1
|
He T, Chen K, Zhou Q, Cai H, Yang H. Immune repertoire profiling in myasthenia gravis. Immunol Cell Biol 2024; 102:891-906. [PMID: 39396830 DOI: 10.1111/imcb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Myasthenia gravis (MG) is the most frequent immune-mediated neurological disorder, characterized by fluctuating muscle weakness. Specific recognition of self-antigens by T-cell receptors (TCRs) and B-cell receptors (BCRs), coupled with T-B cell interactions, activates B cells to produce autoantibodies, which are critical for the initiation and perpetuation of MG. The immune repertoire comprises all functionally diverse T and B cells at a specific time point in an individual, reflecting the essence of immune selectivity. By sequencing the nucleotide sequences of TCRs and BCRs, it is possible to track individual T- and B-cell clones. This review delves into the generation of autoreactive TCRs and BCRs in MG and comprehensively examines the applications of immune repertoire sequencing in understanding disease pathogenesis, developing diagnostic and prognostic markers and informing targeted therapies. We also discuss the current limitations and future potential of this approach.
Collapse
MESH Headings
- Myasthenia Gravis/immunology
- Humans
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- B-Lymphocytes/immunology
- Autoantibodies/immunology
- Animals
- Autoantigens/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Attarian S. New treatment strategies in Myasthenia gravis. Rev Neurol (Paris) 2024; 180:971-981. [PMID: 39379218 DOI: 10.1016/j.neurol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder characterized by muscle weakness and fatigue. The disease is primarily caused by antibodies targeting acetylcholine receptors (AChR) and muscle-specific kinase (MuSK) proteins at the neuromuscular junction. Traditional treatments for MG, such as acetylcholinesterase inhibitors, corticosteroids, and immunosuppressants, have shown efficacy but are often associated with significant long-term side effects and variable patient response rates. Notably, approximately 15% of patients exhibit inadequate responses to these standard therapies. Recent advancements in molecular therapies, including monoclonal antibodies, B cell-depleting agents, complement inhibitors, Fc receptor antagonists, and chimeric antigen receptor (CAR) T cell-based therapies, have introduced promising alternatives for MG treatment. These novel therapeutic approaches offer potential improvements in targeting specific immune pathways involved in MG pathogenesis. This review highlights the progress and challenges in developing and implementing these molecular therapies. It discusses their mechanisms, efficacy, and the potential for personalized medicine in managing MG. The integration of new molecular therapies into clinical practice could significantly transform the treatment landscape of MG, offering more effective and tailored therapeutic options for patients who do not respond adequately to traditional treatments. These innovations underscore the importance of ongoing research and clinical trials to optimize therapeutic strategies and improve the quality of life for individuals with MG.
Collapse
Affiliation(s)
- S Attarian
- Referral center for Neuromuscular disorders, Timone Hospital University, AIX-Marseille Université, Marseille, France; Filnemus, ERN NMD, Marseille, France.
| |
Collapse
|
3
|
Chen P, Chen J, Huang H, Liu W. Conventional dendritic cells are more activated in the hyperplastic Thymus of myasthenia gravis patients. J Neuroimmunol 2024; 395:578441. [PMID: 39216158 DOI: 10.1016/j.jneuroim.2024.578441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Dendritic cells (DCs) are crucial to form ectopic germinal centers (GCs) in the hyperplastic thymus (HT), which are typically found in anti-acetylcholine receptor autoantibody-positive myasthenia gravis (MG) patients. However, the characteristics of such DCs in the HT and their roles in thymic hyperplasia formation remain unclear. METHODS We collected thymic tissue from MG patients and patients who underwent cardiac surgery. The tissues were cut into sections for immunohistochemistry and immunofluorescence or digested into a single cell suspension for flow cytometry. RESULTS In addition to formation of ectopic GCs, we found that the proportion of the medulla in the thymic parenchyma was higher than that in the cortex (areacortex/areamedulla, 1.279 vs. 0.6576) in the HT of MG patients. The density of conventional dendritic cells (cDCs) in the HT was 131 ± 64.36 per mm2, whereas in normal thymic tissue, the density was 59.17 ± 22.54 per mm2. The more abundant cDCs expressed co-stimulatory molecules (CD80 and CD86) strongly. Moreover, the more abundant subset was mainly CD141+ DCs (cDC1s), accounting for an increase from 15% to 29%. However, these increased cDC1s appeared to be unrelated to Hassall's corpuscles and ectopic GCs. CONCLUSION Thymic hyperplasia in MG patients is manifested as an increase in the proportion of the thymic medulla accompanied by increases in the density and functional activation as well as changes in the subset composition of cDCs.
Collapse
Affiliation(s)
- Pei Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| | - Jiaxin Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Hao Huang
- Department of Neurology, The First People's Hospital of Nanning, Nanning 530022, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
4
|
Yasumizu Y, Kinoshita M, Zhang MJ, Motooka D, Suzuki K, Nojima S, Koizumi N, Okuzaki D, Funaki S, Shintani Y, Ohkura N, Morii E, Okuno T, Mochizuki H. Spatial transcriptomics elucidates medulla niche supporting germinal center response in myasthenia gravis-associated thymoma. Cell Rep 2024; 43:114677. [PMID: 39180749 DOI: 10.1016/j.celrep.2024.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Myasthenia gravis (MG) is etiologically associated with thymus abnormalities, but its pathology in the thymus remains unclear. In this study, we attempt to narrow down the features associated with MG using spatial transcriptome analysis of thymoma and thymic hyperplasia samples. We find that the majority of thymomas are constituted by the cortical region. However, the small medullary region is enlarged in seropositive thymomas and contains polygenic enrichment and MG-specific germinal center structures. Neuromuscular medullary thymic epithelial cells, previously identified as MG-specific autoantigen-producing cells, are enriched in the cortico-medullary junction. The medulla is characterized by a specific chemokine pattern and immune cell composition, including migratory dendritic cells and effector regulatory T cells. Similar germinal center structures and immune microenvironments are also observed in the thymic hyperplasia medulla. This study shows that the medulla and junction areas are linked to MG pathology and provides insights into future MG research.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Martin Jinye Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Koichiro Suzuki
- BIKEN-RIMD NGS Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Biomedical Science Center, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naoshi Koizumi
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Kaminski HJ, Kusner LL, Cutter GR, Le Panse R, Wright CD, Perry Y, Wolfe GI. Does Surgical Removal of the Thymus Have Deleterious Consequences? Neurology 2024; 102:e209482. [PMID: 38781559 PMCID: PMC11226319 DOI: 10.1212/wnl.0000000000209482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024] Open
Abstract
The role of immunosenescence, particularly the natural process of thymic involution during aging, is increasingly acknowledged as a factor contributing to the development of autoimmune diseases and cancer. Recently, a concern has been raised about deleterious consequences of the surgical removal of thymic tissue, including for patients who undergo thymectomy for myasthenia gravis (MG) or resection of a thymoma. This review adopts a multidisciplinary approach to scrutinize the evidence concerning the long-term risks of cancer and autoimmunity postthymectomy. We conclude that for patients with acetylcholine receptor antibody-positive MG and those diagnosed with thymoma, the removal of the thymus offers prominent benefits that well outweigh the potential risks. However, incidental removal of thymic tissue during other thoracic surgeries should be minimized whenever feasible.
