1
|
CCR2 signaling in breast carcinoma cells promotes tumor growth and invasion by promoting CCL2 and suppressing CD154 effects on the angiogenic and immune microenvironments. Oncogene 2019; 39:2275-2289. [PMID: 31827233 PMCID: PMC7071973 DOI: 10.1038/s41388-019-1141-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is the second leading cause of cancer related deaths for women, due mainly to metastatic disease. Invasive tumors exhibit aberrations in recruitment and activity of immune cells, including decreased cytotoxic T cells. Restoring the levels and activity of cytotoxic T cells is a promising anti-cancer strategy; but its success is tumor type-dependent. The mechanisms that coordinate recruitment and activity of immune cells and other stromal cells in breast cancer remain poorly understood. Using the MMTV-PyVmT/FVB mammary tumor model, we demonstrate a novel role for CCL2/CCR2 chemokine signaling in tumor progression by altering the microenvironment. Selective targeting of CCR2 in the PyVmT mammary epithelium inhibited tumor growth and invasion, elevated CD8+ T cells, decreased M2 macrophages and decreased angiogenesis. Co-culture models demonstrated these stromal cell responses were mediated by tumor derived CCL2 and CCR2-mediated suppression of the T cell activating cytokine, CD154. Co-culture analysis indicated that CCR2-induced stromal reactivity was important for tumor cell proliferation and invasion. In breast tumor tissues, CD154 expression inversely correlated with CCR2 expression and correlated with relapse free survival. Targeting the CCL2/CCR2 signaling pathway may reprogram the immune angiogenic and microenvironments and enhance effectiveness of targeted and immuno-therapies.
Collapse
|
2
|
The 3'-UTR (CA)n microsatellite on CD40LG gene as a possible genetic marker for rheumatoid arthritis in Mexican population: impact on CD40LG mRNA expression. Clin Rheumatol 2017; 37:345-353. [PMID: 28963582 DOI: 10.1007/s10067-017-3853-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022]
Abstract
The objective of this study was to determine the association of the CD40LG 3'-UTR (CA)n microsatellite with rheumatoid arthritis (RA) and CD40LG mRNA levels in females from western Mexico. A case-control study with 219 RA patients and 175 control subjects (CS) was conducted. Genotyping was performed by polymerase chain reaction (PCR), X 2 test was used to compare genotype and allele frequencies, and odds ratios and 95% confidence intervals were calculated to evaluate the association between RA and the microsatellite. CD40LG mRNA expression was assessed by real-time quantitative PCR. For comparisons between groups, Kruskal-Wallis or Mann-Whitney U tests for non-parametric data and ANOVA test for parametric data were performed. Among the 13 different alleles identified, CA25 was the most represented (45.4% RA and 46.3% CS). Stratification according to CA repeats as <CA25, CA25, and >CA25 showed a tendency towards a higher frequency of >CA25 alleles in RA patients (29%) compared to CS (23.4%). There was no association between any genotype and the clinical parameters of RA patients. According to the 2-∆∆Cq method, CD40LG mRNA expression in RA patients was 4.5-fold higher compared to CS; this difference was significant when assessed by the 2-∆Cq method (p = 0.028). Compared to carriers of the CA25/CA25 genotype, CS carrying the <CA25/<CA25 genotypes showed greater CD40LG mRNA expression (9.97-fold), unlike RA patients, where expression was 2.55-fold higher for >CA25/>CA25 carriers. The 3'-UTR CD40LG (CA)n microsatellite is not a genetic marker for RA in western Mexican population; however, results suggest that it plays a role in the CD40LG mRNA expression.
Collapse
|
3
|
La Porta J, Matus-Nicodemos R, Valentín-Acevedo A, Covey LR. The RNA-Binding Protein, Polypyrimidine Tract-Binding Protein 1 (PTBP1) Is a Key Regulator of CD4 T Cell Activation. PLoS One 2016; 11:e0158708. [PMID: 27513449 PMCID: PMC4981342 DOI: 10.1371/journal.pone.0158708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that the RNA binding protein, polypyrimidine tract-binding protein (PTBP1) plays a critical role in regulating the expression of CD40L in activated CD4 T cells. This is achieved mechanistically through message stabilization at late times of activation as well as by altered distribution of CD40L mRNA within distinct cellular compartments. PTBP1 has been implicated in many different processes, however whether PTBP1 plays a broader role in CD4 T cell activation is not known. To examine this question, experiments were designed to introduce shRNA into primary human CD4 T cells to achieve decreased, but not complete ablation of PTBP1 expression. Analyses of shPTB-expressing CD4 T cells revealed multiple processes including cell proliferation, activation-induced cell death and expression of activation markers and cytokines that were regulated in part by PTBP1 expression. Although there was an overall decrease in the steady-state level of several activation genes, only IL-2 and CD40L appeared to be regulated by PTBP1 at the level of RNA decay suggesting that PTBP1 is critical at different regulatory steps of expression that is gene-specific. Importantly, even though the IL-2 protein levels were reduced in cells with lowered PTBP1, the steady-state level of IL-2 mRNA was significantly higher in these cells suggesting a block at the translational level. Evaluation of T cell activation in shPTB-expressing T cells revealed that PTBP1 was linked primarily to the activation of the PLCγ1/ERK1/2 and the NF-κB pathways. Overall, our results reveal the importance of this critical RNA binding protein in multiple steps of T cell activation.
