses. Their contribution to the development of Th2-dependent type I allergies is controversial. Our objective in this paper was to determine whether Valpha24+CD161+ NKT cells differ in atopic and non-atopic adults. Venous blood was obtained from thirteen atopic and sixteen healthy adult probands. Valpha24+CD161+ NKT cells were determined in CD4+, CD8(bright/dim) and CD4-CD8- lymphocytes by flow cytometry. At the molecular level, the amounts of T cell receptor (TCR) AV24-AJ18 transcripts were quantified with respect to TCRAV24 chain transcripts alone or to all TCR alpha chain transcripts. To detect potential inserted nucleotides in the N-region, a novel real-time PCR-based technology was applied. Both CD4+ and CD4-CD8- NKT cells were present at higher frequencies than CD8+ NKT cells in all probands. CD8(dim) NKT cell levels were lower in healthy individuals, although not statistically significantly different to the patients. Amounts of AV24-AJ18 transcripts in relation to total TCR alpha-chains and to TCRAV24 alone were equal in both proband groups. N-region diversity was detected in four clones from four different individuals, but altered the amino acid sequence in only one clone of an atopic donor. Analysis of Valpha24+CD161+ NKT cell frequencies at both the cellular and molecular levels failed to reveal significant differences in peripheral blood of atopic and non-atopic probands. If NKT cells contribute to development of type I allergies they must do so at earlier times or in other locations.
Collapse
Affiliation(s)
- Christine Prell
- Childrens Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Fleuridor R, Wilson B, Hou R, Landay A, Kessler H, Al-Harthi L. CD1d-restricted natural killer T cells are potent targets for human immunodeficiency virus infection. Immunology 2003; 108:3-9. [PMID: 12519296 PMCID: PMC1782862 DOI: 10.1046/j.1365-2567.2003.01560.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Invariant human natural killer T cells (NKT) express a restricted T-cell receptor (TCR) Valpha24Vbeta11 repertoire. These cells share both phenotypic and functional similarities between NK and T cells. Given the emerging role of NKT cells as critical cells in bridging the gap between innate and adaptive immunity, we examined their susceptibility to productive human immunodeficiency virus (HIV) infection by T-tropic, M-tropic, and primary isolates of HIV. We generated three human NKT cell clones (CA5, CA29, and CA31). Phenotypic characterization of these Valpha24+ Vbeta11+ clones indicated that they were predominately positive for CD4, CD161, HLA-DR, CD38, CD45RO, and CD95 expression. The NKT cell clones expressed significantly more surface CCR5 molecules/cell and lower CXCR4 molecules/cell than phytohaemagglutinin-stimulated peripheral blood mononuclear cells (PBMC). Consistent with the surface expression of CCR5 and CXCR4, the NKT clones were also selectively susceptible to HIV M-tropic, T-tropic, and primary isolate infection, as evaluated by both HIV p24 enzyme-linked immunosorbent assay and intracellular staining of HIV proteins. The amount of p24 production was dependent on the NKT clone studied and the HIV strain used. Clones CA29 and CA31 were also susceptible to HIV IIIB infection. The virions produced by these clones were able to productively infect PHA-stimulated PBMCs with the same kinetics as for primary infection of CD4+ blast. Collectively, this data demonstrates that NKT cells can be a target for productive HIV infection but with a lag in the time to peak p24 production.
Collapse
Affiliation(s)
- Richardson Fleuridor
- Department of Immunology/Microbiology and Division of Infectious Diseases, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
17
|
Hori S, Collette A, Demengeot J, Stewart J. A new statistical method for quantitative analyses: application to the precise quantification of T cell receptor repertoires. J Immunol Methods 2002; 268:159-70. [PMID: 12215384 DOI: 10.1016/s0022-1759(02)00187-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In experimental immunology, a situation quite commonly arises in which there are a large number of potential events but the probability of any individual event is small and one wishes to measure the number of events which actually occur. We present a new general statistical method, denoted Continuous Poisson Method (COPOM), for estimating the number of events underlying a quantitative measurement. This situation is well illustrated in the case of quantitative analyses of the immune receptor repertoire in a diverse population of cells. We show that repetition of T cell receptors (TCRs) complementarity determining region 3 (CDR3) length measurements by Immunoscope, on independent samples containing the similar numbers of cells prepared from splenocytes, results in variable profiles. When analyzed by COPOM, this variability provides direct quantification of the lymphocytes expressing any antigen receptor with a given V, J and CDR3 length inside the cell population. Using COPOM, a single dilution was sufficient to cover events over a 100-fold variation in frequency and the sensitivity of the assay was such that a single cell inside a pool of 5 x 10(4) lymphocytes could be quantified. A comparison of the frequency of splenocytes using either Vbeta14-Jbeta or the specific Vbeta8.3-Jbeta1.1 rearrangement, determined either by our or other approaches, revealed the accuracy and convenience of our method. This approach provides the first precise method able to measure the diversity of the antigen receptor repertoire inside a complex cell population by the use of a single straightforward technique.
