1
|
Srivastava R, Coulon PGA, Prakash S, Dhanushkodi NR, Roy S, Nguyen AM, Alomari NI, Mai UT, Amezquita C, Ye C, Maillère B, BenMohamed L. Human Epitopes Identified from Herpes Simplex Virus Tegument Protein VP11/12 (UL46) Recall Multifunctional Effector Memory CD4 + T EM Cells in Asymptomatic Individuals and Protect from Ocular Herpes Infection and Disease in "Humanized" HLA-DR Transgenic Mice. J Virol 2020; 94:e01991-19. [PMID: 31915285 PMCID: PMC7081904 DOI: 10.1128/jvi.01991-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/02/2020] [Indexed: 01/17/2023] Open
Abstract
While the role of CD8+ T cells in the control of herpes simplex virus 1 (HSV-1) infection and disease is gaining wider acceptance, a direct involvement of effector CD4+ T cells in this protection and the phenotype and function of HSV-specific human CD4+ T cell epitopes remain to be fully elucidated. In the present study, we report that several epitopes from the HSV-1 virion tegument protein (VP11/12) encoded by UL46 are targeted by CD4+ T cells from HSV-seropositive asymptomatic individuals (who, despite being infected, never develop any recurrent herpetic disease). Among these, we identified two immunodominant effector memory CD4+ TEM cell epitopes, amino acids (aa) 129 to 143 of VP11/12 (VP11/12129-143) and VP11/12483-497, using in silico, in vitro, and in vivo approaches based on the following: (i) a combination of the TEPITOPE algorithm and PepScan library scanning of the entire 718 aa of HSV-1 VP11/12 sequence; (ii) an in silico peptide-protein docking analysis and in vitro binding assay that identify epitopes with high affinity to soluble HLA-DRB1 molecules; and (iii) an ELISpot assay and intracellular detection of gamma interferon (IFN-γ), CD107a/b degranulation, and CD4+ T cell carboxyfluorescein succinimidyl ester (CFSE) proliferation assays. We demonstrated that native VP11/12129-143 and VP11/12483-497 epitopes presented by HSV-1-infected HLA-DR-positive target cells were recognized mainly by effector memory CD4+ TEM cells while being less targeted by FOXP3+ CD4+ CD25+ regulatory T cells. Furthermore, immunization of HLA-DR transgenic mice with a mixture of the two immunodominant human VP11/12 CD4+ TEM cell epitopes, but not with cryptic epitopes, induced HSV-specific polyfunctional IFN-γ-producing CD107ab+ CD4+ T cells associated with protective immunity against ocular herpes infection and disease.IMPORTANCE We report that naturally protected HSV-1-seropositive asymptomatic individuals develop a higher frequency of antiviral effector memory CD4+ TEM cells specific to two immunodominant epitopes derived from the HSV-1 tegument protein VP11/12. Immunization of HLA-DR transgenic mice with a mixture of these two immunodominant CD4+ T cell epitopes induced a robust antiviral CD4+ T cell response in the cornea that was associated with protective immunity against ocular herpes. The emerging concept of developing an asymptomatic herpes vaccine that would boost effector memory CD4+ and CD8+ TEM cell responses is discussed.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Pierre-Gregoire A Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Angela M Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Nuha I Alomari
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Uyen T Mai
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Cassendra Amezquita
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Bernard Maillère
- Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, School of Medicine, Irvine, California, USA
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
2
|
Acute Infection and Subsequent Subclinical Reactivation of Herpes Simplex Virus 2 after Vaginal Inoculation of Rhesus Macaques. J Virol 2019; 93:JVI.01574-18. [PMID: 30333177 PMCID: PMC6321901 DOI: 10.1128/jvi.01574-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a common sexually transmitted infection with a highly variable clinical course. Many infections quickly become subclinical, with episodes of spontaneous virus reactivation. To study host-HSV-2 interactions, an animal model of subclinical HSV-2 infection is needed. In an effort to develop a relevant model, rhesus macaques (RM) were inoculated intravaginally with two or three HSV-2 strains (186, 333, and/or G) at a total dose of 1 × 107 PFU of HSV-2 per animal. Infectious HSV-2 and HSV-2 DNA were consistently shed in vaginal swabs for the first 7 to 14 days after each inoculation. Proteins associated with wound healing, innate immunity, and inflammation were significantly increased in cervical secretions immediately after HSV-2 inoculation. There was histologic evidence of acute herpesvirus pathology, including acantholysis in the squamous