Collapse
Affiliation(s)
- James La Porta
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Rodrigo Matus-Nicodemos
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Aníbal Valentín-Acevedo
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
4
|
Domingues RG, Lago-Baldaia I, Pereira-Castro I, Fachini JM, Oliveira L, Drpic D, Lopes N, Henriques T, Neilson JR, Carmo AM, Moreira A. CD5 expression is regulated during human T-cell activation by alternative polyadenylation, PTBP1, and miR-204. Eur J Immunol 2016; 46:1490-503. [PMID: 27005442 DOI: 10.1002/eji.201545663] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 01/29/2023]
Abstract
T lymphocytes stimulated through their antigen receptor (TCR) preferentially express mRNA isoforms with shorter 3´ untranslated regions (3´-UTRs) derived from alternative pre-mRNA cleavage and polyadenylation (APA). However, the physiological relevance of APA programs remains poorly understood. CD5 is a T-cell surface glycoprotein that negatively regulates TCR signaling from the onset of T-cell activation. CD5 plays a pivotal role in mediating outcomes of cell survival or apoptosis, and may prevent both autoimmunity and cancer. In human primary T lymphocytes and Jurkat cells we found three distinct mRNA isoforms encoding CD5, each derived from distinct poly(A) signals (PASs). Upon T-cell activation, there is an overall increase in CD5 mRNAs with a specific increase in the relative expression of the shorter isoforms. 3´-UTRs derived from these shorter isoforms confer higher reporter expression in activated T cells relative to the longer isoform. We further show that polypyrimidine tract binding protein (PTB/PTBP1) directly binds to the proximal PAS and PTB siRNA depletion causes a decrease in mRNA derived from this PAS, suggesting an effect on stability or poly(A) site selection to circumvent targeting of the longer CD5 mRNA isoform by miR-204. These mechanisms fine-tune CD5 expression levels and thus ultimately T-cell responses.
Collapse
Affiliation(s)
- Rita G Domingues
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Inês Lago-Baldaia
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Isabel Pereira-Castro
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Joseph M Fachini
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Liliana Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Cell Activation and Gene Expression Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Danica Drpic
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Nair Lopes
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Telmo Henriques
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Alexandre M Carmo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Cell Activation and Gene Expression Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
5
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
6
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
7
|
Matus-Nicodemos R, Vavassori S, Castro-Faix M, Valentin-Acevedo A, Singh K, Marcelli V, Covey LR. Polypyrimidine tract-binding protein is critical for the turnover and subcellular distribution of CD40 ligand mRNA in CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:2164-71. [PMID: 21242519 DOI: 10.4049/jimmunol.1003236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD40L (CD154) is regulated at the posttranscriptional level by an activation-induced process that results in a highly stable transcript at extended times of T cell activation. Transcript stability is mediated by polypyrimidine tract-binding protein (PTB)-containing complexes (complex I and II) that bind to three adjacent CU-rich sequences within the 3' untranslated region. To assess the role of PTB in the expression and distribution of CD40L mRNA, PTB was targeted using short hairpin RNA in both primary T cells and a T cell line that recapitulates the stability phase of regulated CD40L mRNA decay. PTB knockdown resulted in a marked decrease in the mRNA stability that resulted in lowered CD40L surface expression. PTB was also critical for appropriate distribution of CD40L mRNA between the nucleus and cytoplasm and in the cytoplasm between the cytosol and the translating polysomes. The activation-induced formation of PTB-specific ribonucleoprotein complexes was observed only with cytoplasmic and not nuclear PTB indicating functional differences in the protein defined by cellular localization. Finally, we observed that cytoplasmic and nuclear PTB isoforms were differentially modified relative to each other and that the changes in cytoplasmic PTB were consistent with activation-induced phosphorylation. Together this work suggests that differentially modified PTB regulates CD40L expression at multiple steps by 1) retaining CD40L mRNA in the nucleus, 2) directly regulating mRNA stability at late times of activation, and 3) forming a ribonuclear complex that preferentially associates with translating ribosomes thus leading to an enhanced level of CD40L protein.
Collapse
|
8
|
Vavassori S, Shi Y, Chen CC, Ron Y, Covey LR. In vivo post-transcriptional regulation of CD154 in mouse CD4+ T cells. Eur J Immunol 2009; 39:2224-32. [PMID: 19572319 DOI: 10.1002/eji.200839163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Interactions between CD40 and its ligand CD154 are involved in the progression of both cell mediated and innate immunity. These interactions are brought about by the transient expression of CD154 on activated CD4(+) T cells, which is regulated, in part, at the level of mRNA turnover. Here we have focused on analyzing the pattern of post-transcriptional regulation in mouse CD4(+) T cells in response to activation. Initial experiments identify a region of the murine CD154 mRNA that binds a polypyrimidine tract-binding protein-containing complex (mComplex I), which is activation-dependent and binds to a single CU-rich site within the 3' uTR Subsequent findings demonstrate that in vivo polyclonal activation of T cells leads to a pattern of differential CD154 mRNA stability that is directly dependent on extent of activation. Furthermore, in vitro activation of antigen-primed T cells shows that the CD154 mRNA half-life increases relative to that of unprimed cells. Importantly, this is the first report demonstrating that the regulation of CD154 in vivo is connected to an activation-induced program of mRNA decay and thus provides strong evidence for post-transcriptional mechanisms having a physiological role in regulating CD154 expression during an ongoing immune response.