Collapse
Affiliation(s)
- Shohei Hori
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande #6, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
18
|
Sidobre S, Kronenberg M. CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J Immunol Methods 2002; 268:107-21. [PMID: 12213347 DOI: 10.1016/s0022-1759(02)00204-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CD1 proteins constitute a third class of antigen-presenting molecules. They bind lipids rather than peptides, and the T cells reactive to lipids presented by CD1 have been implicated in the protection against autoimmune diseases and infectious microorganisms and in the immune surveillance for tumors. Thus, the ability to identify, purify, and track the response of CD1-reactive cells is of paramount importance. Previously existing methods for identifying these T cells were not based on TCR specificity, and therefore the data obtained by these methods were in some cases difficult to interpret. The recent generation of tetramers of alpha-galactosyl ceramide (alpha-GalCer) with CD1d has already permitted significant insight into the biology of NKT cells. Tetramers constructed from other CD1 molecules also have been obtained during the previous year. Collectively, these new reagents promise to greatly expand knowledge of the functions of lipid-reactive T cells, with potential use in monitoring the response to lipid-based vaccines and other treatments and in the diagnosis of autoimmune diseases.
Collapse
Affiliation(s)
- Stéphane Sidobre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
19
|
Onoé K, Iwabuchi K, Iwabuchi C, Tone S, Konishi J, Kawakami Y, Nishimura M, Onoé K. Enhanced complement sensitivity of NK-T cells in murine thymus and spleen associated with presence of serum immunoglobulin. Immunobiology 2002; 206:377-91. [PMID: 12437069 DOI: 10.1078/0171-2985-00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In vitro treatment of thymocytes and splenocytes with rabbit complement (C') alone induced significant reductions in the proportion of NK-T cells in murine system. The reduction appeared to be prominent in the thymic NK-T cells compared to that in splenic NK-T cells. No reductions were detected in other populations, such as T, B and NK cells. Thus, NK-T cells lineage-specifically showed the enhanced C' sensitivity. However, NK-T cells in T cell receptor (TCR) transgenic mice of RAG-/- background that lack B cells and antibodies exhibited no C' sensitivity. On the other hand those from the same TCR transgenic mice of RAG intact background that have a normal population of B cells and antibodies showed the C' sensitivity similar to that in normal mice. These findings suggest that the enhanced C' sensitivity observed in the NK-T cell population is associated with the NK-T specific autoantibodies. Indeed, we found that a subset of NK-T cells in the thymus bound mouse immunoglobulins. Similar observations were obtained with several strains of lupus model mice, some of which show a decrease of NK-T cells with aging. Possible roles of the enhanced C' sensitivity of NK-T cells in pathophysiological conditions in various mouse strains including lupus models are discussed.
Collapse
MESH Headings
- Animals
- Complement System Proteins/pharmacology
- Female
- Homeodomain Proteins/genetics
- Homeodomain Proteins/immunology
- Immunoglobulins/blood
- In Vitro Techniques
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lupus Erythematosus, Systemic/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred MRL lpr
- Mice, Inbred NZB
- Mice, Knockout
- Mice, Transgenic
- Rabbits
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Spleen/immunology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Kazuyuki Onoé
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sidobre S, Naidenko OV, Sim BC, Gascoigne NRJ, Garcia KC, Kronenberg M. The V alpha 14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1340-8. [PMID: 12133957 DOI: 10.4049/jimmunol.169.3.1340] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most CD1d-dependent NKT cells in mice have a canonical V alpha 14J alpha 18 TCR rearrangement. However, relatively little is known concerning the molecular basis for their reactivity to glycolipid Ags presented by CD1d. Using glycolipid Ags, soluble forms of a V alpha 14 NKT cell-derived TCR, and mutant and wild-type CD1d molecules, we probed the TCR/CD1d interaction by surface plasmon resonance, tetramer equilibrium staining, and tetramer staining decay experiments. By these methods, several CD1d alpha-helical amino acids could be defined that do not greatly alter lipid binding, but that affect the interaction with the TCR. Binding of the V alpha 14(+) TCR to CD1d requires the agonist alpha-galactosylceramide (alpha-GalCer), as opposed to the nonantigenic beta-galactosylceramide, although both Ags bind to CD1d, indicating that the carbohydrate moiety of the CD1d-bound Ag plays a major role in the TCR interaction. The TCR has a relatively high-affinity binding to the alpha-GalCer/CD1d complex, with a particularly slow off rate. These unique properties are consistent with the coreceptor-independent action of the V alpha 14 TCR and may be related to the intense response to alpha-GalCer by NKT cells in vivo.
