1
|
Utkarsh K, Srivastava N, Kumar S, Khan A, Dagar G, Kumar M, Singh M, Haque S. CAR-T cell therapy: a game-changer in cancer treatment and beyond. Clin Transl Oncol 2024; 26:1300-1318. [PMID: 38244129 DOI: 10.1007/s12094-023-03368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
In recent years, cancer has become one of the primary causes of mortality, approximately 10 million deaths worldwide each year. The most advanced, chimeric antigen receptor (CAR) T cell immunotherapy has turned out as a promising treatment for cancer. CAR-T cell therapy involves the genetic modification of T cells obtained from the patient's blood, and infusion back to the patients. CAR-T cell immunotherapy has led to a significant improvement in the remission rates of hematological cancers. CAR-T cell therapy presently limited to hematological cancers, there are ongoing efforts to develop additional CAR constructs such as bispecific CAR, tandem CAR, inhibitory CAR, combined antigens, CRISPR gene-editing, and nanoparticle delivery. With these advancements, CAR-T cell therapy holds promise concerning potential to improve upon traditional cancer treatments such as chemotherapy and radiation while reducing associated toxicities. This review covers recent advances and advantages of CAR-T cell immunotherapy.
Collapse
Affiliation(s)
- Kumar Utkarsh
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Namita Srivastava
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sachin Kumar
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Azhar Khan
- Faculty of Applied Science and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Shabirul Haque
- Department of Autoimmune Diseases, Feinstein Institute for Medical Research, Northwell Health, 350, Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
2
|
Kim DW, Cho JY. Recent Advances in Allogeneic CAR-T Cells. Biomolecules 2020; 10:biom10020263. [PMID: 32050611 PMCID: PMC7072190 DOI: 10.3390/biom10020263] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
In recent decades, great advances have been made in the field of tumor treatment. Especially, cell-based therapy targeting tumor associated antigen (TAA) has developed tremendously. T cells were engineered to have the ability to attack tumor cells by generating CAR constructs consisting of genes encoding scFv, a co-stimulatory domain (CD28 or TNFRSF9), and CD247 signaling domains for T cell proliferation and activation. Principally, CAR-T cells are activated by recognizing TAA by scFv on the T cell surface, and then signaling domains inside cells connected by scFv are subsequently activated to induce downstream signaling pathways involving T cell proliferation, activation, and production of cytokines. Many efforts have been made to increase the efficacy and persistence and also to decrease T cell exhaustion. Overall, allogeneic and universal CAR-T generation has attracted much attention because of their wide and prompt usage for patients. In this review, we summarized the current techniques for generation of allogeneic and universal CAR-T cells along with their disadvantages and limitations that still need to be overcome.
Collapse
|
3
|
Gibbings D, Befus AD. CD4 and CD8: an inside-out coreceptor model for innate immune cells. J Leukoc Biol 2009; 86:251-9. [PMID: 19401396 DOI: 10.1189/jlb.0109040] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD8 and CD4 are expressed by several cell types that do not express TCR. These include DCs, macrophages, monocytes, and NK cells. CD8(+) monocytes and macrophages are abundant at the site of pathology in many rat disease models, particularly those involving immune complex-mediated pathology. Indeed, in some disease models, CD8(+) macrophages correlate with severity of pathology or directly cause pathology or tumor cell killing. Evidence suggests CD8 or CD4 can enhance FcgammaR-dependent responses of human monocytes. Building on data that key components of TCR and FcgammaR signaling can substitute one another efficiently, we postulate that CD4 and CD8 operate with FcgammaR and potentially other receptors to enhance responses of T cells and various innate immune cells. Our model suggests CD8 on myeloid cells may contribute directly to tumor killing and tissue pathology by enhancing FcgammaR responses. Moreover, the model suggests a role for CD8 in cross-presentation of antibody-associated antigen by DCs and a new mechanism to regulate TCR sensitivity.