Collapse
Affiliation(s)
- Stefano Vavassori
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
9
|
Vavassori S, Covey LR. Post-transcriptional regulation in lymphocytes: the case of CD154. RNA Biol 2009; 6:259-65. [PMID: 19395873 DOI: 10.4161/rna.6.3.8581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The control of mRNA decay is emerging as an important control point and a major contributor to gene expression in both immune and non-immune cells. The identification of protein factors and cis-acting elements responsible for transcript degradation has illuminated a comprehensive picture of precisely orchestrated events required to both regulate and establish the decay process. One gene that is highly regulated at the post-transcriptional level is CD40 ligand (CD154 or CD40L). CD154 on CD4(+) T cells is tightly controlled by an interacting network of transcriptional and post-transcriptional processes that result in precise surface levels of protein throughout an extended time course of antigen stimulation. The activation-induced stabilization of the CD154 transcript by a polypyrimidine tract-binding protein (PTB)-complex is a key event that corresponds to the temporal expression of CD154. In this review, we discuss known and potential roles of major mRNA decay pathways in lymphocytes and focus on the unique post-transcriptional mechanisms leading to CD154 expression by activated CD4(+) T cells.
Collapse
Affiliation(s)
- Stefano Vavassori
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
10
|
Tcherepanova IY, Adams MD, Feng X, Hinohara A, Horvatinovich J, Calderhead D, Healey D, Nicolette CA. Ectopic expression of a truncated CD40L protein from synthetic post-transcriptionally capped RNA in dendritic cells induces high levels of IL-12 secretion. BMC Mol Biol 2008; 9:90. [PMID: 18928538 PMCID: PMC2576345 DOI: 10.1186/1471-2199-9-90] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 10/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA transfection into dendritic cells (DCs) is widely used to achieve antigen expression as well as to modify DC properties. CD40L is expressed by activated T cells and interacts with CD40 receptors expressed on the surface of the DCs leading to Th1 polarization. Previous studies demonstrated that ectopic CD40L expression via DNA transfection into DCs can activate the CD40 receptor signal transduction cascade. In contrast to previous reports, this study demonstrates that the same effect can be achieved when RNA encoding CD40L is electroporated into DCs as evidenced by secretion of IL-12. To achieve higher levels of IL-12 secretion, a systematic approach involving modification of coding and noncoding regions was implemented to optimize protein expression in the DCs for the purpose of increasing IL-12 secretion. RESULTS Site-directed mutagenesis of each of the first five in-frame methionine codons in the CD40L coding sequence demonstrated that DCs expressing a truncated CD40L protein initiated from the second methionine codon secreted the highest levels of IL-12. In addition, a post-transcriptional method of capping was utilized for final modification of the CD40L RNA. This method enzymatically creates a type I cap structure identical to that found in most eukaryotic mRNAs, in contrast to the type 0 cap incorporated using the conventional co-transcriptional capping reaction. CONCLUSION The combination of knocking out the first initiation methionine and post-transcriptional capping of the CD40L RNA allowed for approximately a one log increase in IL-12 levels by the transfected DCs. We believe this is a first report describing improved protein expression of post-transcriptionally capped RNA in DCs. The post-transcriptional capping which allows generation of a type I cap may have broad utility for optimization of protein expression from RNA in DCs and other cell types.
Collapse
|
11
|
Porter JF, Vavassori S, Covey LR. A polypyrimidine tract-binding protein-dependent pathway of mRNA stability initiates with CpG activation of primary B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:3336-45. [PMID: 18714005 DOI: 10.4049/jimmunol.181.5.3336] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mRNA encoding CD154, a critical protein involved in both humoral and cell-mediated immune responses, is regulated at the posttranscriptional level by the binding of complex I, a polypyrimidine tract-binding (PTB) protein-containing complex, which acts to increase message stability at late times of activation. Our current work focuses on analyzing a similar complex in B cells, designated B-cpx I, which is increased in B cells activated by CpG engagement of the TLR9 receptor but not by activation through CD40. Expression profiling of transcripts from primary B cells identified 31 mRNA transcripts with elevated PTB binding upon activation. Two of these transcripts, Rab8A and cyclin D(2), contained binding sites for B-cpx I in their 3' untranslated regions (UTRs). Analysis of turnover of endogenous Rab8A transcript in B cells revealed that like CD154, the mRNA half-life increased following activation and insertion of the Rab8A B-cpx I binding site into a heterologous transcript led to a 3-fold increase in stability. Also, short hairpin RNA down-regulation of PTB resulted in a corresponding decrease in Rab8A mRNA half-life. Overall these data strongly support a novel pathway of mRNA turnover that is expressed both in T cells and B cells and depends on the formation of a PTB-containing stability complex in response to cellular activation.
Collapse
Affiliation(s)
- Joseph F Porter
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | | | | |
Collapse
|
12
|
Laughlin J, Oghlidos S, Porter JF, Matus-Nicodemos R, Sinquett FL, Marcelli V, Covey LR. Functional analysis of a tripartite stability element within the CD40 ligand 3' untranslated region. Immunology 2008; 124:368-79. [PMID: 18194270 DOI: 10.1111/j.1365-2567.2007.02783.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We previously identified a cis-acting element within the 3' untranslated region of CD40 ligand messenger RNA (mRNA) that is composed of three complex binding sites and acts to increase mRNA stability in both in vitro and in vivo systems. We now demonstrate the functional consequences of the three binding sites with respect to increasing both luciferase activity and mRNA stability in a heterologous transcript expressed in a T-cell line. The internal region B was shown to be a bona fide stability element because its presence increased luciferase activity fourfold over the unmodified transcript and its removal from the XbaI-HaeIII region resulted in rapid degradation of the transcript. Region A contained both a binding site for a polypyrimidine-tract-binding protein (PTB)-mediated complex (Complex I) and an upstream, adjacent sequence that was a negative regulator of mRNA stability. Region C bound Complex II, which contained both PTB and heterogeneous nuclear ribonucleoproteinL (hnRNPL), and was less effective as a stability element on its own compared to region B. Our findings demonstrate differential levels of activity for the three binding sites relative to the turnover of CD40 ligand mRNA, suggesting that the lack of binding of Complex I/II during the early stages of T-cell activation contributes to the rapid degradation of the CD40 ligand mRNA transcript.