Collapse
Affiliation(s)
- Henry J Kaminski
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Linda L Kusner
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Gary R Cutter
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Rozen Le Panse
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Cameron D Wright
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Yaron Perry
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Gil I Wolfe
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| |
Collapse
|
6
|
Cavalcante P, Mantegazza R, Antozzi C. Targeting autoimmune mechanisms by precision medicine in Myasthenia Gravis. Front Immunol 2024; 15:1404191. [PMID: 38903526 PMCID: PMC11187261 DOI: 10.3389/fimmu.2024.1404191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Myasthenia Gravis (MG) is a chronic disabling autoimmune disease caused by autoantibodies to the neuromuscular junction (NMJ), characterized clinically by fluctuating weakness and early fatigability of ocular, skeletal and bulbar muscles. Despite being commonly considered a prototypic autoimmune disorder, MG is a complex and heterogeneous condition, presenting with variable clinical phenotypes, likely due to distinct pathophysiological settings related with different immunoreactivities, symptoms' distribution, disease severity, age at onset, thymic histopathology and response to therapies. Current treatment of MG based on international consensus guidelines allows to effectively control symptoms, but most patients do not reach complete stable remission and require life-long immunosuppressive (IS) therapies. Moreover, a proportion of them is refractory to conventional IS treatment, highlighting the need for more specific and tailored strategies. Precision medicine is a new frontier of medicine that promises to greatly increase therapeutic success in several diseases, including autoimmune conditions. In MG, B cell activation, antibody recycling and NMJ damage by the complement system are crucial mechanisms, and their targeting by innovative biological drugs has been proven to be effective and safe in clinical trials. The switch from conventional IS to novel precision medicine approaches based on these drugs could prospectively and significantly improve MG care. In this review, we provide an overview of key immunopathogenetic processes underlying MG, and discuss on emerging biological drugs targeting them. We also discuss on future direction of research to address the need for patients' stratification in endotypes according with genetic and molecular biomarkers for successful clinical decision making within precision medicine workflow.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Antozzi
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Immunotherapy and Apheresis Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
7
|
Chung HY, Shin HY, Choi Y, Park HJ, Lee JG, Lee CY, Park BJ, Kim GJ, Kim SW. Germinal centers are associated with postthymectomy myasthenia gravis in patients with thymoma. Eur J Neurol 2024; 31:e16119. [PMID: 37909803 PMCID: PMC11235914 DOI: 10.1111/ene.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE Germinal centers (GCs) can be observed in the thymic tissues of patients with thymoma-associated myasthenia gravis (MG). Although an association between thymic GCs and MG has been suggested, it is unknown whether the presence of GCs could predict the development of MG after the resection of thymoma, known as postthymectomy MG. METHODS We conducted a retrospective analysis of previously nonmyasthenic patients who underwent surgical removal of the thymoma. All available thymic tissue slides were rereviewed by a pathologist to assess for GCs. Patients were classified into GC-positive and GC-negative groups based on the presence of GCs. The incidence of postthymectomy MG was compared between the two groups, and the risk factors for postthymectomy MG were assessed. RESULTS Of the 196 previously nonmyasthenic patients who underwent thymoma resection, 21 were GC-positive, whereas 175 were GC-negative. Postthymectomy MG developed in 11 (5.6%) patients and showed a higher incidence in the GC-positive group than in the GC-negative group (33.3% vs. 2.3%, p < 0.001). No postoperative radiotherapy and the presence of GCs were risk factors for postthymectomy MG in the univariate analysis. In multivariate analysis, invasive thymoma (hazard ratio [HR] = 9.835, 95% confidence interval [CI] = 1.358-105.372), postoperative radiotherapy (HR = 0.160, 95% CI = 0.029-0.893), and presence of GCs (HR = 15.834, 95% CI = 3.742-67.000) were significantly associated with postthymectomy MG. CONCLUSIONS Thymic GCs may be a significant risk factor for postthymectomy MG. Even in patients with thymoma who do not show clinical symptoms of MG, postthymectomy MG should be considered, especially if thymic GCs are observed.
Collapse
Affiliation(s)
- Hye Yoon Chung
- Department of NeurologyYonsei University College of MedicineSeoulKorea
- Department of NeurologyYongin Severance Hospital, Yonsei University Health SystemYonginKorea
| | - Ha Young Shin
- Department of NeurologyYonsei University College of MedicineSeoulKorea
| | - Young‐Chul Choi
- Department of NeurologyYonsei University College of MedicineSeoulKorea
| | - Hyung Jun Park
- Department of NeurologyYonsei University College of MedicineSeoulKorea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular SurgeryYonsei University College of MedicineSeoulKorea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular SurgeryYonsei University College of MedicineSeoulKorea
| | - Byung Jo Park
- Department of Thoracic and Cardiovascular SurgeryYonsei University College of MedicineSeoulKorea
| | - Gi Jeong Kim
- Department of PathologyYonsei University College of MedicineSeoulKorea
| | - Seung Woo Kim
- Department of NeurologyYonsei University College of MedicineSeoulKorea
| |
Collapse
|
8
|
Gao Z, Azar J, Zhu H, Williams-Perez S, Kang SW, Marginean C, Rubinstein MP, Makawita S, Lee HS, Camp ER. Translational and oncologic significance of tertiary lymphoid structures in pancreatic adenocarcinoma. Front Immunol 2024; 15:1324093. [PMID: 38361928 PMCID: PMC10867206 DOI: 10.3389/fimmu.2024.1324093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with poor survival and limited treatment options. PDAC resistance to immunotherapeutic strategies is multifactorial, but partially owed to an immunosuppressive tumor immune microenvironment (TiME). However, the PDAC TiME is heterogeneous and harbors favorable tumor-infiltrating lymphocyte (TIL) populations. Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop within non-lymphoid tissue under chronic inflammation in multiple contexts, including cancers. Our current understanding of their role within the PDAC TiME remains limited; TLS are complex structures with multiple anatomic features such as location, density, and maturity that may impact clinical outcomes such as survival and therapy response in PDAC. Similarly, our understanding of methods to manipulate TLS is an actively developing field of research. TLS may function as anti-tumoral immune niches that can be leveraged as a therapeutic strategy to potentiate both existing chemotherapeutic regimens and potentiate future immune-based therapeutic strategies to improve patient outcomes. This review seeks to cover anatomy, relevant features, immune effects, translational significance, and future directions of understanding TLS within the context of PDAC.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Huili Zhu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sophia Williams-Perez
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Celia Marginean
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Shalini Makawita
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
9
|
Zhang P, Liu Y, Chen S, Zhang X, Wang Y, Zhang H, Li J, Yang Z, Xiong K, Duan S, Zhang Z, Wang Y, Wang P. Distribution of multi-level B cell subsets in thymoma and thymoma-associated myasthenia gravis. Sci Rep 2024; 14:2674. [PMID: 38302676 PMCID: PMC10834956 DOI: 10.1038/s41598-024-53250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
B-cell subsets in peripheral blood (PB) and tumor microenvironment (TME) were evaluated to determine myasthenia gravis (MG) severity in patients with thymoma-associated MG (TMG) and the distribution of B cells in type B TMG. The distribution of mature B cells, including Bm1-Bm5, CD19+ and CD20+ B cells and non-switched (NSMBCs) and switched (SMBCs) memory B cells, were determined in 79 patients with thymoma or TMG. Quantitative relationships between the T and TMG groups and the TMG-low and TMG-high subgroups were determined. NSMBCs and SMBCs were compared in TME and PB. Type B thymoma was more likely to develop into MG, with types B2 and B3 being especially associated with MG worsening. The percentage of CD19+ B cells in PB gradually increased, whereas the percentage of CD20+ B cells and the CD19/CD20 ratio were not altered. The (Bm2 + Bm2')/(eBm5 + Bm5) index was significantly higher in the TMG-high than in thymoma group. The difference between SMBC/CD19+ and NSMBC/CD19+ B cell ratios was significantly lower in the thymoma than TMG group. NSMBCs assembled around tertiary lymphoid tissue in thymomas of patients with TMG. Few NSMBCs were observed in patients with thymoma alone, with these cells being diffusely distributed. MG severity in patients with TMG can be determined by measuring CD19+ B cells and Bm1-Bm5 in PB. The CD19/CD20 ratio is a marker of disease severity in TMG patients. Differences between NSMBCs and SMBCs in PB and TME of thymomas can synergistically determine MG severity in patients with TMG.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Yuxin Liu
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Si Chen
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Xinyu Zhang
- School of Medicine, University of Dundee, Dundee, UK
| | - Yuanguo Wang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Hui Zhang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Jian Li
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Zhaoyu Yang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Kai Xiong
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Shuning Duan