Collapse
Affiliation(s)
- Derrick Gibbings
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
4
|
Cen O, Ueda A, Guzman L, Jain J, Bassiri H, Nichols KE, Stein PL. The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) regulates IFN-gamma and IL-4 production in V alpha 14 transgenic NKT cells via effects on GATA-3 and T-bet expression. THE JOURNAL OF IMMUNOLOGY 2009; 182:1370-8. [PMID: 19155483 DOI: 10.4049/jimmunol.182.3.1370] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells comprise a rare regulatory T cell population of limited TCR diversity, with most cells using a Valpha14 Jalpha18 TCR. These cells exhibit a critical dependence on the signaling adapter molecule, signaling lymphocytic activation molecule-associated protein (SAP), for their ontogeny, an aspect not seen in conventional alphabeta T cells. Prior studies demonstrate that SAP enhances TCR-induced activation of NF-kappaB in CD4(+) T cells. Because NF-kappaB is required for NKT cell development, SAP might promote the ontogeny of this lineage by signaling to NF-kappaB. In this study, we demonstrate that forced expression of the NF-kappaB target gene, Bcl-x(L), or inhibitory NF-kappaB kinase beta, a catalytic subunit of the IkappaB kinase complex essential for NF-kappaB activation, fails to restore NKT cell development in sap(-/-) mice, suggesting that SAP mediates NKT cell development independently of NF-kappaB. To examine the role of SAP in NKT cell function, we generated NKT cells in sap(-/-) mice by expressing a transgene encoding the Valpha14 Jalpha18 component of the invariant TCR. These cells bound alpha-galactosylceramide-loaded CD1d tetramers, but exhibited a very immature CD24(+)NK1.1(-) phenotype. Although sap(-/-) tetramer-reactive cells proliferated in response to TCR activation, they did not produce appreciable levels of IL-4 or IFN-gamma. The reduction in cytokine production correlated with the near absence of GATA-3 and T-bet, key transcription factors regulating cytokine expression and maturation of NKT cells. Ectopic expression of GATA-3 partially restored IL-4 production by the NKT cells. Collectively, these data suggest that by promoting GATA-3 and T-bet expression, SAP exerts control over NKT cell development and mature NKT cell cytokine production.
Collapse
Affiliation(s)
- Osman Cen
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Leandersson K, Jaensson E, Ivars F. T cells developing in fetal thymus of T-cell receptor alpha-chain transgenic mice colonize gammadelta T-cell-specific epithelial niches but lack long-term reconstituting potential. Immunology 2007; 119:134-42. [PMID: 16925528 PMCID: PMC1782331 DOI: 10.1111/j.1365-2567.2006.02415.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gammadelta T cells generated during mouse fetal development are absolutely dependent on their invariant T-cell receptors (TCRs) for their function. However, there is little information on whether the epithelial homing properties of fetal T cells might also be developmentally induced by factors unrelated to TCR specificity. We have previously described TCR alpha-chain transgenic (2B4 TCR-alpha TG) mice, in which the transgenic TCR alpha-chain is expressed early, already at embryonic day 14 (E14). These mice have a large population of 'gammadelta T-cell-like' CD4- CD8- (double-negative; DN) alphabeta T cells, some of which develop during E14-E18 contemporarily to intraepithelial lymphocytes (IELs) expressing invariant TCR-gammadelta. Using the 2B4 TCR-alpha TG mouse model we have been able to more precisely study the impact of a variant TCR expression on IEL development and homing. In this study we show that TCR-alpha TG and TCR-alpha TG crossed to TCR-delta-deficient mice (TCR-alpha TG x TCR-delta-/-) carry TG TCR-alpha+ dendritic epidermal T cells (DETCs) and TCR-alpha TG+ IELs in the small intestine. The TG+ DETCs develop and seed the epidermis with similar kinetics as Vgamma5+ DETCs of normal mice, in contrast to the TCR-alphabeta+ DETCs found in TCR-delta-/- mice. However, whereas the intestinal TCR-alpha TG+ IELs persist in old mice (> 20 months), the TCR-alpha TG+ DETCs do not. The data in this study indicate that the timing of TCR expression and thereby development during ontogeny regulates the specific homing potential for fetal T cells but not their subsequent functions and properties.