Collapse
Affiliation(s)
- Jennifer Laughlin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Martin-Donaire T, Losada-Fernandez I, Perez-Chacon G, Rua-Figueroa I, Erausquin C, Naranjo-Hernandez A, Rosado S, Sanchez F, Garcia-Saavedra A, Citores MJ, Vargas JA, Perez-Aciego P. Association of the microsatellite in the 3' untranslated region of the CD154 gene with rheumatoid arthritis in females from a Spanish cohort: a case-control study. Arthritis Res Ther 2007; 9:R89. [PMID: 17845713 PMCID: PMC2212561 DOI: 10.1186/ar2288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 08/14/2007] [Accepted: 09/10/2007] [Indexed: 02/08/2023] Open
Abstract
CD40-CD154 interaction is an important mediator of inflammation and has been implicated in T helper type 1-mediated autoimmune diseases including rheumatoid arthritis (RA). Linkage studies have shown association of markers in the proximity of the CD154 gene. In the present work we investigated whether specific allele variants of the microsatellite in the 3' UTR of the CD154 gene might modulate the risk of RA. The study, in a case-control setting, included 189 patients and 150 healthy controls from the Canary Islands, Spain. The 24CAs allele was less represented in female patients than in controls (0.444 in controls versus 0.307 in patients, P = 0.006, odds ratio (OR) 0.556, 95% confidence interval (CI) 0.372 to 0.831) but not in males (0.414 versus 0.408), and only when homozygous (P = 0.012; OR 0.35, 95% CI 0.16 to 0.77). We also verified that CD154 association with RA was independent of human leukocyte antigen (HLA) phenotype. A further functional study showed that after stimulation anti-CD3, CD154 mRNA was more stable in CD4+ T lymphocytes from patients with RA bearing the 24CAs allele (mRNA half-life 208 minutes) than in patients without the 24CAs allele (109 minutes, P = 0.009). However, a lower percentage of CD154+CD4+ T lymphocytes was seen in freshly isolated peripheral blood mononuclear cells from patients carrying 24CAs alleles (mean 4.28 versus 8.12; P = 0.033), and also in CD4+ T lymphocytes stimulated with anti-CD3 (median 29.40 versus 47.60; P = 0.025). These results were concordant with the smaller amounts of CD154 mRNA isolated from stimulated T lymphocytes with 24CAs alleles. The CD154 microsatellite therefore seems to affect the expression of the gene in a complex manner that implies not only mRNA stability. These data suggest that the CD154 microsatellite contributes to the regulation of mRNA and protein expression, although further studies will be necessary to elucidate its role in disease predisposition.
Collapse
Affiliation(s)
- Trinidad Martin-Donaire
- Fundacion LAIR, Madrid, Spain
- Servicio de Medicina Interna I, Hospital Universitario Puerta de Hierro, Universidad Autonoma de Madrid, C/San Martin de Porres 4, 28035 Madrid, Spain
| | | | | | - Iñigo Rua-Figueroa
- Servicio de Reumatologia, Hospital Universitario de Gran Canaria Doctor Negrin, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain
| | - Celia Erausquin
- Servicio de Reumatologia, Hospital Universitario de Gran Canaria Doctor Negrin, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain
| | - Antonio Naranjo-Hernandez
- Servicio de Reumatologia, Hospital Universitario de Gran Canaria Doctor Negrin, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain
| | | | - Florentino Sanchez
- Servicio de Inmunologia, Hospital Universitario de Gran Canaria Doctor Negrin, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain
| | - Ayoze Garcia-Saavedra
- Servicio de Inmunologia, Hospital Universitario de Gran Canaria Doctor Negrin, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain
| | - Maria Jesus Citores
- Servicio de Medicina Interna I, Hospital Universitario Puerta de Hierro, Universidad Autonoma de Madrid, C/San Martin de Porres 4, 28035 Madrid, Spain
| | - Juan A Vargas
- Servicio de Medicina Interna I, Hospital Universitario Puerta de Hierro, Universidad Autonoma de Madrid, C/San Martin de Porres 4, 28035 Madrid, Spain
| | | |
Collapse
|
14
|
Singh K, Laughlin J, Kosinski PA, Covey LR. Nucleolin is a second component of the CD154 mRNA stability complex that regulates mRNA turnover in activated T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 173:976-85. [PMID: 15240685 DOI: 10.4049/jimmunol.173.2.976] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD154 (CD40L) mRNA turnover is regulated in part at the posttranscriptional level by a protein complex (termed Complex I) that binds to a highly CU-rich region of the 3'UTR. Polypyrimidine tract-binding protein (PTB) has previously been identified as a major RNA-binding protein in Complex I. Nondenaturing gel filtration of total extract from Jurkat T cells demonstrated that the CD154 mRNA-binding activity migrates as a approximately 200-kDa complex, indicating the presence of multiple complex-associated proteins. We have currently undertaken a biochemical approach to further characterize Complex I and observed that it segregates over DEAE-Sepharose into two subcomplexes (termed I-L and I-U). Furthermore, nucleolin was identified as a component of both subcomplexes and was shown that it is the major RNA-binding protein in I-U. To directly demonstrate the biological significance of Complex I binding to the CD154 transcript, cytoplasm from human Jurkat cells was fractionated over a sucrose gradient and the different cellular fractions subjected to immunoprecipitation with anti-PTB and anti-nucleolin Abs. RT-PCR of the immunoprecipitated products using CD154-specific primers clearly demonstrated that nucleolin and PTB are associated with CD154 mRNA in both the ribonucleoprotein and polysome fractions. These data strongly support a model whereby nucleolin and PTB are integral to the stability of CD154 mRNA and are components of the CD154 ribonucleoprotein particle associated with actively translating ribosomes.