epithelium and ballooning degeneration of and intranuclear inclusion bodies in epithelial cells, with HSV antigen in mucosal epithelial cells and keratinocytes. Further, an intense inflammatory infiltrate was found in the cervix and vulva. Evidence of latent infection and reactivation was demonstrated by the detection of spontaneous HSV-2 shedding post-acute inoculation (102 to 103 DNA copies/swab) in 80% of RM. Further, HSV-2 DNA was detected in ganglia in most necropsied animals. HSV-2-specifc T-cell responses were detected in all animals, although antibodies to HSV-2 were detected in only 30% of the animals. Thus, HSV-2 infection of RM recapitulates many of the key features of subclinical HSV-2 infection in women but seems to be more limited, as virus shedding was undetectable more than 40 days after the last virus inoculation.IMPORTANCE Herpes simplex virus 2 (HSV-2) infects nearly 500 million persons globally, with an estimated 21 million incident cases each year, making it one of the most common sexually transmitted infections (STIs). HSV-2 is associated with increased human immunodeficiency virus type 1 (HIV-1) acquisition, and this risk does not decline with the use of antiherpes drugs. As initial acquisition of both HIV and HSV-2 infections is subclinical, study of the initial molecular interactions of the two agents requires an animal model. We found that HSV-2 can infect RM after vaginal inoculation, establish latency in the nervous system, and spontaneously reactivate; these features mimic some of the key features of HSV-2 infection in women. RM may provide an animal model to develop strategies to prevent HSV-2 acquisition and reactivation.
Collapse
|
3
|
Transient Oral Human Cytomegalovirus Infections Indicate Inefficient Viral Spread from Very Few Initially Infected Cells. J Virol 2017; 91:JVI.00380-17. [PMID: 28381570 DOI: 10.1128/jvi.00380-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine.IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We studied CMV acquisition in infants and found that infections are usually brief and self-limited and are successfully established relatively rarely. Thus, although most people eventually acquire CMV infection, it usually requires numerous exposures. Our analyses indicate that this is because the virus is surprisingly inefficient, barely replicating well enough to spread to neighboring cells in the mouth. Greater knowledge of why CMV infection usually fails may provide insight into how to prevent it from succeeding.
Collapse
|
4
|
Bagley KC, Schwartz JA, Andersen H, Eldridge JH, Xu R, Ota-Setlik A, Geltz JJ, Halford WP, Fouts TR. An Interleukin 12 Adjuvanted Herpes Simplex Virus 2 DNA Vaccine Is More Protective Than a Glycoprotein D Subunit Vaccine in a High-Dose Murine Challenge Model. Viral Immunol 2017; 30:178-195. [PMID: 28085634 DOI: 10.1089/vim.2016.0136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vaccination is a proven intervention against human viral diseases; however, success against Herpes Simplex Virus 2 (HSV-2) remains elusive. Most HSV-2 vaccines tested in humans to date contained just one or two immunogens, such as the virion attachment receptor glycoprotein D (gD) and/or the envelope fusion protein, glycoprotein B (gB). At least three factors may have contributed to the failures of subunit-based HSV-2 vaccines. First, immune responses directed against one or two viral antigens may lack sufficient antigenic breadth for efficacy. Second, the antibody responses elicited by these vaccines may have lacked necessary Fc-mediated effector functions. Third, these subunit vaccines may not have generated necessary protective cellular immune responses. We hypothesized that a polyvalent combination of HSV-2 antigens expressed from a DNA vaccine with an adjuvant that polarizes immune responses toward a T helper 1 (Th1) phenotype would compose a more effective vaccine. We demonstrate that delivery of DNA expressing full-length HSV-2 glycoprotein immunogens by electroporation with the adjuvant interleukin 12 (IL-12) generates substantially greater protection against a high-dose HSV-2 vaginal challenge than a recombinant gD subunit vaccine adjuvanted with alum and monophosphoryl lipid A (MPL). Our results further show that DNA vaccines targeting optimal combinations of surface glycoproteins provide better protection than gD alone and provide similar survival benefits and disease symptom reductions compared with a potent live attenuated HSV-2 0ΔNLS vaccine, but that mice vaccinated with HSV-2 0ΔNLS clear the virus much faster. Together, our data indicate that adjuvanted multivalent DNA vaccines hold promise for an effective HSV-2 vaccine, but that further improvements may be required.