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Zeyang Zhang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Yan Wang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Ping Wang
- Tianjin Ruichuang Biological Technology Co. Ltd, Tianjin, China
| |
Collapse
|
10
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
11
|
Ribatti D. Tertiary lymphoid structures, a historical reappraisal. Tissue Cell 2024; 86:102288. [PMID: 38101028 DOI: 10.1016/j.tice.2023.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Tertiary lymphoid structures (TLSs) are accumulations of lymphoid cells within non-lymphoid organs that share the cellular compartments, spatial organization, vasculature, chemokines, and function with secondary lymphoid organs, especially lymph nodes. TLSs are organized into a separate T cell and B cell compartments which contain germinal centers with follicular dendritic cells. In most cases, TLSs contain Peripheral Node addressin (PNAD) expressing high endothelial venules (HEVs). TLSs have been described in various mouse models of inflammation and are associated with a wide range of autoimmune diseases. Other than these, TLSs have been described in chronic allograft rejection and cancer.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
12
|
Chen X, Qiu J, Gao Z, Liu B, Zhang C, Yu W, Yang J, Shen Y, Qi L, Yao X, Sun H, Yang X. Myasthenia gravis: Molecular mechanisms and promising therapeutic strategies. Biochem Pharmacol 2023; 218:115872. [PMID: 37865142 DOI: 10.1016/j.bcp.2023.115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiayi Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
13
|
Pham MC, Masi G, Patzina R, Obaid AH, Oxendine SR, Oh S, Payne AS, Nowak RJ, O'Connor KC. Individual myasthenia gravis autoantibody clones can efficiently mediate multiple mechanisms of pathology. Acta Neuropathol 2023; 146:319-336. [PMID: 37344701 PMCID: PMC11380498 DOI: 10.1007/s00401-023-02603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Serum autoantibodies targeting the nicotinic acetylcholine receptor (AChR) in patients with autoimmune myasthenia gravis (MG) can mediate pathology via three distinct molecular mechanisms: complement activation, receptor blockade, and antigenic modulation. However, it is unclear whether multi-pathogenicity is mediated by individual or multiple autoantibody clones. Using an unbiased B cell culture screening approach, we generated a library of 11 human-derived AChR-specific recombinant monoclonal autoantibodies (mAb) and assessed their binding properties and pathogenic profiles using specialized cell-based assays. Five mAbs activated complement, three blocked α-bungarotoxin binding to the receptor, and seven induced antigenic modulation. Furthermore, two clonally related mAbs derived from one patient were each highly efficient at more than one of these mechanisms, demonstrating that pathogenic mechanisms are not mutually exclusive at the monoclonal level. Using novel Jurkat cell lines that individually express each monomeric AChR subunit (α2βδε), these two mAbs with multi-pathogenic capacity were determined to exclusively bind the α-subunit of AChR, demonstrating an association between mAb specificity and pathogenic capacity. These findings provide new insight into the immunopathology of MG, demonstrating that single autoreactive clones can efficiently mediate multiple modes of pathology. Current therapeutic approaches targeting only one autoantibody-mediated pathogenic mechanism may be evaded by autoantibodies with multifaceted capacity.
Collapse
Affiliation(s)
- Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
| | - Gianvito Masi
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rosa Patzina
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Abeer H Obaid
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA
| | - Seneca R Oxendine
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
14
|
Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 2023:10.1038/s41582-023-00838-7. [PMID: 37400550 DOI: 10.1038/s41582-023-00838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Owain W Howell
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Massimiliano Calabrese
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
15
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
16
|
Jiang R, Roy B, Wu Q, Mohanty S, Nowak RJ, Shaw AC, Kleinstein SH, O’Connor KC. The Plasma Cell Infiltrate Populating the Muscle Tissue of Patients with Inclusion Body Myositis Features Distinct B Cell Receptor Repertoire Properties. Immunohorizons 2023; 7:310-322. [PMID: 37171806 PMCID: PMC10579972 DOI: 10.4049/immunohorizons.2200078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Inclusion body myositis (IBM) is an autoimmune and degenerative disorder of skeletal muscle. The B cell infiltrates in IBM muscle tissue are predominantly fully differentiated Ab-secreting plasma cells, with scarce naive or memory B cells. The role of this infiltrate in the disease pathology is not well understood. To better define the humoral response in IBM, we used adaptive immune receptor repertoire sequencing, of human-derived specimens, to generate large BCR repertoire libraries from IBM muscle biopsies and compared them to those generated from dermatomyositis, polymyositis, and circulating CD27+ memory B cells, derived from healthy controls and Ab-secreting cells collected following vaccination. The repertoire properties of the IBM infiltrate included the following: clones that equaled or exceeded the highly clonal vaccine-associated Ab-secreting cell repertoire in size; reduced somatic mutation selection pressure in the CDRs and framework regions; and usage of class-switched IgG and IgA isotypes, with a minor population of IgM-expressing cells. The IBM IgM-expressing population revealed unique features, including an elevated somatic mutation frequency and distinct CDR3 physicochemical properties. These findings demonstrate that some of IBM muscle BCR repertoire characteristics are distinct from dermatomyositis and polymyositis and circulating Ag-experienced subsets, suggesting that it may form through selection by disease-specific Ags.
Collapse
Affiliation(s)
- Roy Jiang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Bhaskar Roy
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Qian Wu
- Department of Pathology, University of Connecticut School of Medicine, Farmington, CT
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | | | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Kevin C. O’Connor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Neurology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
17
|
Tang M, Shao Y, Dong J, Gao X, Wei S, Ma J, Hong Y, Li Z, Bi T, Yin Y, Zhang W, Liu W. Risk factors for postoperative myasthenia gravis in patients with thymoma without myasthenia gravis: A systematic review and meta-analysis. Front Oncol 2023; 13:1061264. [PMID: 36845745 PMCID: PMC9944936 DOI: 10.3389/fonc.2023.1061264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction According to the principle, thymomas combined with myasthenia gravis (MG) require surgical treatment. However, patients with non-MG thymoma rarely develop MG and early- or late-onset MG after surgery is called postoperative MG (PMG). Our study used a meta-analysis to examine the incidence of PMG and risk factors. Methods Relevant studies were searched for in the PubMed, EMBASE, Web of Science, CNKI,and Wanfang databases. Investigations that directly or indirectly analyzed the risk factors for PMG development in patients with non-MG thymoma were included in this study. Furthermore, risk ratios (RR) with 95% confidence intervals (CI) were pooled using meta-analysis, and fixed-effects or random-effects models were used depending on the heterogeneity of the included studies. Results Thirteen cohorts containing 2,448 patients that met the inclusion criteria were included. Metaanalysis revealed that the incidence of PMG in preoperative patients with non-MG thymoma was 8%. Preoperative seropositive acetylcholine receptor antibody (AChR-Ab) (RR = 5.53, 95% CI 2.36 - 12.96, P<0.001), open thymectomy (RR =1.84, 95% CI 1.39 - 2.43, P<0.001), non-R0 resection (RR = 1.87, 95% CI 1.36 - 2.54, P<0.001), world health organization (WHO) type B (RR =1.80, 95% CI 1.07 - 3.04, P= 0.028), and postoperative inflammation (RR = 1.63, 95% CI 1.26 - 2.12, P<0.001) were the risk factors for PMG in patients with thymoma. Masaoka stage (P = 0.151) and sex (P = 0.777) were not significantly associated with PMG. Discussion Patients with thymoma but without MG had a high probability of developing PMG. Although the incidence of PMG was very low, thymectomy could not completely prevent the occurrence of MG. Preoperative seropositive AChR-Ab level, open thymectomy, non-R0 resection, WHO type B, and postoperative inflammation were risk factors for PMG. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022360002.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yifeng Shao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shixiong Wei
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Wei Liu,
| |
Collapse
|
18
|
Pioli KT, Pioli PD. Thymus antibody-secreting cells: once forgotten but not lost. Front Immunol 2023; 14:1170438. [PMID: 37122712 PMCID: PMC10130419 DOI: 10.3389/fimmu.2023.1170438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Antibody-secreting cells are essential contributors to the humoral response. This is due to multiple factors which include: 1) the ability to secrete thousands of antibodies per second, 2) the ability to regulate the immune response and 3) the potential to be long-lived. Not surprisingly, these cells can be found in numerous sites within the body which include organs that directly interface with potential pathogens (e.g., gut) and others that provide long-term survival niches (e.g., bone marrow). Even though antibody-secreting cells were first identified in the thymus of both humans and rodents in the 1960s, if not earlier, only recently has this population begun to be extensively investigated. In this article, we provide an update regarding the current breath of knowledge pertaining to thymus antibody-secreting cells and discuss the potential roles of these cells and their impact on health.