Collapse
Affiliation(s)
- Karnail Singh
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The CD154-CD40 ligand pair interaction plays a central role in both induction of the immune response and in immune effector functions. Indeed, many animal disease models and human autoimmune diseases have demonstrated a central role for CD154 expression. The expression of CD154 is very tightly regulated by the immune system through a number of non-redundant overlapping mechanisms that ensure its limited initial induction, along with its temporal maintenance and rapid elimination from the cell surface, and its functional neutralization by the release of soluble CD40. In this review, we discuss the current state of understanding of CD154 regulation during the activation of the immune system and describe numerous strategic mechanisms by which modulation of CD154-CD40 interactions may be applied to treat autoimmune disease.
Collapse
Affiliation(s)
- Laurence M Howard
- Department of Microbiology--Immunology, Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
16
|
Abstract
CD154 (CD40-ligand) has a wide variety of pleiotropic effects throughout the immune system and is critical to both cellular and humoral immunity. Cell surface and soluble CD154 are primarily expressed by activated CD4 T cells. Expression of CD154 is tightly regulated in a time-dependent manner, and, like most T cell-derived cytokines and other members of the tumor necrosis factor (TNF) superfamily, CD154 is largely regulated at the level of gene transcription. Recently, dysregulated expression of CD154 has been noted in a number of autoimmune disorders, including systemic lupus erythematosus (SLE). In addition, abnormal expression of CD154 has been hypothesized to contribute to a wider array of diseases, from atherosclerosis to Alzheimer's disease. Until recently, very little was known about the transcriptional regulation of CD154. We are exploring CD154 regulation in primary human CD4 T cells in hopes of understanding the cis- and trans-regulatory elements that control its expression in the cells that normally express CD154. Ultimately, we hope to be able to correct abnormal expression of CD154 in various disease states and to help design gene therapy vectors for treating CD154-deficient individuals with hyper-IgM syndrome.
Collapse
Affiliation(s)
- Randy Q Cron
- Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| |
Collapse
|
17
|
Citores MJ, Rua-Figueroa I, Rodriguez-Gallego C, Durántez A, García-Laorden MI, Rodríguez-Lozano C, Rodríguez-Pérez JC, Vargas JA, Pérez-Aciego P. The dinucleotide repeat polymorphism in the 3'UTR of the CD154 gene has a functional role on protein expression and is associated with systemic lupus erythematosus. Ann Rheum Dis 2004; 63:310-7. [PMID: 14962968 PMCID: PMC1754911 DOI: 10.1136/ard.2003.006148] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the association of the (CA)n dinucleotide repeat in the 3' untranslated region (3'UTR) of the CD154 gene with systemic lupus erythematosus (SLE), and its functional role in protein expression. METHODS The allelic and genotypic distributions of the polymorphism were compared in 80 patients with SLE and 80 controls. A complete clinical and analytical database was recorded in each patient in order to correlate the clinical manifestations in SLE with different alleles. To investigate the functional role of the polymorphism, the CD154 protein expression on activated lymphocytes from healthy homozygous controls was evaluated by flow cytometry. RESULTS The 24 CA allele was the most represented in controls (p = 0.029), whereas the alleles containing >24 CA repeats were found in patients (p = 0.0043). Furthermore, when only homozygous women were considered, most controls carried two 24 CA alleles (p = 0.041), whereas most patients carried two alleles containing >24 CA repeats (p = 0.032). Also, patients carrying at least one 24 CA allele had less neurological involvement (p = 0.034), and carriers of at least one allele with fewer than 24 CA repeats presented more livedo reticularis (p = 0.006) and anti-Sm (p = 0.01) and anti-RNP (p = 0.038) autoantibodies. CD154 maximum expression in activated lymphocytes from all controls was reached after 54 hours, but it was more prolonged in controls carrying two alleles with >24 CA repeats (p = 0.0068). CONCLUSION The CD154 3'UTR microsatellite is associated with SLE, and the most represented alleles in patients were accompanied by a more prolonged protein expression in activated lymphocytes from controls.
Collapse
|
18
|
Zhang R, Fichtenbaum CJ, Hildeman DA, Lifson JD, Chougnet C. CD40 Ligand Dysregulation in HIV Infection: HIV Glycoprotein 120 Inhibits Signaling Cascades Upstream of CD40 Ligand Transcription. THE JOURNAL OF IMMUNOLOGY 2004; 172:2678-86. [PMID: 14764743 DOI: 10.4049/jimmunol.172.4.2678] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-12 production and up-regulation of CD40 ligand (CD40L) expression are impaired in the PBMC of HIV-infected donors, and exogenous CD40L rescues IL-12 production by such cells. In this study, we implicate dysregulation of CD40L expression in the IL-12 defect associated with HIV by demonstrating that induction of CD40L expression by anti-CD3/CD28 stimulation was directly correlated with the IL-12 productive capacity of PBMC. Further, we demonstrate marked decreases in the induction of CD40L protein and mRNA following anti-CD3/CD28 stimulation in HIV-infected donors compared with uninfected donors, with a tight association between these two levels. Inhibition of CD40L up-regulation was selective, as induction of CD69 or OX40 was not as severely affected. Increased instability of CD40L mRNA did not constitute a major mechanism in CD40L dysregulation, thus suggesting a potential defect in the signaling cascades upstream of transcription. The mechanisms by which HIV infection affects the induction of CD40L expression appear to involve HIV gp120-mediated engagement of CD4. Indeed, anti-CD4 mAb or inactivated HIV virions that harbor a conformationally intact gp120 significantly inhibited CD40L up-regulation at both the protein and mRNA levels. This inhibition was due to the native, virion-associated gp120, as coculture with soluble CD4 or heat treatment of inactivated HIV abolished their effect. These in vitro models mirror the CD40L defect seen in cells from HIV-infected donors and thus provide a suitable model to investigate HIV-induced CD40L dysregulation. Clear elucidation of mechanism(s) may well lead to the development of novel immunotherapeutic approaches to HIV infection.