Collapse
MESH Headings
- Aging/immunology
- Animals
- Animals, Newborn
- Cell Movement
- Cell Proliferation
- Epidermis/immunology
- Flow Cytometry
- Gestational Age
- Intestinal Mucosa/embryology
- Intestinal Mucosa/immunology
- Intestine, Small/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thymus Gland/embryology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Karin Leandersson
- Experimental Pathology, Department of Laboratory Medicine, Malmö University Hospital, Lund University, Sweden.
| | | | | |
Collapse
|
6
|
Gibbings DJ, Marcet-Palacios M, Sekar Y, Ng MCY, Befus AD. CD8 alpha is expressed by human monocytes and enhances Fc gamma R-dependent responses. BMC Immunol 2007; 8:12. [PMID: 17678538 PMCID: PMC2000912 DOI: 10.1186/1471-2172-8-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 08/01/2007] [Indexed: 01/06/2023] Open
Abstract
Background CD8α enhances the responses of antigen-specific CTL activated through TCR through binding MHC class I, favoring lipid raft partitioning of TCR, and inducing intracellular signaling. CD8α is also found on dendritic cells and rat macrophages, but whether CD8α enhances responses of a partner receptor, like TCR, to activate these cells is not known. TCR and FcR, use analogous or occasionally interchangeable signaling mechanisms suggesting the possibility that CD8α co-activates FcR responses. Interestingly, CD8α+ monocytes are often associated with rat models of disease involving immune-complex deposition and FcR-mediated pathology, such as arthritis, glomerulonephritis, ischaemia, and tumors. While rat macrophages have been shown to express CD8α evidence for CD8α expression by mouse or human monocytes or macrophages was incomplete. Results We detected CD8α, but not CD8β on human monocytes and the monocytic cell line THP-1 by flow cytometry. Reactivity of anti-CD8α mAb with monocytes is at least partly independent of FcR as anti-CD8α mAb detect CD8α by western blot and inhibit binding of MHC class I tetramers. CD8α mRNA is also found in monocytes and THP-1 suggesting CD8α is synthesized by monocytes and not acquired from other CD8α+ cell types. Interestingly, CD8α from monocytes and blood T cells presented distinguishable patterns by 2-D electrophoresis. Anti-CD8α mAb alone did not activate monocyte TNF release. In comparison, TNF release by human monocytes stimulated in a FcR-dependent manner with immune-complexes was enhanced by inclusion of anti-CD8α mAb in immune-complexes. Conclusion Human monocytes express CD8α. Co-engagement of CD8α and FcR enhances monocyte TNF release, suggesting FcR may be a novel partner receptor for CD8α on innate immune cells.
Collapse
Affiliation(s)
- Derrick J Gibbings
- Pulmonary Research Group, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Canada
| | - Marcelo Marcet-Palacios
- Pulmonary Research Group, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Canada
| | - Yokananth Sekar
- Pulmonary Research Group, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Canada
| | - Marcus CY Ng
- Pulmonary Research Group, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Canada
| | - A Dean Befus
- Pulmonary Research Group, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Canada
| |
Collapse
|
7
|
Hayday AC, Pennington DJ. Key factors in the organized chaos of early T cell development. Nat Immunol 2007; 8:137-44. [PMID: 17242687 DOI: 10.1038/ni1436] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 12/12/2006] [Indexed: 11/09/2022]
Abstract
A fundamental issue in T cell development is what controls whether a thymocyte differentiates into a gammadelta T cell or an alphabeta T cell, each defined by their distinct T cell receptor. Most likely, lessons learned in studying that issue will also provide insight into how the thymus produces T cell subsets with distinct functional and regulatory potentials. Here we review recent experiments, focusing on three factors that regulate thymocyte differentiation up to and including the expression of the first products of antigen receptor gene rearrangements. Those factors are the archetypal developmental regulator Notch, intrinsic signals emanating from antigen-receptor complexes, and trans conditioning, which reflects communication between different subsets of thymocytes. We also review new findings on the positive selection of gammadelta T cells and on extrathymic T cell development.