Collapse
Affiliation(s)
| | | | | | | | - Rong Xu
- 3 Profectus Biosciences , Tarrytown, New York
| | | | - Joshua J Geltz
- 4 Department of Microbiology and Immunology, Southern Illinois University School of Medicine , Springfield, Illinois
| | - William P Halford
- 4 Department of Microbiology and Immunology, Southern Illinois University School of Medicine , Springfield, Illinois
| | | |
Collapse
|
5
|
Seruyange E, Gahutu JB, Mambo Muvunyi C, Uwimana ZG, Gatera M, Twagirumugabe T, Katare S, Karenzi B, Bergström T. Measles seroprevalence, outbreaks, and vaccine coverage in Rwanda. Infect Dis (Lond) 2016; 48:800-7. [PMID: 27386895 DOI: 10.1080/23744235.2016.1201720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Measles outbreaks are reported after insufficient vaccine coverage, especially in countries recovering from natural disaster or conflict. We compared seroprevalence to measles in blood donors in Rwanda and Sweden and explored distribution of active cases of measles and vaccine coverage in Rwanda. METHODS 516 Rwandan and 215 Swedish blood donors were assayed for measles-specific immunoglobulin G (IgG) by enzyme-linked immunosorbent assay (ELISA). Data on vaccine coverage and acute cases in Rwanda from 1980 to 2014 were collected, and IgM on serum samples and polymerase chain reaction (PCR) on nasopharyngeal (NPH) swabs from suspected measles cases during 2010-2011 were analysed. RESULTS The seroprevalence of measles IgG was significantly higher in Swedish blood donors (92.6%; 95% CI: 89.1-96.1%) compared to Rwandan subjects (71.5%; 95% CI: 67.6-75.4%) and more pronounced <35 years of age. The OD values were significantly lower in the Rwandan blood donors as compared to Swedish subjects (p < 0.00001). However, effective measles vaccine coverage was concomitant with decrease in measles cases in Rwanda, with the exception of an outbreak in 1995 following the 1994 genocide. 76/544 serum samples were IgM positive and 21/31 NPH swabs were PCR positive for measles, determined by sequencing to be of genotype B3. CONCLUSIONS Measles seroprevalence was lower in Rwandan blood donors compared to Swedish subjects. Despite this, the number of reported measles cases in Rwanda rapidly decreased during the study period, concomitant with increased vaccine coverage. Taken together, the circulation of measles was limited in Rwanda and vaccine coverage was favourable, but seroprevalence and IgG levels were low especially in younger age groups.