Collapse
Affiliation(s)
- Rui Zhang
- Divisions of Molecular Immunology and Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
19
|
Chougnet C. Role of CD40 ligand dysregulation in HIV-associated dysfunction of antigen-presenting cells. J Leukoc Biol 2003; 74:702-9. [PMID: 12960257 DOI: 10.1189/jlb.0403171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cellular interactions between antigen-presenting cells and activated CD4+ T cells are central to the regulation of adaptive immunity. Among the many receptor-ligand pairs involved, the critical importance of CD40-CD40 Ligand (CD40L) interactions has been demonstrated in many experimental systems. Dysregulation of antigen-presenting cell function is a hallmark of HIV-associated defects in cell-mediated immunity. Much evidence suggests a mechanistic role for defective CD40-CD40L interactions in such a defect. Consistent with this hypothesis, the capacity to upregulate CD40L on purified CD4+ T cells becomes progressively impaired in HIV infection, in parallel with the progression of clinical immunosuppression. The mechanisms underlying CD40L dysregulation in HIV infection remain unknown. Because CD40L expression is tightly regulated (transcriptionally, post-transcriptionally and post-translationally), HIV may interfere at several levels. However, a transcriptional defect in CD40L expression, mediated by the engagement of CD4 by HIV gp120, appears to play a primary role. Clear elucidation of mechanism may well lead to the development of novel immunotherapeutic approaches to HIV infection.
Collapse
Affiliation(s)
- Claire Chougnet
- Cincinati Children's Hospital Research Foundation, Cincinnati, USA.
| |
Collapse
|
20
|
Campbell SJ, Sabeti P, Fielding K, Sillah J, Bah B, Gustafson P, Manneh K, Lisse I, Sirugo G, Bellamy R, Bennett S, Aaby P, McAdam KPWJ, Bah-Sow O, Lienhardt C, Hill AVS. Variants of the CD40 ligand gene are not associated with increased susceptibility to tuberculosis in West Africa. Immunogenetics 2003; 55:502-7. [PMID: 12955358 DOI: 10.1007/s00251-003-0602-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 07/31/2003] [Indexed: 10/26/2022]
Abstract
Evidence for linkage between tuberculosis and human chromosomal region Xq26 has previously been described. The costimulatory molecule CD40 ligand, encoded by TNFSF5 and located at Xq26.3, is a promising positional candidate. Interactions between CD40 ligand and CD40 are involved in the development of humoral- and cell-mediated immunity, as well as the activation of macrophages, which are the primary host and effector cells for Mycobacterium tuberculosis. We hypothesised that common variation within TNFSF5 might affect susceptibility to tuberculosis disease and, thus, might be responsible for the observed linkage to Xq26. Sequencing 32 chromosomes from a Gambian population identified nine common polymorphisms within the coding, 3' and 5' regulatory sequences of the gene. Six single nucleotide polymorphisms (SNPs) and a 3' microsatellite were genotyped in 121 tuberculosis patients and their available parents. No association with tuberculosis was detected for these variants using a transmission disequilibrium test, although one SNP at -726 showed some evidence of association in males. This finding, however, did not replicate in a separate case control study of over 1,200 West African individuals. We conclude that common genetic variation in TNFSF5 is not likely to affect tuberculosis susceptibility in West Africa and the linkage observed in this region is not due to variation in TNFSF5.
Collapse
Affiliation(s)
- Sarah J Campbell
- The Henry Wellcome Building of Genomic Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Takaya M, Tamura N, Kato K, Kobayashi S, Haruta K, Tajima M, Hara M, Yang KS, Tsuda H, Hashimoto H. CD154 expression and mRNA stability of activated CD4-positive T cells in patients with systemic lupus erythematosus. Mod Rheumatol 2003; 13:220-6. [PMID: 24387208 DOI: 10.3109/s10165-003-0227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract The expression of CD154 (CD40 ligand) on activated CD4+ T cells is known to be transient and tightly regulated for antigen-specific immune responses, and is increased and prolonged among patients with systemic lupus erythematosus (SLE). We investigated the regulation of CD154 expression by determining the protein and mRNA expression with PMA and ionomycin stimulation in CD4+ T cells, and confirmed their increase and prolongation in SLE T cells. Treatment with actinomycin D, a transcription inhibitor, after PMA and ionomycin stimulation was performed, and the findings revealed that the stability of CD154 mRNA increased significantly in activated SLE T cells compared with that of controls. However, alternations or abnormal sequences were not identified in the 3″ untranslated region, including AU-rich elements and CU-rich sequences, while their partial involvement in the posttranscriptional regulation of CD154 mRNA stability has been reported. With 96 h culture in vitro, the destabilization of CD154 mRNA was demonstrated, resulting in a corresponding decrease and normalization of surface expression on activated SLE T cells. We speculate that the CD154 expression on T cells from SLE patients may be increased and prolonged, with mRNA stabilization being related to a continuous stimulation in vivo.