Collapse
Affiliation(s)
- Stéphane Sidobre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
NKT cells utilize a restricted alphabeta TCR repertoire that recognizes glycolipids in association with CD1d. The recent development of fluorescent CD1d tetramers loaded with the synthetic glycolipid alpha-galactosyl-ceramide has led to a clearer definition of NKT-cell subsets as well as important insights into their developmental origin. As many as four subsets may exist, differing in NK1.1 expression, TCR repertoire and dependence on CD1d and various glycolipids for development. Two different lineage-commitment models have been proposed, with most evidence favoring a byproduct of conventional-T-cell development.
Collapse
Affiliation(s)
- H Robson MacDonald
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
22
|
Laloux V, Beaudoin L, Ronet C, Lehuen A. Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3251-8. [PMID: 11907079 DOI: 10.4049/jimmunol.168.7.3251] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NKT cells are considered unconventional T cells. First, they are restricted by a nonclassical MHC class I molecule, CD1d, which presents glycolipids; second, their TCR repertoire is very limited. After stimulation by their TCR, NKT cells rapidly release large amounts of cytokines, such as IL-4 and IFN-gamma. Little is known about NKT cells present in lymph nodes. In the present report we show that NKT cells are differently distributed in various lymph nodes and are, for instance, abundant in pancreatic and mesenteric lymph nodes of C57BL/6 mice and nonobese diabetic mice. The high frequency of NKT cells in splanchnic lymph nodes is not simply a consequence of inflammatory signals, as draining lymph nodes still contain low frequencies of NKT cells after IFA or CFA injections. NKT cells from splanchnic lymph nodes harbor a Vbeta repertoire similar to that of splenic and liver NKT cells, in contrast to peripheral NKT cells that are not biased toward Vbeta8 segments. Analysis of cytokine production by NKT cells from splanchnic lymph nodes reveals that they produce at least as much IL-4 as IFN-gamma, in contrast to NKT cells from other organs (spleen, liver, and peripheral lymph nodes), which produce much more IFN-gamma than IL-4. These specific features of NKT cells from splanchnic lymph nodes might explain their protective action against the development of pathogenic Th1 cells in type 1 diabetes.
Collapse
Affiliation(s)
- Véronique Laloux
- Institut National de la Santé et de la Recherche Médical, Unité 25, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
23
|
Mempel M, Ronet C, Suarez F, Gilleron M, Puzo G, Van Kaer L, Lehuen A, Kourilsky P, Gachelin G. Natural killer T cells restricted by the monomorphic MHC class 1b CD1d1 molecules behave like inflammatory cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:365-71. [PMID: 11751982 DOI: 10.4049/jimmunol.168.1.365] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine Valpha14(inv)T cells (NKT cells), restricted by the CD1d1 MHC 1b molecules, are a distinctive subset of T cells endowed with pleiotropic functions. CD1d1-restricted NKT cells infiltrate the granulomas induced by the s.c. injection of mycobacterial phosphatidylinositoldimannoside (PIM(2)) but not of its deacylated derivative. NKT cells are detectable as early as 6 hours following the injection. Although the molecular structure of PIM(2) meets the requirements for presentation by CD1d1, Ab blocking and adoptive transfer experiments of wild-type NKT cells into CD1d1(-/-) mice show that CD1d1 expression is not required for the early recruitment of NKT cells to the injection site. This conclusion was confirmed by the finding that IL-12Rbeta(-/-) and CD40(-/-) mice were able to recruit NKT cells after PIM(2) challenge. Moreover, the injection of alpha-galactosylceramide, an NKT cell ligand that is recognized in the context of CD1d1, promoted only a minor recruitment of NKT cells. By contrast, injection of beta-galactosylceramide, a synthetic glycolipid that binds to CD1d1 but does not activate the CD1d/TCR pathway, resulted in the development of large granulomas rich in NKT cells. Finally, local injection of TNF-alpha mimics the effect of glycolipids. It is concluded that NKT cells migrate to and accumulate at inflammatory sites in the same way as other cells of the innate immune system and that migration to and accumulation at inflammatory sites are processes independent of the CD1d1 molecule.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD1/genetics