Collapse
|
19
|
Sikorski PM, Kusner LL, Kaminski HJ. Myasthenia Gravis. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
20
|
Dodd KC, Menon M. Sex bias in lymphocytes: Implications for autoimmune diseases. Front Immunol 2022; 13:945762. [PMID: 36505451 PMCID: PMC9730535 DOI: 10.3389/fimmu.2022.945762] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune diseases are characterized by a significant sex dimorphism, with women showing increased susceptibility to disease. This is, at least in part, due to sex-dependent differences in the immune system that are influenced by the complex interplay between sex hormones and sex chromosomes, with contribution from sociological factors, diet and gut microbiota. Sex differences are evident in the number and function of lymphocyte populations. Women mount a stronger pro-inflammatory response than males, with increased lymphocyte proliferation, activation and pro-inflammatory cytokine production, whereas men display expanded regulatory cell subsets. Ageing alters the immune landscape of men and women in differing ways, resulting in changes in autoimmune disease susceptibility. Here we review the current literature on sex differences in lymphocyte function, the factors that influence this, and the implications for autoimmune disease. We propose that improved understanding of sex bias in lymphocyte function can provide sex-specific tailoring of treatment strategies for better management of autoimmune diseases.
Collapse
Affiliation(s)
- Katherine C. Dodd
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, United Kingdom
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Madhvi Menon,
| |
Collapse
|
21
|
Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci 2022; 79:359. [PMID: 35689679 PMCID: PMC9188279 DOI: 10.1007/s00018-022-04388-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid organs (TLOs) are collections of immune cells resembling secondary lymphoid organs (SLOs) that form in peripheral, non-lymphoid tissues in response to local chronic inflammation. While their formation mimics embryologic lymphoid organogenesis, TLOs form after birth at ectopic sites in response to local inflammation resulting in their ability to mount diverse immune responses. The structure of TLOs can vary from clusters of B and T lymphocytes to highly organized structures with B and T lymphocyte compartments, germinal centers, and lymphatic vessels (LVs) and high endothelial venules (HEVs), allowing them to generate robust immune responses at sites of tissue injury. Although our understanding of the formation and function of these structures has improved greatly over the last 30 years, their role as mediators of protective or pathologic immune responses in certain chronic inflammatory diseases remains enigmatic and may differ based on the local tissue microenvironment in which they form. In this review, we highlight the role of TLOs in the regulation of immune responses in chronic infection, chronic inflammatory and autoimmune diseases, cancer, and solid organ transplantation.
Collapse
|
22
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Abstract
Ectopic lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are formed in numerous cancer types, and, with few exceptions, their presence is associated with superior prognosis and response to immunotherapy. In spite of their presumed importance, the triggers that lead to TLS formation in cancer tissue and the contribution of these structures to intratumoral immune responses remain incompletely understood. Here, we discuss the present knowledge on TLSs in cancer, focusing on (i) the drivers of TLS formation, (ii) the function and contribution of TLSs to the antitumor immune response, and (iii) the potential of TLSs as therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
24
|
Zhang E, Wu Y, Chen C, Wei R, Zhang J, Xie H, Wei C, Ma L, Dong X, Li R, Zhou Y, Cui Y, Wu Y. Effect of different initial rituximab regimens on B cell depletion in children with autoimmune neurological diseases. Mult Scler Relat Disord 2022; 59:103510. [DOI: 10.1016/j.msard.2022.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
|
25
|
Castañeda J, Hidalgo Y, Sauma D, Rosemblatt M, Bono MR, Núñez S. The Multifaceted Roles of B Cells in the Thymus: From Immune Tolerance to Autoimmunity. Front Immunol 2021; 12:766698. [PMID: 34790201 PMCID: PMC8591215 DOI: 10.3389/fimmu.2021.766698] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/14/2021] [Indexed: 12/02/2022] Open
Abstract
The thymus is home to a significant number of resident B cells which possess several unique characteristics regarding their origin, phenotype and function. Evidence shows that they originate both from precursors that mature intrathymically and as the entry of recirculating mature B cells. Under steady-state conditions they exhibit hallmark signatures of activated B cells, undergo immunoglobulin class-switch, and express the Aire transcription factor. These features are imprinted within the thymus and enable B cells to act as specialized antigen-presenting cells in the thymic medulla that contribute negative selection of self-reactive T cells. Though, most studies have focused on B cells located in the medulla, a second contingent of B cells is also present in non-epithelial perivascular spaces of the thymus. This latter group of B cells, which includes memory B cells and plasma cells, is not readily detected in the thymus of infants or young mice but gradually accumulates during normal aging. Remarkably, in many autoimmune diseases the thymus suffers severe structural atrophy and infiltration of B cells in the perivascular spaces, which organize into follicles similar to those typically found in secondary lymphoid organs. This review provides an overview of the pathways involved in thymic B cell origin and presents an integrated view of both thymic medullary and perivascular B cells and their respective physiological and pathological roles in central tolerance and autoimmune diseases.