Collapse
Affiliation(s)
- Makiyo Takaya
- Department of Rheumatology, Juntendo University School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Méndez-Samperio P, Ayala H, Vázquez A. NF-kappaB is involved in regulation of CD40 ligand expression on Mycobacterium bovis bacillus Calmette-Guérin-activated human T cells. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:376-82. [PMID: 12738634 PMCID: PMC154977 DOI: 10.1128/cdli.10.3.376-382.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interaction between CD40L (CD154) on activated T cells and its receptor CD40 on antigen-presenting cells has been reported to be important in the resolution of infection by mycobacteria. However, the mechanism(s) by which Mycobacterium bovis bacillus Calmette-Guérin (BCG) up-regulates membrane expression of CD40L molecules is poorly understood. This study was done to investigate the role of the nuclear factor kappaB (NF-kappaB) signaling pathway in the regulation of CD40L expression in human CD4(+) T cells stimulated with BCG. Specific pharmacologic inhibition of the NF-kappaB pathway revealed that this signaling cascade was required in the regulation of CD40L expression on the surface of BCG-activated CD4(+) T cells. These results were further supported by the fact that treatment of BCG-activated CD4(+) T cells with these pharmacological inhibitors significantly down-regulated CD40L mRNA. In this study, inhibitor kappaBalpha (IkappaBalpha) and IkappaBbeta protein production was not affected by the chemical protease inhibitors and, more importantly, BCG led to the rapid but transient induction of NF-kappaB activity. Our results also indicated that CD40L expression on BCG-activated CD4(+) T cells resulted from transcriptional up-regulation of the CD40L gene by a mechanism which is independent of de novo protein synthesis. Interestingly, BCG-induced activation of NF-kappaB and the increased CD40L cell surface expression were blocked by the protein kinase C (PKC) inhibitors 1-[5-isoquinolinesulfonyl]-2-methylpiperazine and salicylate, both of which block phosphorylation of IkappaB. Moreover, rottlerin a Ca(2+)-independent PKC isoform inhibitor, significantly down-regulated CD40L mRNA in BCG-activated CD4(+) T cells. These data strongly suggest that CD40L expression by BCG-activated CD4(+) T cells is regulated via the PKC pathway and by NF-kappaB DNA binding activity.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala, México D. F. 11340, México.
| | | | | |
Collapse
|
23
|
Shibuya H, Nagai T, Ishii A, Yamamoto K, Hirohata S. Differential regulation of Th1 responses and CD154 expression in human CD4+ T cells by IFN-alpha. Clin Exp Immunol 2003; 132:216-24. [PMID: 12699408 PMCID: PMC1808698 DOI: 10.1046/j.1365-2249.2003.02128.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like interleukin (IL)-12, interferon (IFN)-alpha has been shown to play an important role in inducing human Th1 responses. Recent studies have shown that human Th1 responses driven by IL-12 are associated with enhanced expression of CD154. The present study examined the effects of IFN-alpha on CD154 expression in human CD4+ T cells, with special attention to the relationship with Th1 responses. Highly purified CD4+ T cells from healthy donors were stimulated with immobilized anti-CD3 with or without IFN-alpha and IL-12 in the complete absence of accessory cells. IFN-alpha suppressed CD154 protein and mRNA expression in CD4+ T cells at the initial phase of activation with immobilized anti-CD3, but enhanced it in the subsequent maturation phase irrespective of the presence of IL-12. By contrast, IFN-alpha by itself did not enhance IFN-gamma production or mRNA expression in CD4+ T cells in the absence of IL-12 even in the presence of stimulation with anti-CD28, but enhanced it in the presence of IL-12. Accordingly, IFN-alpha enhanced IL-12Rbeta2 mRNA expression in anti-CD3-stimulated CD4+ T cells. Neither IFN-alpha nor IL-12 influenced the stability of CD154 mRNA in anti-CD3-activated CD4+ T cells. These results indicate that IFN-alpha by itself enhances CD154 expression in CD4+ T cells independently of the induction of IFN-gamma mRNA expression. The data also suggest that the optimal induction of human Th1 responses by IFN-alpha might require the presence of IL-12 and that the induction of Th1 responses and CD154 expression in human CD4+ T cells might be regulated through different mechanisms.
Collapse
Affiliation(s)
- H Shibuya
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
24
|
Sakai K, Kitagawa Y, Saiki M, Saiki S, Hirose G. Binding of the ELAV-like protein in murine autoimmune T-cells to the nonameric AU-rich element in the 3' untranslated region of CD154 mRNA. Mol Immunol 2003; 39:879-83. [PMID: 12686504 DOI: 10.1016/s0161-5890(03)00007-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The CD154 molecule is important for experimental allergic encephalomyelitis (EAE) which is mediated by autoimmune CD4(+) T-cells. Post-transcriptional instabilization/stabilization of mRNAs, which contain an adenylate uridylate rich element (ARE) in their 3' untranslated region (3'UTR), is regulated in part by binding of ARE-binding proteins to the element. We have investigated the protein which binds to the nonameric ARE in the 3'UTR of CD154 mRNA. A protein which binds to the CD154 ARE was found to exist in a extract prepared from murine autoimmune T-cells activated with myelin basic protein (MBP), and turned out to be mHuR which is a ubiquitous ELAV-like protein. It was found that mHuR was upregulated upon stimulation of the T-cells with a MBP antigen. The CD154 ARE and the ARE in the 3'UTR of tumor necrosis factor-alpha (TNF-alpha) mRNA were competed in binding to mHuR, indicating that both AREs bind to the same site on mHuR. The presence of the CD154 ARE downstream of the luciferase cDNA in a reporter plasmid decreased the translational efficiency, and co-expression of the mHuR slightly increased the translation. These results suggest the possibility that the ELAV-like protein participates in the regulation of the expression of CD154 on the autoimmune T-cells. Modification of the expression of CD154 on autoimmune T-cells by regulating the ELAV-like protein may provide effective therapy for EAE and human multiple sclerosis.