Collapse
Affiliation(s)
- Eric Seruyange
- a College of Medicine and Health Sciences , University of Rwanda , Rwanda ;,b Rwanda Military Hospital , Kigali , Rwanda ;,c Department of Infectious Diseases , Institute of Biomedicine, University of Gothenburg , Sweden
| | - Jean-Bosco Gahutu
- a College of Medicine and Health Sciences , University of Rwanda , Rwanda
| | | | - Zena G Uwimana
- d National Reference Laboratory , Rwanda Biomedical Centre , Kigali , Rwanda
| | - Maurice Gatera
- e Expanded Program on Immunization , Rwanda Biomedical Centre , Kigali , Rwanda
| | - Theogene Twagirumugabe
- a College of Medicine and Health Sciences , University of Rwanda , Rwanda ;,c Department of Infectious Diseases , Institute of Biomedicine, University of Gothenburg , Sweden
| | - Swaibu Katare
- f National Centre for Blood Transfusion , Rwanda Biomedical Centre , Kigali , Rwanda
| | - Ben Karenzi
- b Rwanda Military Hospital , Kigali , Rwanda
| | - Tomas Bergström
- c Department of Infectious Diseases , Institute of Biomedicine, University of Gothenburg , Sweden
| |
Collapse
|
6
|
Jing L, Laing KJ, Dong L, Russell RM, Barlow RS, Haas JG, Ramchandani MS, Johnston C, Buus S, Redwood AJ, White KD, Mallal SA, Phillips EJ, Posavad CM, Wald A, Koelle DM. Extensive CD4 and CD8 T Cell Cross-Reactivity between Alphaherpesviruses. THE JOURNAL OF IMMUNOLOGY 2016; 196:2205-2218. [PMID: 26810224 DOI: 10.4049/jimmunol.1502366] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022]
Abstract
The Alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole-virus, protein, and peptide levels, consistent with bidirectional cross-reactivity. HSV-specific CD4 T cells recovered from HSV-seronegative persons can be explained, in part, by such VZV cross-reactivity. HSV-1-reactive CD8 T cells also cross-react with VZV-infected cells, full-length VZV proteins, and VZV peptides, as well as kill VZV-infected dermal fibroblasts. Mono- and cross-reactive CD8 T cells use distinct TCRB CDR3 sequences. Cross-reactivity to VZV is reconstituted by cloning and expressing TCRA/TCRB receptors from T cells that are initially isolated using HSV reagents. Overall, we define 13 novel CD4 and CD8 HSV-VZV cross-reactive epitopes and strongly imply additional cross-reactive peptide sets. Viral proteins can harbor both CD4 and CD8 HSV/VZV cross-reactive epitopes. Quantitative estimates of HSV/VZV cross-reactivity for both CD4 and CD8 T cells vary from 10 to 50%. Based on these findings, we hypothesize that host herpesvirus immune history may influence the pathogenesis and clinical outcome of subsequent infections or vaccinations for related pathogens and that cross-reactive epitopes and TCRs may be useful for multi-alphaherpesvirus vaccine design and adoptive cellular therapy.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, Seattle, USA
| | - Kerry J Laing
- Department of Medicine, University of Washington, Seattle, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, USA
| | | | - Russell S Barlow
- Department of Global Health, University of Washington, Seattle, USA
| | - Juergen G Haas
- Max von Pettenkofer-Institute, Munich, Germany.,Division of Pathway Medicine, University of Edinburgh, United Kingdom
| | | | | | - Soren Buus
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Katie D White
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Christine M Posavad
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, USA.,Department of Laboratory Medicine, University of Washington, Seattle, USA
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, USA.,Department of Epidemiology, University of Washington, Seattle, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, USA.,Department of Laboratory Medicine, University of Washington, Seattle, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, USA.,Department of Global Health, University of Washington, Seattle, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, USA.,Department of Laboratory Medicine, University of Washington, Seattle, USA.,Benaroya Research Institute, Seattle, USA
| |
Collapse
|
7
|
A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens. J Virol 2015; 89:8497-509. [PMID: 26041292 DOI: 10.1128/jvi.01089-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. IMPORTANCE HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and acquisition of HIV-1 infection 3- to 4-fold. A herpes vaccine that prevents genital lesions and asymptomatic genital shedding will have a substantial impact on two epidemics, i.e., both the HSV-2 and HIV-1 epidemics. We previously reported that a vaccine containing HSV-2 glycoprotein C (gC2) and glycoprotein D (gD2) reduced genital lesions and asymptomatic HSV-2 genital shedding in guinea pigs, yet the protection was not complete. We evaluated whether adding the T cell immunogens UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) would enhance the protection provided by the gC2/gD2 vaccine, which produces potent antibody responses. Here we report the efficacy of a combination vaccine containing gC2/gD2 and UL19/UL47 for prevention of genital disease, vaginal shedding of HSV-2 DNA, and latent infection of dorsal root ganglia in guinea pigs.