- Antigens, CD1/physiology
- Antigens, CD1d
- CD40 Antigens/genetics
- Chemotaxis, Leukocyte
- Flow Cytometry
- Genes, T-Cell Receptor alpha
- Granuloma/immunology
- Granuloma/pathology
- Histocompatibility Antigens Class I/physiology
- Immunoglobulin Variable Region/genetics
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphatidylinositols
- Receptors, Interleukin/genetics
- Receptors, Interleukin-12
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/transplantation
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Martin Mempel
- Unité de Biologie Moléculaire du Gène, Institut National de la Santé et de la Recherche Médicale, Unité 277, Département d'Immunologie, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Exley MA, Tahir SM, Cheng O, Shaulov A, Joyce R, Avigan D, Sackstein R, Balk SP. A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5531-4. [PMID: 11698421 DOI: 10.4049/jimmunol.167.10.5531] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Murine bone marrow (BM) NK T cells can suppress graft-vs-host disease, transplant rejection, and MLRs. Human BM contains T cells with similar potential. Human BM was enriched for NK T cells, approximately 50% of which recognized the nonpolymorphic CD1d molecule. In contrast to the well-characterized blood-derived CD1d-reactive invariant NK T cells, the majority of human BM CD1d-reactive T cells used diverse TCR. Healthy donor invariant NK T cells rapidly produce large amounts of IL-4 and IFN-gamma and can influence Th1/Th2 decision-making. Healthy donor BM CD1d-reactive T cells were Th2-biased and suppressed MLR and, unlike the former, responded preferentially to CD1d(+) lymphoid cells. These results identify a novel population of human T cells which may contribute to B cell development and/or maintain Th2 bias against autoimmune T cell responses against new B cell Ag receptors. Distinct CD1d-reactive T cell populations have the potential to suppress graft-vs-host disease and stimulate antitumor responses.
Collapse
Affiliation(s)
- M A Exley
- Cancer Biology Program, Hematology/Oncology, Beth Israel-Deaconess Medical Center, Bone Marrow Transplant Program, Harvard Skin Disease Research Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Matsuda JL, Gapin L, Fazilleau N, Warren K, Naidenko OV, Kronenberg M. Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor beta repertoire and small clone size. Proc Natl Acad Sci U S A 2001; 98:12636-41. [PMID: 11592984 PMCID: PMC60106 DOI: 10.1073/pnas.221445298] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2001] [Accepted: 08/22/2001] [Indexed: 11/18/2022] Open
Abstract
CD1d-restricted natural killer (NK) T cells reactive with the glycolipid alpha-galactosylceramide (alpha-GalCer) are a distinct lymphocyte sublineage. They express an invariant Valpha14-Jalpha18 T cell receptor (TcR), but the role of the beta chain has been controversial. Here, we have used CD1d tetramers to identify and isolate NK T cells based on their antigen specificity. In mice lacking germline Vbeta8, most of the alpha-GalCer-reactive T cells express either Vbeta2 or Vbeta7, strong Vbeta selection being revealed by the lack of an increase in other Vbeta regions. By contrast to the selection for complementarity determining region (CDR) 3beta sequences in some anti-peptide responses, alpha-GalCer-reactive T cells have polyclonal CDR3beta sequences. There is little CDR3beta sequence redundancy between organs or individual mice, and, surprisingly, there also is no evidence for organ-specific CDR3beta sequence motifs. These data argue against a T cell receptor-mediated self-reactivity for tissue-specific CD1d-bound ligands. Each NKT clone is represented by only 5-10 cells. This clone size is similar to naive conventional T cells, and much lower than that reported for memory T cells, although NK T cells have an activated/memory phenotype.