Collapse
Affiliation(s)
- Adrian C Hayday
- King's College School of Medicine at Guy's Hospital, London SE1 9RT, UK
| | | |
Collapse
|
8
|
Taylor KN, Shinde Patil VR, Colson YL. Reconstitution of Allogeneic Hemopoietic Stem Cells: The Essential Role of FcRγ and the TCR β-Chain-FCp33 Complex. THE JOURNAL OF IMMUNOLOGY 2006; 177:1444-50. [PMID: 16849450 DOI: 10.4049/jimmunol.177.3.1444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transplantation of purified allogeneic hemopoietic stem cells (SC) alone is characterized by a decreased risk of graft-vs-host disease but increased incidence of engraftment failure. It has been established that the facilitating cell (FC) promotes allogeneic SC reconstitution and results in donor-specific transplantation tolerance across MHC disparities, without graft-vs-host disease. Although the requirements for this facilitating function are not well-characterized, it is known that facilitation is dependent on FC expression of a unique heterodimer consisting of the TCR beta-chain (TCRbeta) and a 33-kDa protein, FCp33. The current study confirms that CD3epsilon and TCRbeta expression are present on the FC at the time of transplantation and demonstrates that the majority of cells in the FC population express the TCR signaling molecule, FcRgamma, rather than the more conventional CD3zeta receptor. Of particular significance, we have now demonstrated that FC-mediated allogeneic SC reconstitution is critically dependent on FcRgamma expression and that FcRgamma coprecipitates with the TCRbeta-FCp33 heterodimer. The mandatory requirement of TCRbeta and FcRgamma for FC function provides the first evidence of a previously undescribed role for FcRgamma in the facilitation of allogeneic SC reconstitution and establishes that FcRgamma is part of the TCRbeta-FCp33 complex uniquely expressed on FC.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation/immunology
- CD3 Complex/biosynthesis
- CD3 Complex/genetics
- CD3 Complex/physiology
- Carrier Proteins/physiology
- Dimerization
- Female
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Immunophenotyping
- Isoantigens/biosynthesis
- Isoantigens/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, IgG/biosynthesis
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Kendra N Taylor
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
9
|
Pennington DJ, Silva-Santos B, Hayday AC. Gammadelta T cell development--having the strength to get there. Curr Opin Immunol 2005; 17:108-15. [PMID: 15766668 DOI: 10.1016/j.coi.2005.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gammadelta T cells play critical roles in immune regulation, tumour surveillance and specific primary immune responses. Mature gammadelta cells derive from thymic precursors that also generate alphabeta T cells. Recent reports have highlighted the impact of the strength of signal received via the T cell receptor on T cell lineage commitment, and the importance of cross-talk between committed alphabeta thymocytes and bipotential progenitors for normal gammadelta T cell differentiation. Studies on T cell receptor-mediated selection of gammadelta cells have supported the view that these unconventional T cells are positively rather than negatively selected on cognate self antigen.
Collapse
Affiliation(s)
- Daniel J Pennington
- Peter Gorer Department of Immunobiology, Guy's King's St. Thomas' Medical School, King's College, Guy's Hospital, London SE1 9RT, UK.
| | | | | |
Collapse
|
10
|
Lee BPL, Mansfield E, Hsieh SC, Hernandez-Boussard T, Chen W, Thomson CW, Ford MS, Bosinger SE, Der S, Zhang ZX, Zhang M, Kelvin DJ, Sarwal MM, Zhang L. Expression profiling of murine double-negative regulatory T cells suggest mechanisms for prolonged cardiac allograft survival. THE JOURNAL OF IMMUNOLOGY 2005; 174:4535-44. [PMID: 15814674 DOI: 10.4049/jimmunol.174.8.4535] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated that both mouse and human alpha beta TCR(+)CD3(+)NK1.1(-)CD4(-)CD8- double-negative regulatory T (DN Treg) cells can suppress Ag-specific immune responses mediated by CD8+ and CD4+ T cells. To identify molecules involved in DN Treg cell function, we generated a panel of murine DN Treg clones, which specifically kill activated syngeneic CD8+ T cells. Through serial cultivation of DN Treg clones, mutant clones arose that lost regulatory capacity in vitro and in vivo. Although all allogeneic cardiac grafts in animals preinfused with tolerant CD4/CD8 negative 12 DN Treg clones survived over 100 days, allograft survival is unchanged following infusion of mutant clones (19.5 +/- 11.1 days) compared with untreated controls (22.8 +/- 10.5 days; p < 0.001). Global gene expression differences between functional DN Treg cells and nonfunctional mutants were compared. We found 1099 differentially expressed genes (q < 0.025%), suggesting increased cell proliferation and survival, immune regulation, and chemotaxis, together with decreased expression of genes for Ag presentation, apoptosis, and protein phosphatases involved in signal transduction. Expression of 33 overexpressed and 24 underexpressed genes were confirmed using quantitative real-time PCR. Protein expression of several genes, including Fc epsilon RI gamma subunit and CXCR5, which are >50-fold higher, was also confirmed using FACS. These findings shed light on the mechanisms by which DN Treg cells down-regulate immune responses and prolong cardiac allograft survival.