Collapse
|
8
|
Rahbar A, Peredo I, Solberg NW, Taher C, Dzabic M, Xu X, Skarman P, Fornara O, Tammik C, Yaiw K, Wilhelmi V, Assinger A, Stragliotto G, Söderberg-Naucler C. Discordant humoral and cellular immune responses to Cytomegalovirus (CMV) in glioblastoma patients whose tumors are positive for CMV. Oncoimmunology 2015; 4:e982391. [PMID: 25949880 DOI: 10.4161/2162402x.2014.982391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023] Open
Abstract
Background. Glioblastoma (GBM) is the most common malignant brain tumor in adults and is nearly always fatal. Emerging evidence suggests that human Cytomegalovirus (HCMV) is present in 90-100% of GBMs and that add-on antiviral treatment for HCMV show promise to improve survival. Methods. In a randomized, placebo-controlled trial of valganciclovir in 42 GBM patients, blood samples were collected for analyses of HCMV DNA, RNA, reactivity against HCMV peptides, IgG, and IgM at baseline and at 3, 12, and 24 weeks of treatment. Results. All 42 tumors were positive for HCMV protein. All patients examined had at least one blood sample positive for HCMV DNA, 63% were HCMV RNA positive, and 21% were IgM positive. However, 29% of GBM patients were IgG negative for HCMV. Five of these samples were positive in an enzyme-linked immunosorbent assay (ELISA) that used antigens derived from a clinical isolate. Blood T cells from 11 of 13 (85%) HCMV IgG-negative GBM patients reacted against HCMV peptides. Valganciclovir did not affect IgG titers, DNA, or RNA levels of the HCMV immediate early (HCMV IE) gene in blood. Conclusion. In GBM patients, HCMV activity is higher than in healthy controls and serology is a poor test to define previous or active HCMV infection in these patients.
Collapse
Key Words
- ELISA, enzyme-linked immunosorbent assay
- FACS, flow cytometry analyses
- FITC, fluorescein isothiocyanate
- GBM, glioblastoma
- HCMV IE, human Cytomegalovirus-immediate early
- HCMV, human Cytomegalovirus
- HIV, human immunodeficiency virus
- HSV, herpes simplex virus
- PBMC, Peripheral blood mononuclear cells
- PBS, Phosphate buffered saline
- PCR, polymerase chain reaction
- SEB, staphylococcal snterotoxin B
- VIGAS study, Efficacy and Safety of Valcyte® as an Add-on Therapy in Patients with Malignant Glioblastoma and cytomegalovirus infection
- Valcyte
- cytomegalovirus
- glioblastoma
- peptides stimulation
- serology
- valganciclovir
Collapse
Affiliation(s)
- Afsar Rahbar
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Inti Peredo
- Departments of Neurosurgery; Karolinska University Hospital ; Stockholm, Sweden
| | - Nina Wolmer Solberg
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Chato Taher
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Mensur Dzabic
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Xinling Xu
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Petra Skarman
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Olesja Fornara
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Charlotte Tammik
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Koon Yaiw
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Vanessa Wilhelmi
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | - Alice Assinger
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| | | | - Cecilia Söderberg-Naucler
- Department of Medicine; Solna; Center for Molecular Medicine; Karolinska Institute ; Stockholm, Sweden
| |
Collapse
|
9
|
Önnheim K, Ekblad M, Görander S, Lange S, Jennische E, Bergström T, Wildt S, Liljeqvist JÅ. Novel rat models to study primary genital herpes simplex virus-2 infection. Arch Virol 2015; 160:1153-61. [PMID: 25701211 DOI: 10.1007/s00705-015-2365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
In this study we describe that six rat models (SD, WIST, LEW, BN, F344 and DA) are susceptible to intravaginal herpes simplex virus-2 (HSV-2) infection after pre-treatment with progesterone. At a virus dose of 5 × 10(6) PFU of HSV-2, all rat models were infected presenting anti-HSV-2 antibodies, infectious virus in vaginal washes, and HSV-2 DNA genome copies in lumbosacral dorsal root ganglia and the spinal cord. Most of the LEW, BN, F344, and DA rats succumbed in systemic progressive symptoms at day 8-14 post infection, but presented no or mild genital inflammation while SD and WIST rats were mostly infected asymptomatically. Infected SD rats did not reactivate HSV-2 spontaneously or after cortisone treatment. In an HSV-2 virus dose reduction study, F344 rats were shown to be most susceptible. We also investigated whether an attenuated HSV-1 strain (KOS321) given intravaginally, could protect from a subsequent HSV-2 infection. All LEW, BN, and F344 rats survived a primary HSV-1 infection and no neuronal infection was established. In BN and F344 rats, anti-HSV-1 antibodies were readily detected while LEW rats were seronegative. In contrast to naïve LEW, BN, and F344 rats where only 3 of 18 animals survived 5 × 10(6) PFU of HSV-2, 23 of 25 previously HSV-1 infected rats survived a challenge with HSV-2. The described models provide a new approach to investigate protective effects of anti-viral microbicides and vaccine candidates, as well as to study asymptomatic primary genital HSV-2 infection.