Collapse
Affiliation(s)
- Justine Castañeda
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Yessia Hidalgo
- Cells for cells-Consorcio Regenero, Universidad de Los Andes, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Fundación Ciencia y Vida, Santiago, Chile
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
26
|
Zhao R, Luo S, Zhao C. The role of innate immunity in myasthenia gravis. Autoimmun Rev 2021; 20:102800. [PMID: 33722749 DOI: 10.1016/j.autrev.2021.102800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Myasthenia gravis (MG) is a T cell-driven, B cell-mediated and autoantibody-dependent autoimmune disorder against neuromuscular junctions (NMJ). Accumulated evidence has emerged regarding the role of innate immunity in the pathogenesis of MG. In this review, we proposed two hypothesis underlying the pathological mechanism. In the context of gene predisposition, on the one hand, Toll-like receptors (TLRs) pathways were initiated by viral infection in the thymus with MG to generate chemokines and pro-inflammatory cytokines such as Type I interferon (IFN), which facilitate the thymus to function as a tertiary lymphoid organ (TLO). On the another hand, the antibodies against acetylcholine receptors (AChR) generated by thymus then activated the classical pathways on thymus and neuromuscular junction (NMJ). Futher, we also highlight the role of innate immune cells in the pathogenic response. Finally, we provide some future perspectives in developing new therapeutic approaches particularly targeting the innate immunity for MG.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China.
| |
Collapse
|
27
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
28
|
|
29
|
Jiang R, Hoehn KB, Lee CS, Pham MC, Homer RJ, Detterbeck FC, Aban I, Jacobson L, Vincent A, Nowak RJ, Kaminski HJ, Kleinstein SH, O'Connor KC. Thymus-derived B cell clones persist in the circulation after thymectomy in myasthenia gravis. Proc Natl Acad Sci U S A 2020; 117:30649-30660. [PMID: 33199596 PMCID: PMC7720237 DOI: 10.1073/pnas.2007206117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular, autoimmune disease caused by autoantibodies that target postsynaptic proteins, primarily the acetylcholine receptor (AChR) and inhibit signaling at the neuromuscular junction. The majority of patients under 50 y with AChR autoantibody MG have thymic lymphofollicular hyperplasia. The MG thymus is a reservoir of plasma cells that secrete disease-causing AChR autoantibodies and although thymectomy improves clinical scores, many patients fail to achieve complete stable remission without additional immunosuppressive treatments. We speculate that thymus-associated B cells and plasma cells persist in the circulation after thymectomy and that their persistence could explain incomplete responses to resection. We studied patients enrolled in a randomized clinical trial and used complementary modalities of B cell repertoire sequencing to characterize the thymus B cell repertoire and identify B cell clones that resided in the thymus and circulation before and 12 mo after thymectomy. Thymus-associated B cell clones were detected in the circulation by both mRNA-based and genomic DNA-based sequencing. These antigen-experienced B cells persisted in the circulation after thymectomy. Many circulating thymus-associated B cell clones were inferred to have originated and initially matured in the thymus before emigration from the thymus to the circulation. The persistence of thymus-associated B cells correlated with less favorable changes in clinical symptom measures, steroid dose required to manage symptoms, and marginal changes in AChR autoantibody titer. This investigation indicates that the diminished clinical response to thymectomy is related to persistent circulating thymus-associated B cell clones.
Collapse
Affiliation(s)
- Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
| | - Casey S Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511
| | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
- Pathology & Laboratory Medicine Service, VA CT Health Care System, West Haven, CT 06516
| | - Frank C Detterbeck
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06511
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294
| | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Henry J Kaminski
- Department of Neurology, The George Washington University, Washington, DC 20052
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511;
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06511
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511;
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
30
|
Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol 2020; 11:776. [PMID: 32547535 PMCID: PMC7274207 DOI: 10.3389/fimmu.2020.00776] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a prototypical autoantibody mediated disease. The autoantibodies in MG target structures within the neuromuscular junction (NMJ), thus affecting neuromuscular transmission. The major disease subtypes of autoimmune MG are defined by their antigenic target. The most common target of pathogenic autoantibodies in MG is the nicotinic acetylcholine receptor (AChR), followed by muscle-specific kinase (MuSK) and lipoprotein receptor-related protein 4 (LRP4). MG patients present with similar symptoms independent of the underlying subtype of disease, while the immunopathology is remarkably distinct. Here we highlight these distinct immune mechanisms that describe both the B cell- and autoantibody-mediated pathogenesis by comparing AChR and MuSK MG subtypes. In our discussion of the AChR subtype, we focus on the role of long-lived plasma cells in the production of pathogenic autoantibodies, the IgG1 subclass mediated pathology, and contributions of complement. The similarities underlying the immunopathology of AChR MG and neuromyelitis optica (NMO) are highlighted. In contrast, MuSK MG is caused by autoantibody production by short-lived plasmablasts. MuSK MG autoantibodies are mainly of the IgG4 subclass which can undergo Fab-arm exchange (FAE), a process unique to this subclass. In FAE IgG4, molecules can dissociate into two halves and recombine with other half IgG4 molecules resulting in bispecific antibodies. Similarities between MuSK MG and other IgG4-mediated autoimmune diseases, including pemphigus vulgaris (PV) and chronic inflammatory demyelinating polyneuropathy (CIDP), are highlighted. Finally, the immunological distinctions are emphasized through presentation of biological therapeutics that provide clinical benefit depending on the MG disease subtype.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ruoyi Jiang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Aoibh Bourke
- Trinity Hall, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Nowak
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Kevin C O'Connor
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
31
|
Vincent A. ANTIBODIES AND RECEPTORS: From Neuromuscular Junction to Central Nervous System. Neuroscience 2020; 439:48-61. [PMID: 32194225 DOI: 10.1016/j.neuroscience.2020.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Myasthenia gravis (MG) is a relatively rare neurological disease that is usually associated with antibodies to the acetylcholine receptor (AChR). These antibodies (Abs) cause loss of the AChRs from the neuromuscular junction (NMJ), resulting in muscle weakness that can be life-threatening. Another form of the disease is caused by antibodies to muscle specific kinase (MuSK) that result in impaired AChR clustering and numbers at the NMJ, and may also interfere with presynaptic adaptive mechanisms. Other autoimmune disorders, Lambert Eaton myasthenic syndrome and acquired neuromyotonia, are associated with antibodies to presynaptic voltage-gated calcium and potassium channels respectively. All four conditions can be diagnosed by specific clinical features, electromyography and serum antibody tests, and can be treated effectively by a combination of pharmacological approaches and procedures that reduce the levels of the IgG antibodies. They form the first of a spectrum of diseases in which serum autoantibodies bind to extracellular domains of neuronal proteins throughout the nervous system and lead to constellations of clinical features including paralysis, sensory disturbance and pain, memory loss, seizures, psychiatric disturbance and movement disorders. This review will briefly summarize the ways in which this field has developed, since the 1970s when considerable contributions were made in Ricardo Miledi's laboratory at UCL.
Collapse
Affiliation(s)
- Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU, UK.
| |
Collapse
|
32
|
Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8:cells8070671. [PMID: 31269763 PMCID: PMC6678492 DOI: 10.3390/cells8070671] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ). Autoantibodies target key molecules at the NMJ, such as the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low-density lipoprotein receptor-related protein 4 (Lrp4), that lead by a range of different pathogenic mechanisms to altered tissue architecture and reduced densities or functionality of AChRs, reduced neuromuscular transmission, and therefore a severe fatigable skeletal muscle weakness. In this review, we give an overview of the history and clinical aspects of MG, with a focus on the structure and function of myasthenic autoantigens at the NMJ and how they are affected by the autoantibodies' pathogenic mechanisms. Furthermore, we give a short overview of the cells that are implicated in the production of the autoantibodies and briefly discuss diagnostic challenges and treatment strategies.