Collapse
Affiliation(s)
- Boris P-L Lee
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gadue P, Yin L, Jain S, Stein PL. Restoration of NK T cell development in fyn-mutant mice by a TCR reveals a requirement for Fyn during early NK T cell ontogeny. THE JOURNAL OF IMMUNOLOGY 2004; 172:6093-100. [PMID: 15128794 DOI: 10.4049/jimmunol.172.10.6093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK T cells are a unique lymphocyte population that have developmental requirements distinct from conventional T cells. Mice lacking the tyrosine kinase Fyn have 5- to 10-fold fewer mature NK T cells. This study shows that Fyn-deficient mice have decreased numbers of NK1.1(-) NK T cell progenitors as well. 5-Bromo-2'-deoxyuridine-labeling studies indicate that the NK T cells remaining in fyn(-/-) mice exhibit a similar turnover rate as wild-type cells. The fyn(-/-) NK T cells respond to alpha-galactosylceramide, a ligand recognized by NK T cells, and produce cytokines, but have depressed proliferative capacity. Transgenic expression of the NK T cell-specific TCR alpha-chain Valpha14Jalpha18 leads to a complete restoration of NK T cell numbers in fyn(-/-) mice. Together, these results suggest that Fyn may have a role before alpha-chain rearrangement rather than for positive selection or the peripheral upkeep of cell number. NK T cells can activate other lymphoid lineages via cytokine secretion. These secondary responses are impaired in Fyn-deficient mice, but occur normally in fyn mutants expressing the Valpha14Jalpha18 transgene. Because this transgene restores NK T cell numbers, the lack of secondary lymphocyte activation in the fyn-mutant mice is due to the decreased numbers of NK T cells present in the mutant, rather than an intrinsic defect in the ability of the other fyn(-/-) lymphoid populations to respond.
Collapse
MESH Headings
- Animals
- Antigens/metabolism
- Antigens, Ly
- Antigens, Surface
- B-Lymphocyte Subsets/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Ceramides/pharmacology
- Cytokines/metabolism
- Genes, T-Cell Receptor alpha
- Killer Cells, Natural/cytology
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Lymphocyte Activation
- Lymphocyte Count
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/deficiency
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphopenia/genetics
- Lymphopenia/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- NK Cell Lectin-Like Receptor Subfamily B
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Proteins/metabolism
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-fyn
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Stem Cells/pathology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transgenes/immunology
Collapse
Affiliation(s)
- Paul Gadue
- Graduate Group in Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
12
|
Jameson JM, Cauvi G, Witherden DA, Havran WL. A keratinocyte-responsive gamma delta TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. THE JOURNAL OF IMMUNOLOGY 2004; 172:3573-9. [PMID: 15004158 DOI: 10.4049/jimmunol.172.6.3573] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A unique population of T lymphocytes, designated dendritic epidermal T cells (DETC), homes to the murine epidermis during fetal development. DETC express a canonical gammadelta TCR, Vgamma3/Vdelta1, which recognizes Ag expressed on damaged, stressed, or transformed keratinocytes. Recently, DETC were shown to play a key role in the complex process of wound repair. To examine the role of the DETC TCR in DETC localization to the epidermis, maintenance in the skin, and activation in vivo, we analyzed DETC in the TCRdelta(-/-) mouse. Unlike previous reports in which the TCRdelta(-/-) skin was found to be devoid of any DETC, we discovered that TCRdelta(-/-) mice have alphabeta TCR-expressing DETC with a polyclonal Vbeta chain repertoire. The alphabeta DETC are not retained over the life of the animal, suggesting that the gammadelta TCR is critical for the maintenance of DETC in the skin. Although the alphabeta DETC can be activated in response to direct stimulation, they do not respond to keratinocyte damage. Our results suggest that a keratinocyte-responsive TCR is necessary for DETC activation in response to keratinocyte damage and for DETC maintenance in the epidermis.
Collapse
MESH Headings
- Animals
- Cell Division/genetics
- Cell Division/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epidermis/immunology
- Epidermis/metabolism
- Epidermis/pathology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Immunity, Cellular/genetics
- Immunophenotyping
- Keratinocytes/immunology
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Wound Healing/genetics
- Wound Healing/immunology
Collapse
Affiliation(s)
- Julie M Jameson
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|