Combination epidermal growth factor receptor variant III peptide-pulsed dendritic cell vaccine with miR-326 results in enhanced killing on EGFRvIII-positive cells.
Oncotarget 2018;
8:26256-26268. [PMID:
28412740 PMCID:
PMC5432254 DOI:
10.18632/oncotarget.15445]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/06/2017] [Indexed: 01/02/2023] Open
Abstract
The mutant Type III variant of epidermal growth factor receptor (EGFRvIII) is present in approximately one-third of glioblastoma (GBM) patients. It is never found in normal tissues; therefore, it represents a candidate target for GBM immunotherapy. PEPvIII, a peptide sequence from EGFRvIII, was designed to represent a target of glioma and is presented by MHC I/II complexes. Dendritic cells (DCs) have great potential to sensitize CD4+ T and CD8+ T cells to precisely target and eradicate GBM. Here, we show that PEPvIII could be loaded by DCs and presented to T lymphocytes, especially PEPvIII-specific CTLs, to precisely kill U87-EGFRvIII cells. In addition to inhibiting proliferation and inducing the apoptosis of U87-EGFRvIII cells, miR-326 also reduced the expression of TGF-β1 in the tumour environment, resulting in improved efficacy of T cell activation and killing via suppressing the SMO/Gli2 axis, which at least partially reversed the immunosuppressive environment. Furthermore, combining the EGFRvIII-DC vaccine with miR-326 was more effective in killing U87-EGFRvIII cells compared with the administration of either one alone. This finding suggested that a DC-based vaccine combined with miR-326 may induce more powerful anti-tumour immunity against GBM cells that express a relevant antigen, which provides a promising approach for GBM immunotherapy.
Collapse