Collapse
|
33
|
Heidt S, Vergunst M, Anholts JDH, Swings GMJS, Gielis EMJ, Groeneweg KE, Witkamp MJ, de Fijter JW, Reinders MEJ, Roelen DL, Eikmans M, Claas FHJ. Presence of intragraft B cells during acute renal allograft rejection is accompanied by changes in peripheral blood B cell subsets. Clin Exp Immunol 2019; 196:403-414. [PMID: 30712266 PMCID: PMC6514375 DOI: 10.1111/cei.13269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2019] [Indexed: 01/08/2023] Open
Abstract
B cells have various functions, besides being plasma cell precursors. We determined the presence of intragraft B cells at time of acute rejection (AR) and looked for correlates of B cell involvement in peripheral blood. Renal biopsies at time of AR or stable graft function were analysed for the presence of B cells and B cell‐related gene expression, as well as C4d staining. Peripheral blood B cell subset distribution was analysed at various time‐points in patients with AR and controls, alongside serum human leucocyte antigen (HLA) antibodies. AR was accompanied by intragraft CD20+ B cells, as well as elevated CD20 (MS4A1) and CD19 gene expression compared to controls. B cell infiltrates were proportional to T cells, and accompanied by the chemokine pair C‐X‐C motif chemokine ligand 13 (CXCL13)–C‐X‐C motif chemokine receptor 5 (CXCR5) and B cell activating factor (BAFF). Peripheral blood memory B cells were decreased and naive B cells increased at AR, in contrast to controls. While 22% of patients with AR and 5% of controls showed de‐novo donor‐specific antibodies (DSA), all biopsies were C4d‐negative. These results suggest a role for B cells in AR by infiltrating the graft alongside T cells. We hypothesize that the shift in peripheral blood B cell composition is related to the graft infiltration at time of AR.
Collapse
Affiliation(s)
- S Heidt
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - M Vergunst
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - J D H Anholts
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - G M J S Swings
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - E M J Gielis
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - K E Groeneweg
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - M J Witkamp
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - J W de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - M E J Reinders
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - D L Roelen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - M Eikmans
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - F H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
34
|
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F. Tertiary Lymphoid Structures: Autoimmunity Goes Local. Front Immunol 2018; 9:1952. [PMID: 30258435 PMCID: PMC6143705 DOI: 10.3389/fimmu.2018.01952] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.
Collapse
Affiliation(s)
- Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | | | - Charlotte Smith
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Hao F, Tian M, Feng Y, Quan C, Chen Y, Chen S, Wei M. Abrogation of Lupus Nephritis in Somatic Hypermutation-Deficient MRL/lpr Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:3905-3912. [PMID: 29728506 DOI: 10.4049/jimmunol.1800115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/31/2018] [Indexed: 01/31/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease posing threats to multiple organs in the human body. As a typical manifestation of SLE, lupus nephritis is characterized by a series of pathological changes in glomerulus as well as accumulation of pathogenic autoreactive IgG with complement in the kidney that dramatically disrupts renal functions. Activation-induced deaminase (AID), which governs both somatic hypermutation (SHM) and class-switch recombination (CSR), has been shown to be essential for the regulation of SLE. However, the relative contributions of SHM and CSR to SLE pathology have not been determined. Based on the available AIDG23S mice, we successfully established an AIDG23S MRL/lpr mouse model, in which SHM is specifically abolished, although CSR is largely unaffected. We found that the abrogation of SHM effectively alleviated SLE-associated histopathological alterations, such as expansion of the mesangial matrix and thickening of the basement membrane of Bowman's capsule as well as infiltration of inflammatory cells. Compared with SLE mice, AIDG23S MRL/lpr mice exhibited decreased proteinuria, blood urea nitrogen, and creatinine, indicating that the loss of SHM contributed to the recovery of renal functions. As a consequence, the life span of those SHM-deficient MRL/lpr mice was extended. Together, we provide direct evidence pinpointing a vital role of SHM in the control of SLE development.
Collapse
Affiliation(s)
- Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China; and
| | - Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Chao Quan
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, 210061, People's Republic of China
| | - Yixi Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Shuai Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, 210061, People's Republic of China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China;
| |
Collapse
|
36
|
Yano M, Fujii Y, Yoshida J, Utsumi T, Shiono H, Takao M, Tanahashi M, Saito Y. A Phase II Study of Partial and Subtotal Thymectomy for Thymoma (JART02). World J Surg 2018; 41:2033-2038. [PMID: 28324142 DOI: 10.1007/s00268-017-3990-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND We believe the merit of preservation of a part of the thymus following surgery for thymoma. We evaluated the efficacy of partial or subtotal thymectomy for early-stage thymoma in the prospective study. METHODS The Japanese Association for Research on the Thymus conducted a multiple institutional study of thymectomy for thymoma localized in the thymus without total thymectomy. Patients without autoimmune disease who had an anterior mediastinal tumor that had been clinically diagnosed as an early-stage thymoma were enrolled in the study. Patients who were positive for anti-acetylcholine receptor antibodies were excluded. RESULTS Sixty-three patients were enrolled preoperatively; 27 patients were judged as being inappropriate based on the other thymic pathologies or tumor invasion. The remaining 36 cases were diagnosed as early-staged thymoma and analyzed. The mean age of the patients was 61 years. The mean maximal tumor diameter in the resected specimens was 3.6 cm. The most common pathological types of thymoma were AB (n = 10) and B1 (n = 10). The Masaoka stages were classified as stage I (n = 22) and II (n = 14). The mean observation period was 63 months. Two patients died due to respiratory dysfunction, which was not related to thymoma. One hundred percent of the patients remained recurrence-free. CONCLUSIONS This prospective study suggested the efficacy of partial or subtotal thymectomy for early-stage thymoma in patients without any apparent evidence of autoimmune disease. We can preserve a part of the thymus even following surgery for thymoma to prepare the possible second malignancies or diseases in future.
Collapse
Affiliation(s)
- Motoki Yano
- Division of Chest Surgery, Department of Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, 480-1195, Japan.
| | - Yoshitaka Fujii
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Junji Yoshida
- Divison of Thoracic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Tomoki Utsumi
- Department of Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Hiroyuki Shiono
- Department of Thoracic Surgery, Nara Hospital Kinki University Faculty of Medicine, Ikoma, Japan
| | - Motoshi Takao
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Yushi Saito
- Department of Thoracic Surgery, Toyota Memorial Hospital, Toyota, Japan
| |
Collapse
|
37
|
Weis CA, Schalke B, Ströbel P, Marx A. Challenging the current model of early-onset myasthenia gravis pathogenesis in the light of the MGTX trial and histological heterogeneity of thymectomy specimens. Ann N Y Acad Sci 2018; 1413:82-91. [DOI: 10.1111/nyas.13563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| | - Berthold Schalke
- Department of Neurology, University Hospital Regensburg; University of Regensburg; Regensburg Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen; University of Göttingen; Göttingen Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
38
|
Characterization of an anti-fetal AChR monoclonal antibody isolated from a myasthenia gravis patient. Sci Rep 2017; 7:14426. [PMID: 29089519 PMCID: PMC5663942 DOI: 10.1038/s41598-017-14350-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022] Open
Abstract
We report here the sequence and functional characterization of a recombinantly expressed autoantibody (mAb 131) previously isolated from a myasthenia gravis patient by immortalization of thymic B cells using Epstein-Barr virus and TLR9 activation. The antibody is characterized by a high degree of somatic mutations as well as a 6 amino acid insertion within the VHCDR2. The recombinant mAb 131 is specific for the γ-subunit of the fetal AChR to which it bound with sub-nanomolar apparent affinity, and detected the presence of fetal AChR on a number of rhabdomyosarcoma cell lines. Mab 131 blocked one of the two α-bungarotoxin binding sites on the fetal AChR, and partially blocked the binding of an antibody (mAb 637) to the α-subunit of the AChR, suggesting that both antibodies bind at or near one ACh binding site at the α/γ subunit interface. However, mAb 131 did not reduce fetal AChR ion channel currents in electrophysiological experiments. These results indicate that mAb 131, although generated from an MG patient, is unlikely to be pathogenic and may make it a potentially useful reagent for studies of myasthenia gravis, rhabdomyosarcoma and arthrogryposis multiplex congenita which can be caused by fetal-specific AChR-blocking autoantibodies.