Collapse
Affiliation(s)
- Koichiro Sakai
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-Machi, Kahoku-Gun, Ishikawa 920-0293,
| | | | | | | | | |
Collapse
|
25
|
Kosinski PA, Laughlin J, Singh K, Covey LR. A complex containing polypyrimidine tract-binding protein is involved in regulating the stability of CD40 ligand (CD154) mRNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:979-88. [PMID: 12517964 DOI: 10.4049/jimmunol.170.2.979] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CD40 ligand (CD154) expression has been shown to be regulated, in part, at the posttranscriptional level by a pathway of "regulated instability" of mRNA decay throughout a time course of T cell activation. This pathway is modulated at late times of activation by the binding of a stability complex (termed complex I) to a CU-rich region in the 3' untranslated region of the CD154 message. We have undertaken experiments to extend these findings and to analyze the cis-acting elements and trans-acting factors involved in this regulation. We have previously shown that the minimal binding sequence for complex I is a 63 nt CU-rich motif. However, our current study shows that when this site was deleted additional complex binding was observed upstream and downstream of the minimal binding region. Only after deletion of an extended region (termed Delta1515) was complex binding completely abolished. Analysis of complex binding using competition experiments revealed that the three adjacent regions bound related but not identical complexes. However, all three sites appeared to have a 55-kDa protein as the RNA-binding protein. Deletion of the Delta1515 region resulted in reduced transcript stability as measured by both in vitro and in vivo decay assays. Finally, using Abs against known RNA-binding proteins, we identified the polypyrimidine tract-binding protein (or heterogeneous nuclear ribonucleoprotein I) as a candidate RNA-binding component of complex I.
Collapse
Affiliation(s)
- Penelope A Kosinski
- Department of Cell Biology and Neuroscience, Rutgers, State University of New Jersey, Piscataway 08854, USA
| | | | | | | |
Collapse
|
26
|
Tsoi SCM, Wen Y, Chung JY, Chen D, Magness RR, Zheng J. Co-expression of vascular endothelial growth factor and neuropilin-1 in ovine feto-placental artery endothelial cells. Mol Cell Endocrinol 2002; 196:95-106. [PMID: 12385828 DOI: 10.1016/s0303-7207(02)00190-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator for placental angiogenesis and vascular functions via activating two high affinity tyrosine-kinase receptors, VEGF receptor-1 (VEGFR-1) and -2 (VEGFR-2). Recently, a specific VEGF165 receptor, neuropilin-1 (NP-1), was also identified in endothelial cells and upon VEGF binding, NP-1, synergistically with VEGFR-2, enhances VEGF-induced cell proliferation and migration. To evaluate the role of VEGF and NP-1 in regulating fetoplacental angiogenesis and endothelial function, an ovine fetal placental artery endothelial (OFPAE) cell line was established. In this study, an OFPAE cell cDNA library was constructed. Two positive clones for VEGF and one for NP-1 were isolated from the OFPAE cell cDNA library, and their partial 3' sequences were identified. The sequence of VEGF cDNA insert had 98% homology to the reported ovine VEGF (GenBank accesssion # X89506). The partial NP-1 cDNA sequence included a portion of the protein coding region and a complete 3' untranslated region (UTR), and had 90% homology to human NP-1 (GenBank accession # AF016050). The predicted amino acid sequence of ovine NP-1 was 97-98% identical to human (GenBank accession # AAC12921.1), mouse (GenBank accession # NP_032763), and rat (GenBank accession # AAC53345.1) NP-1. Two CU-rich stabilizing and two consensus destabilizing elements 5'-AUUUA-3' were identified in the 3' UTR of ovine NP-1 cDNA sequence. These elements are the potential binding sites for mRNA-binding proteins which may regulate the stability of NP-1 mRNA. Expression of VEGF and NP-1 in OFPAE cells and fetal placentas was confirmed by Northern and Western blot analyses. Using PCR analysis, we also identified partial sequences of multiple VEGF isoforms (VEGF188, 183, 164, and 120) as well as VEGFR-1, VEGFR-2, and neuropilin-2 (NP-2) from the OFPAE cell cDNA library. These results indicate that multiple isoforms of VEGF are expressed in OFPAE cells. Moreover, we also identified, for the first time, a complete 3' UTR of NP-1 cDNA in any species. Together with expression of VEGF and VEGF receptors in OFPAE cells, we propose that there is an autocrine mechanism by which VEGF regulates fetal placental angiogenesis and other functions of endothelial cells.
Collapse
Affiliation(s)
- Stephen C M Tsoi
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 7E Meriter Hospital, 202 S Park St, Madison, WI 53715, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Production of pathogenic autoantibodies in systemic lupus erythematosus (SLE) requires T cell help, along with ligation of the B cell surface immunoglobulin receptor by antigen. It is likely that macrophages, dendritic cells, and endothelial cells are also activated by interactions with T cells and contribute to lupus pathology. CD40 ligand (CD40L, CD154), a member of the tumor necrosis factor family of cell surface molecules, mediates these contact dependent signals delivered by CD4 + T helper cells to CD40 + target cells. Recent data from SLE patients and murine lupus models have demonstrated prolonged expression of CD40L on lupus T cells and its capacity to mediate excessive B cell activation. This review summarizes the current information regarding transcriptional and post-transcriptional regulation of CD40L expression in normal and SLE T cells. More complete characterization of the mechanisms that regulate the magnitude and duration of CD40L expression should suggest new approaches to modulate this promising therapeutic target.
Collapse
Affiliation(s)
- M K Crow
- Department of Medicine, Hospital for Special Surgery and Weill Medical College of Cornell University, New York City, New York, USA.
| | | |
Collapse
|