Collapse
Affiliation(s)
- Karin Önnheim
- Section of Virology, Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden,
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Posavad CM, Zhao L, Mueller DE, Stevens CE, Huang ML, Wald A, Corey L. Persistence of mucosal T-cell responses to herpes simplex virus type 2 in the female genital tract. Mucosal Immunol 2015; 8:115-26. [PMID: 24917455 PMCID: PMC4263695 DOI: 10.1038/mi.2014.47] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/07/2014] [Indexed: 02/04/2023]
Abstract
Relatively little is known about the human T-cell response to herpes simplex virus type 2 (HSV-2) in the female genital tract, a major site of heterosexual HSV-2 acquisition, transmission, and reactivation. In order to understand the role of local mucosal immunity in HSV-2 infection, T-cell lines were expanded from serial cervical cytobrush samples from 30 HSV-2-infected women and examined for reactivity to HSV-2. Approximately 3% of the CD3+ T cells isolated from the cervix were HSV-2 specific and of these, a median of 91.3% were CD4+, whereas a median of 3.9% were CD8+. HSV-2-specific CD4+ T cells expanded from the cervix were not only more frequent than CD8+ T cells but also exhibited greater breadth in terms of antigenic reactivity. T cells directed at the same HSV-2 protein were often detected in serial cervical cytobrush samples and in blood. Thus, broad and persistent mucosal T-cell responses to HSV-2 were detected in the female genital tract of HSV-2+ women suggesting that these cells are resident at the site of HSV-2 infection. Understanding the role of these T cells at this biologically relevant site will be central to the elucidation of adaptive immune mechanisms involved in controlling HSV-2 disease.
Collapse
Affiliation(s)
- Christine M. Posavad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Lin Zhao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Dawn E. Mueller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Meei Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Anna Wald
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Department of Laboratory Medicine, University of Washington, Seattle, WA,Department of Medicine, University of Washington, Seattle, WA,Department of Epidemiology, University of Washington, Seattle, WA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Department of Laboratory Medicine, University of Washington, Seattle, WA,Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Kuo T, Wang C, Badakhshan T, Chilukuri S, BenMohamed L. The challenges and opportunities for the development of a T-cell epitope-based herpes simplex vaccine. Vaccine 2014; 32:6733-45. [PMID: 25446827 DOI: 10.1016/j.vaccine.2014.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/26/2014] [Accepted: 10/01/2014] [Indexed: 01/29/2023]
Abstract
Herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) infections have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a billion individuals worldwide. HSV-1 infections are predominant than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries, their development has been difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One "common denominator" among previously failed clinical herpes vaccine trials is that they either used a whole virus or a whole viral protein, which contain both "pathogenic symptomatic" and "protective asymptomatic" antigens and epitopes. In this report, we continue to advocate developing "asymptomatic" epitope-based sub-unit vaccine strategies that selectively incorporate "protective asymptomatic" epitopes which: (i) are exclusively recognized by effector memory CD4(+) and CD8(+) T cells (TEM cells) from "naturally" protected seropositive asymptomatic individuals; and (ii) protect human leukocyte antigen (HLA) transgenic animal models of ocular and genital herpes. We review the role of animal models in herpes vaccine development and discuss their current status, challenges, and prospects.