Collapse
Affiliation(s)
- J L Matsuda
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ohwatari R, Iwabuchi K, Iwabuchi C, Morohashi T, Sawa H, Hioki K, Kobayashi K, Fukuda S, Inuyama Y, Onoé K. Developmental and functional analyses of CD8(+) NK1.1(+) T cells in class-I-restricted TCR transgenic mice. Cell Immunol 2001; 213:24-33. [PMID: 11747353 DOI: 10.1006/cimm.2001.1862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a class-I-restricted T cell receptor (TCR) transgenic mice (Tgm), 2C (Valpha3.1/Vbeta 8.2, specific for L(d) + LSPFPFDL), the development and cytokine production of tg-TCR(+) NKT cells were analyzed. We found that CD8(+) or double negative (DN) NKT cells constituted a major population of NKT cells in the H-2(b/b) 2C Tgm (positive selecting background) or the H-2(b/d) 2C Tgm (negative selecting background), respectively. Virtually no NKT cells were generated in the H-2(k/k) 2C Tgm (neutral selecting background). CD8(+) NKT cells in the H-2(b/b) 2C Tgm expressed CD8alphabeta heterodimers, whereas those in the H-2(b/d) 2C Tgm expressed CD8alphaalpha homodimers. These findings suggest that development of a subpopulation of NKT cells is influenced by the H-2 molecules. Upon stimulation with anti-CD3 mAb, tg-TCR(+) NKT cells generated in the H-2(b/b) and H-2(b/d) backgrounds produced IFN-gamma, but not IL-4.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens, Ly
- Antigens, Surface
- CD8-Positive T-Lymphocytes/immunology
- Cell Membrane/immunology
- Cells, Cultured
- DNA-Binding Proteins/immunology
- H-2 Antigens/immunology
- Homeodomain Proteins/immunology
- Immunophenotyping
- Interferon-gamma/biosynthesis
- Interleukin-4/biosynthesis
- Lectins, C-Type
- Liver/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- NK Cell Lectin-Like Receptor Subfamily B
- Proteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Spleen/cytology
- Spleen/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- R Ohwatari
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gilleron M, Ronet C, Mempel M, Monsarrat B, Gachelin G, Puzo G. Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guérin and ability to induce granuloma and recruit natural killer T cells. J Biol Chem 2001; 276:34896-904. [PMID: 11441009 DOI: 10.1074/jbc.m103908200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have found that, when injected into mice, glycolipidic fractions of mycobacterial cell walls containing phosphatidylinositol mannosides (PIM) induced a granuloma and recruitment of Natural Killer T cells in the lesions. The dimannoside (PIM(2)) and the hexamannoside (PIM(6)) PIM were isolated from Mycobacterium bovis bacillus Calmette Guérin and shown to act alike, but the activity was found to be dependent on the presence of the lipidic part. The chemical structure of PIM was then re-evaluated, focusing on the characterization of their lipidic part, defining mono- to tetra-acylated PIM(2). The structure of these acyl forms was elucidated using a sophisticated combination of chemical degradations and analytical tools including electrospray ionization/mass spectrometry, electrospray ionization/mass spectrometry/mass spectrometry, and two-dimensional NMR. Finally, the acyl forms were purified by hydrophobic interaction chromatography and tested for their capacity to induce the granuloma and Natural Killer T cell recruitment. We found that there is an absolute requirement for the molecules to possess at least one fatty acyl chain, but the number, location, and size of the acyl chains was without effect. Moreover, increasing the complexity of the carbohydrate moiety did not lead to significant differences in the biological responses.
Collapse
Affiliation(s)
- M Gilleron
- Institut de Pharmacologie et de Biologie Structurale du CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex, France.
| | | | | | | | | | | |
Collapse
|
28
|
Ronet C, Mempel M, Thieblemont N, Lehuen A, Kourilsky P, Gachelin G. Role of the complementarity-determining region 3 (CDR3) of the TCR-beta chains associated with the V alpha 14 semi-invariant TCR alpha-chain in the selection of CD4+ NK T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1755-62. [PMID: 11160221 DOI: 10.4049/jimmunol.166.3.1755] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The NK1.1(+)TCRalphabeta(int) CD4(+), or double negative T cells (NK T cells) consist of a mixture of CD1d-restricted and CD1d-unrestricted cells. The relationships between CD4(+)NK1.1(+) T cells and conventional T cells are not understood. To compare their respective TCR repertoires, NK1.1(+)TCRalphabeta(int), CD4(+) T cells have been sorted out of the thymus, liver, spleen, and bone marrow of C57BL/6 mice. Molecular analysis showed that thymus and liver used predominantly the Valpha14-Jalpha281 and Vbeta 2, 7, and 8 segments. These cells are CD1d restricted and obey the original definition of NK T cells. The complementarity-determining region 3 (CDR3) sequences of the TCR Vbeta8.2-Jbeta2.5 chain of liver and thymus CD4(+) NK T cells were determined and compared with those of the same rearrangements of conventional CD4(+) T cells. No amino acid sequence or usage characteristic of NK T cells could be evidenced: the Vbeta8.2-Jbeta2.5 diversity regions being primarily the same in NK T and in T cells. No clonal expansion of the beta-chains was observed in thymus and liver CD1d-restricted CD4(+)NK T cells, suggesting the absence of acute or chronic Ag-driven stimulation. Molecular analysis of the TCR used by Valpha14-Jalpha281 transgenic mice on a Calpha(-/-) background showed that the alpha-chain can associate with beta-chains using any Vbeta segment, except in NK T cells in which it paired predominately with Vbeta 2, 7, and 8(+) beta-chains. The structure of the TCR of NK T cells thus reflects the affinity for the CD1d molecule rather than a structural constraint leading to the association of the invariant alpha-chain with a distinctive subset of Vbeta segment.