Collapse
|
39
|
Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O'Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve 2017; 57:172-184. [PMID: 28940642 DOI: 10.1002/mus.25973] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/21/2022]
Abstract
Myasthenia gravis (MG) is an archetypal autoimmune disease. The pathology is characterized by autoantibodies to the acetylcholine receptor (AChR) in most patients or to muscle-specific tyrosine kinase (MuSK) in others and to a growing number of other postsynaptic proteins in smaller subsets. A decrease in the number of functional AChRs or functional interruption of the AChR within the muscle end plate of the neuromuscular junction is caused by pathogenic autoantibodies. Although the molecular immunology underpinning the pathology is well understood, much remains to be learned about the cellular immunology contributing to the production of autoantibodies. This Review documents research concerning the immunopathology of MG, bringing together evidence principally from human studies with an emphasis on the role of adaptive immunity and B cells in particular. Proposed mechanisms for autoimmunity, which take into account that different types of MG may incorporate divergent immunopathology, are offered. Muscle Nerve 57: 172-184, 2018.
Collapse
Affiliation(s)
- John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jeffrey T Guptill
- Department of Neurology, Neuromuscular Section, Duke University Medical Center, Durham, North Carolina, USA
| | - Panos Stathopoulos
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| |
Collapse
|
40
|
Stathopoulos P, Kumar A, Nowak RJ, O'Connor KC. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight 2017; 2:94263. [PMID: 28878127 DOI: 10.1172/jci.insight.94263] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Myasthenia gravis (MG) is a B cell-mediated autoimmune disorder of neuromuscular transmission. Pathogenic autoantibodies to muscle-specific tyrosine kinase (MuSK) can be found in patients with MG who do not have detectable antibodies to the acetylcholine receptor (AChR). MuSK MG includes immunological and clinical features that are generally distinct from AChR MG, particularly regarding responsiveness to therapy. B cell depletion has been shown to affect a decline in serum autoantibodies and to induce sustained clinical improvement in the majority of MuSK MG patients. However, the duration of this benefit may be limited, as we observed disease relapse in MuSK MG patients who had achieved rituximab-induced remission. We investigated the mechanisms of such relapses by exploring autoantibody production in the reemerging B cell compartment. Autoantibody-expressing CD27+ B cells were observed within the reconstituted repertoire during relapse but not during remission or in controls. Using two complementary approaches, which included production of 108 unique human monoclonal recombinant immunoglobulins, we demonstrated that antibody-secreting CD27hiCD38hi B cells (plasmablasts) contribute to the production of MuSK autoantibodies during relapse. The autoantibodies displayed hallmarks of antigen-driven affinity maturation. These collective findings introduce potential mechanisms for understanding both MuSK autoantibody production and disease relapse following B cell depletion.
Collapse
|
41
|
Vander Heiden JA, Stathopoulos P, Zhou JQ, Chen L, Gilbert TJ, Bolen CR, Barohn RJ, Dimachkie MM, Ciafaloni E, Broering TJ, Vigneault F, Nowak RJ, Kleinstein SH, O'Connor KC. Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing. THE JOURNAL OF IMMUNOLOGY 2017; 198:1460-1473. [PMID: 28087666 DOI: 10.4049/jimmunol.1601415] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/13/2016] [Indexed: 01/14/2023]
Abstract
Myasthenia gravis (MG) is a prototypical B cell-mediated autoimmune disease affecting 20-50 people per 100,000. The majority of patients fall into two clinically distinguishable types based on whether they produce autoantibodies targeting the acetylcholine receptor (AChR-MG) or muscle specific kinase (MuSK-MG). The autoantibodies are pathogenic, but whether their generation is associated with broader defects in the B cell repertoire is unknown. To address this question, we performed deep sequencing of the BCR repertoire of AChR-MG, MuSK-MG, and healthy subjects to generate ∼518,000 unique VH and VL sequences from sorted naive and memory B cell populations. AChR-MG and MuSK-MG subjects displayed distinct gene segment usage biases in both VH and VL sequences within the naive and memory compartments. The memory compartment of AChR-MG was further characterized by reduced positive selection of somatic mutations in the VH CDR and altered VH CDR3 physicochemical properties. The VL repertoire of MuSK-MG was specifically characterized by reduced V-J segment distance in recombined sequences, suggesting diminished VL receptor editing during B cell development. Our results identify large-scale abnormalities in both the naive and memory B cell repertoires. Particular abnormalities were unique to either AChR-MG or MuSK-MG, indicating that the repertoires reflect the distinct properties of the subtypes. These repertoire abnormalities are consistent with previously observed defects in B cell tolerance checkpoints in MG, thereby offering additional insight regarding the impact of tolerance defects on peripheral autoimmune repertoires. These collective findings point toward a deformed B cell repertoire as a fundamental component of MG.
Collapse
Affiliation(s)
- Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | | | - Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | - Luan Chen
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | | | - Christopher R Bolen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester School of Medicine, Rochester, NY 14642
| | | | | | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511; .,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511; and.,Department of Pathology, Yale School of Medicine, New Haven, CT 06511
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511;
| |
Collapse
|
42
|
Kang SY, Kang CH, Lee KH. B-cell-activating factor is elevated in serum of patients with myasthenia gravis. Muscle Nerve 2016; 54:1030-1033. [PMID: 27121160 DOI: 10.1002/mus.25162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Myasthenia gravis (MG) is a B-cell-mediated autoimmune disease. B-cell-activating factor (BAFF) is a major factor in B-cell development and activation. In this study we investigated serum BAFF levels in MG patients. METHODS We compared the serum BAFF levels of 20 MG patients with gender-matched healthy controls. We assayed serum concentrations of BAFF and anti-acetylcholine receptor antibody (AChR) titers. RESULTS Serum BAFF levels of MG patients with AChR antibodies were significantly higher than those of healthy controls. A significant positive correlation was observed between serum BAFF levels and anti-AChR antibody titers. BAFF values did not correlate with disease severity. CONCLUSIONS BAFF may play a major role in the pathogenesis of MG, and it may provide a potential target for therapy in patients with MG. Muscle Nerve 54: 1030-1033, 2016.
Collapse
Affiliation(s)
- Sa-Yoon Kang
- Department of Neurology, Jeju National University School of Medicine, 1 Ara 1-dong, Jeju-si, Jeju, 690-756, South Korea
| | - Chul-Hoo Kang
- Department of Neurology, Jeju National University School of Medicine, 1 Ara 1-dong, Jeju-si, Jeju, 690-756, South Korea
| | - Keun-Hwa Lee
- Department of Microbiology, Jeju National University School of Medicine, Jeju, South Korea
| |
Collapse
|
43
|
Karni A, Asmail A, Drory VE, Kolb H, Kesler A. Thymus involvement in myasthenia gravis: Epidemiological and clinical impacts of different self-tolerance breakdown mechanisms. J Neuroimmunol 2016; 298:58-62. [DOI: 10.1016/j.jneuroim.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/02/2016] [Accepted: 07/06/2016] [Indexed: 01/24/2023]
|
44
|
Lee KE, Kang JH, Yim YR, Kim JE, Lee JW, Wen L, Park DJ, Kim TJ, Park YW, Yoon KC, Lee JS, Lee SS. The Significance of Ectopic Germinal Centers in the Minor Salivary Gland of Patients with Sjögren's Syndrome. J Korean Med Sci 2016; 31:190-5. [PMID: 26839471 PMCID: PMC4729497 DOI: 10.3346/jkms.2016.31.2.190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/02/2015] [Indexed: 01/26/2023] Open
Abstract
We investigated the clinical and biological significance of germinal centers (GC) present in the minor salivary glands of patients with Sjögren's syndrome (SS). Minor salivary gland tissue biopsies from 93 patients with SS were used to identify GC-like structures, which were confirmed by CD21-positive follicular dendritic cell networks. Patients were compared based upon sociodemographics, glandular and extraglandular manifestations, and laboratory findings including autoantibody profiles, complement, and immunoglobulin levels; EULAR SS disease activity index (ESSDAI) and SS disease damage index (SSDDI) were also measured. GC-like structures were observed in 28 of 93 SS patients (30.1%). Mean focus scores and CRP levels were significantly higher in GC-positive patients than in GC-negative patients; GC-positive patients also exhibit a higher prevalence of rheumatoid factor and anti-SS-A/Ro antibodies compared to GC-negative patients. No differences in glandular or extra-glandular manifestations were evident between groups. In conclusion, SS patients with GC-like structures in the minor salivary glands exhibited laboratory profiles significantly different from those of their GC-negative counterparts. Long-term follow-up of these patients will be necessary to determine whether these laboratory abnormalities are predictive of clinical outcomes.