Collapse
Affiliation(s)
- Tiffany Kuo
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Christine Wang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Tina Badakhshan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Sravya Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA; Department of Molecular Biology & Biochemistry, University of California Irvine, School of Medicine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Long D, Skoberne M, Gierahn TM, Larson S, Price JA, Clemens V, Baccari AE, Cohane KP, Garvie D, Siber GR, Flechtner JB. Identification of novel virus-specific antigens by CD4⁺ and CD8⁺ T cells from asymptomatic HSV-2 seropositive and seronegative donors. Virology 2014; 464-465:296-311. [PMID: 25108380 DOI: 10.1016/j.virol.2014.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/12/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
Abstract
Reactivation of latent herpes simplex virus 2 (HSV-2) infections can be characterized by episodic recurrent genital lesions and/or viral shedding. We hypothesize that infected (HSV-2(pos)) asymptomatic individuals have acquired T cell responses to specific HSV-2 antigen(s) that may be an important factor in controlling their recurrent disease symptoms. Our proteomic screening technology, ATLAS, was used to characterize the antigenic repertoire of T cell responses in infected (HSV-2(pos)) and virus-exposed seronegative (HSV-2(neg)) subjects. T cell responses, determined by IFN-γ secretion, were generated to gL, UL2, UL11, UL21, ICP4, ICP0, ICP47 and UL40 with greater magnitude and/or frequency among cohorts of exposed HSV-2(neg) or asymptomatic HSV-2(pos) individuals, compared to symptomatic recurrent HSV-2(pos) subjects. T cell antigens recognized preferentially among individuals who are resistant to infection or who are infected and have mild or no clinical disease may provide new targets for the design of vaccines aimed at treating and/or preventing HSV-2 infection.
Collapse
|
13
|
Martin DL, Marks M, Galdos-Cardenas G, Gilman RH, Goodhew B, Ferrufino L, Halperin A, Sanchez G, Verastegui M, Escalante P, Naquira C, Levy MZ, Bern C. Regional variation in the correlation of antibody and T-cell responses to Trypanosoma cruzi. Am J Trop Med Hyg 2014; 90:1074-81. [PMID: 24710614 DOI: 10.4269/ajtmh.13-0391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major cause of morbidity and mortality in Central and South America. Geographic variations in the sensitivity of serologic diagnostic assays to T. cruzi may reflect differences in T. cruzi exposure. We measured parasite-specific T-cell responses among seropositive individuals in two populations from South America with widely varying antibody titers against T. cruzi. Antibody titers among seropositive individuals were significantly lower in Arequipa, Peru compared with Santa Cruz, Bolivia. Similarly, the proportion of seropositive individuals with positive T-cell responses was lower in Peru than Bolivia, resulting in overall lower frequencies of interferon-γ (IFNγ)-secreting cells from Peruvian samples. However, the magnitude of the IFNγ response was similar among the IFNγ responders in both locations. These data indicate that immunological discrepancies based on geographic region are reflected in T-cell responses as well as antibody responses.
Collapse
Affiliation(s)
- Diana L Martin
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Morgan Marks
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gerson Galdos-Cardenas
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Robert H Gilman
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Brook Goodhew
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Lisbeth Ferrufino
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Anthony Halperin
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gerardo Sanchez
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Manuela Verastegui
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Patricia Escalante
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Cesar Naquira
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Michael Z Levy
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Caryn Bern
- Centers for Disease Control and Prevention, Atlanta, Georgia; National Institutes of Health, Bethesda, Maryland; Johns Hopkins University, Baltimore, Maryland; Hospital Universitario Japones, Santa Cruz, Bolivia; Asociación Benéfica PRISMA, Lima, Peru; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Arequipa Ministry of Health, Arequipa, Peru; University of Pennsylvania, Philadelphia, Pennsylvania; Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
14
|
Chiu C, McCausland M, Sidney J, Duh FM, Rouphael N, Mehta A, Mulligan M, Carrington M, Wieland A, Sullivan NL, Weinberg A, Levin MJ, Pulendran B, Peters B, Sette A, Ahmed R. Broadly reactive human CD8 T cells that recognize an epitope conserved between VZV, HSV and EBV. PLoS Pathog 2014; 10:e1004008. [PMID: 24675761 PMCID: PMC3968128 DOI: 10.1371/journal.ppat.1004008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/03/2014] [Indexed: 02/06/2023] Open