Collapse
MESH Headings
- Animals
- Antigens/biosynthesis
- Antigens, Ly
- Antigens, Surface
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- CD4 Antigens/biosynthesis
- Cell Separation
- Clone Cells
- Gene Expression Regulation/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- Genes, T-Cell Receptor alpha/immunology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Liver/cytology
- Liver/immunology
- Liver/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- NK Cell Lectin-Like Receptor Subfamily B
- Organ Specificity/immunology
- Protein Biosynthesis
- Proteins
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- C Ronet
- Unité de Biologie Moléculaire du Gène, Département d'Immunologie, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Laouini D, Casrouge A, Dalle S, Lemonnier F, Kourilsky P, Kanellopoulos J. V beta T cell repertoire of CD8+ splenocytes selected on nonpolymorphic MHC class I molecules. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6381-6. [PMID: 11086076 DOI: 10.4049/jimmunol.165.11.6381] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this work, we have studied the role of the MHC class Ib molecules in the selection and maintenance of CD8(+) T splenocytes. We have compared the CD8(+) T cell repertoires of wild-type, H-2K-deficient, H-2D-deficient, or double knockout C57BL/6 mice. We show that the different CD8(+) repertoires, selected either by class Ia and class Ib or by class Ib molecules only, use the various V alpha (AV) and V beta (BV) rearrangements in the same proportion and without biases in the CDR3 size distribution. Furthermore, we have estimated the size of the BV repertoire in the four different strains of mice. Interestingly, we have found that the BV repertoire size is proportional to the overall number of CD8(+) splenocytes. This observation implies that BV diversity is positively correlated with the number of CD8(+) cells, even when the number of CD8(+) splenocytes is dramatically reduced (90% in the double knockout mice).
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Clone Cells
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- H-2 Antigens/biosynthesis
- H-2 Antigens/genetics
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Polymorphism, Genetic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- D Laouini
- Laboratoire de Biologie Moléculaire du Gène, Institut National de la Santé et de la Recherche Médicale U277-Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Bouneaud C, Kourilsky P, Bousso P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 2000; 13:829-40. [PMID: 11163198 DOI: 10.1016/s1074-7613(00)00080-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
How negative selection shapes a polyclonal population of self-reactive T cells has been difficult to address directly because of the lack of means to isolate T cells reactive to a particular self-peptide. Here, using mice transgenic for the TCR-beta chain of a CTL clone directed against a male-specific peptide, we compared the preimmune repertoire reactive to this peptide in male and female animals. Surprisingly, in the presence of the deleting ligand, as many as 25%-40% of reactive T cells escaped clonal deletion. A correlation was found between T cell avidity, TCRalpha structures, and susceptibility to negative selection. These results suggest that numerous low-affinity self-specific T cells persist in the periphery and show that a deleting ligand can specifically narrow the structural diversity of the TCR repertoire.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- Clone Cells
- DNA, Complementary
- Female
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Immunophenotyping
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Peptides/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- C Bouneaud
- Unité de Biologie Moléculaire du Gène, INSERM U277, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
31
|
Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. IMMUNOLOGY TODAY 2000; 21:573-83. [PMID: 11094262 DOI: 10.1016/s0167-5699(00)01735-7] [Citation(s) in RCA: 626] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The proposed roles of NK1.1(+) T (NKT) cells in immune responses range from suppression of autoimmunity to tumor rejection. Heterogeneity of these cells contributes to the controversy surrounding their development and function. This review aims to provide an update on NKT cell biology and, whenever possible, to compare what is known about NKT-cell subsets.
Collapse
Affiliation(s)
- D I Godfrey
- Dept of Pathology and Immunology, Monash University Medical School, Commercial Road, VIC. 3181, Prahran, Australia.
| | | | | | | | | |
Collapse
|