Collapse
Affiliation(s)
- Kyung-Eun Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Ji-Hyoun Kang
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Yi-Rang Yim
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Ji-Eun Kim
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Jeong-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Lihui Wen
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Dong-Jin Park
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Tae-Jong Kim
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Yong-Wook Park
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Ji Shin Lee
- Department of Pathology Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Shin-Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| |
Collapse
|
45
|
Guptill JT, Soni M, Meriggioli MN. Current Treatment, Emerging Translational Therapies, and New Therapeutic Targets for Autoimmune Myasthenia Gravis. Neurotherapeutics 2016; 13:118-31. [PMID: 26510558 PMCID: PMC4720661 DOI: 10.1007/s13311-015-0398-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease associated with the production of autoantibodies against 1) the skeletal muscle acetylcholine receptor; 2) muscle-specific kinase, a receptor tyrosine kinase critical for the maintenance of neuromuscular synapses; 3) low-density lipoprotein receptor-related protein 4, an important molecular binding partner for muscle-specific kinase; and 4) other muscle endplate proteins. In addition to the profile of autoantibodies, MG may be classified according the location of the affected muscles (ocular vs generalized), the age of symptom onset, and the nature of thymic pathology. Immunopathologic events leading to the production of autoantibodies differ in the various disease subtypes. Advances in our knowledge of the immunopathogenesis of the subtypes of MG will allow for directed utilization of the ever-growing repertoire of therapeutic agents that target distinct nodes in the immune pathway relevant to the initiation and maintenance of autoimmune disease. In this review, we examine the pathogenesis of MG subtypes, current treatment options, and emerging new treatments and therapeutic targets.
Collapse
Affiliation(s)
- Jeffrey T Guptill
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Madhu Soni
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Matthew N Meriggioli
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
46
|
Grønbæk L, Vilstrup H, Deleuran B, Wiest R, Krag A, Jepsen P. Alcoholic Cirrhosis Increases Risk for Autoimmune Diseases: A Nationwide Registry-Based Cohort Study. Clin Gastroenterol Hepatol 2015; 13:2017-22. [PMID: 26044312 DOI: 10.1016/j.cgh.2015.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Alcoholic cirrhosis is associated with hyperactivation and dysregulation of the immune system. In addition to its ability to increase risk for infections, it also may increase the risk for autoimmune diseases. We studied the incidence of autoimmune diseases among patients with alcoholic cirrhosis vs controls in Denmark. METHODS We collected data from nationwide health care registries to identify and follow up all citizens of Denmark diagnosed with alcoholic cirrhosis from 1977 through 2010. Each patient was matched with 5 random individuals from the population (controls) of the same sex and age. The incidence rates of various autoimmune diseases were compared between patients with cirrhosis and controls and adjusted for the number of hospitalizations in the previous year (a marker for the frequency of clinical examination). RESULTS Of the 24,679 patients diagnosed with alcoholic cirrhosis, 532 developed an autoimmune disease, yielding an overall increased adjusted incidence rate ratio (aIRR) of 1.36 (95% confidence interval [CI], 1.24-1.50). The strongest associations were with Addison's disease (aIRR, 2.47; 95% CI, 1.04-5.85), inflammatory bowel disease (aIRR, 1.56; 95% CI, 1.26-1.92), celiac disease (aIRR, 5.12; 95% CI, 2.58-10.16), pernicious anemia (aIRR, 2.35; 95% CI, 1.50-3.68), and psoriasis (aIRR, 4.06; 95% CI, 3.32-4.97). There was no increase in the incidence rate for rheumatoid arthritis (aIRR, 0.89; 95% CI, 0.69-1.15); the incidence rate for polymyalgia rheumatica decreased in patients with alcoholic cirrhosis compared with controls (aIRR, 0.47; 95% CI, 0.33-0.67). CONCLUSIONS Based on a nationwide cohort study of patients in Denmark, alcoholic cirrhosis is a risk factor for several autoimmune diseases.
Collapse
Affiliation(s)
- Lisbet Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Bent Deleuran
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Reiner Wiest
- Department of Gastroenterology, Inselspital, Bern, Switzerland
| | - Aleksander Krag
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Peter Jepsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
47
|
Li H, Wang CC, Zhang M, Li XL, Zhang P, Yue LT, Miao S, Wang S, Liu Y, Li YB, Duan RS. Statin-modified dendritic cells regulate humoral immunity in experimental autoimmune myasthenia gravis. Mol Cell Neurosci 2015; 68:284-92. [DOI: 10.1016/j.mcn.2015.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/03/2015] [Accepted: 08/19/2015] [Indexed: 12/16/2022] Open
|
48
|
Germain C, Gnjatic S, Dieu-Nosjean MC. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity. Front Immunol 2015; 6:67. [PMID: 25755654 PMCID: PMC4337382 DOI: 10.3389/fimmu.2015.00067] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022] Open
Abstract
It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools.
Collapse
Affiliation(s)
- Claire Germain
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| | - Sacha Gnjatic
- Division of Hematology, Oncology and Immunology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Marie-Caroline Dieu-Nosjean
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| |
Collapse
|
49
|
Zhang J, Jia G, Liu Q, Hu J, Yan M, Yang B, Yang H, Zhou W, Li J. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis. Immunology 2015; 144:56-67. [PMID: 24962817 DOI: 10.1111/imm.12347] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs have been shown to be important regulators of immune homeostasis as patients with aberrant microRNA expression appeared to be more susceptible to autoimmune diseases. We recently found that miR-146a was up-regulated in activated B cells in response to rat acetylcholine receptor (AChR) α-subunit 97-116 peptide, and this up-regulation was significantly attenuated by AntagomiR-146a. Our data also demonstrated that silencing miR-146a with its inhibitor AntagomiR-146a effectively ameliorated clinical myasthenic symptoms in mice with ongoing experimental autoimmune myasthenia gravis. Furthermore, multiple defects were observed after miR-146a was knocked down in B cells, including decreased anti-R97-116 antibody production and class switching, reduced numbers of plasma cells, memory B cells and B-1 cells, and weakened activation of B cells. Previously, miR-146a has been identified as a nuclear factor-κB-dependent gene and predicted to base pair with the tumour necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1) genes to regulate the immune response. However, our study proved that miR-146a inhibition had no effect on the expression of TRAF6 and IRAK1 in B cells. This result suggests that the function of miR-146a in B cells does not involve these two target molecules. We conclude that silencing miR-146a exerts its therapeutic effects by influencing the B-cell functions that contribute to the autoimmune pathogenesis of myasthenia gravis.
Collapse
Affiliation(s)
- JunMei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hauser AE, Höpken UE. B Cell Localization and Migration in Health and Disease. MOLECULAR BIOLOGY OF B CELLS 2015:187-214. [DOI: 10.1016/b978-0-12-397933-9.00012-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|