Abstract
Human herpesviruses are important causes of potentially severe chronic infections for which T cells are believed to be necessary for control. In order to examine the role of virus-specific CD8 T cells against Varicella Zoster Virus (VZV), we generated a comprehensive panel of potential epitopes predicted in silico and screened for T cell responses in healthy VZV seropositive donors. We identified a dominant HLA-A*0201-restricted epitope in the VZV ribonucleotide reductase subunit 2 and used a tetramer to analyze the phenotype and function of epitope-specific CD8 T cells. Interestingly, CD8 T cells responding to this VZV epitope also recognized homologous epitopes, not only in the other α-herpesviruses, HSV-1 and HSV-2, but also the γ-herpesvirus, EBV. Responses against these epitopes did not depend on previous infection with the originating virus, thus indicating the cross-reactive nature of this T cell population. Between individuals, the cells demonstrated marked phenotypic heterogeneity. This was associated with differences in functional capacity related to increased inhibitory receptor expression (including PD-1) along with decreased expression of co-stimulatory molecules that potentially reflected their stimulation history. Vaccination with the live attenuated Zostavax vaccine did not efficiently stimulate a proliferative response in this epitope-specific population. Thus, we identified a human CD8 T cell epitope that is conserved in four clinically important herpesviruses but that was poorly boosted by the current adult VZV vaccine. We discuss the concept of a "pan-herpesvirus" vaccine that this discovery raises and the hurdles that may need to be overcome in order to achieve this.
Collapse
Affiliation(s)
- Christopher Chiu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Megan McCausland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Fuh-Mei Duh
- Cancer and Inflammation Program, Laboratory for Experimental Immunology, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Infectious Diseases School of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Aneesh Mehta
- Division of Infectious Diseases School of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mark Mulligan
- Hope Clinic of the Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Infectious Diseases School of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory for Experimental Immunology, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nicole L. Sullivan
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Adriana Weinberg
- Departments of Pediatrics, Medicine and Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Myron J. Levin
- Departments of Pediatrics, Medicine and Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Bali Pulendran
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
15
|
Immunodominant "asymptomatic" herpes simplex virus 1 and 2 protein antigens identified by probing whole-ORFome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals. J Virol 2012; 86:4358-69. [PMID: 22318137 DOI: 10.1128/jvi.07107-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2 are medically significant pathogens. The development of an effective HSV vaccine remains a global public health priority. HSV-1 and HSV-2 immunodominant "asymptomatic" antigens (ID-A-Ags), which are strongly recognized by B and T cells from seropositive healthy asymptomatic individuals, may be critical to be included in an effective immunotherapeutic HSV vaccine. In contrast, immunodominant "symptomatic" antigens (ID-S-Ags) may exacerbate herpetic disease and therefore must be excluded from any HSV vaccine. In the present study, proteome microarrays of 88 HSV-1 and 84 HSV-2 open reading frames(ORFs) (ORFomes) were constructed and probed with sera from 32 HSV-1-, 6 HSV-2-, and 5 HSV-1/HSV-2-seropositive individuals and 47 seronegative healthy individuals (negative controls). The proteins detected in both HSV-1 and HSV-2 proteome microarrays were further classified according to their recognition by sera from HSV-seropositive clinically defined symptomatic (n = 10) and asymptomatic (n = 10) individuals. We found that (i) serum antibodies recognized an average of 6 ORFs per seropositive individual; (ii) the antibody responses to HSV antigens were diverse among HSV-1- and HSV-2-seropositive individuals; (iii) panels of 21 and 30 immunodominant antigens (ID-Ags) were identified from the HSV-1 and HSV-2 ORFomes, respectively, as being highly and frequently recognized by serum antibodies from seropositive individuals; and (iv) interestingly, four HSV-1 and HSV-2 cross-reactive asymptomatic ID-A-Ags, US4, US11, UL30, and UL42, were strongly and frequently recognized by sera from 10 of 10 asymptomatic patients but not by sera from 10 of 10 symptomatic patients (P < 0.001). In contrast, sera from symptomatic patients preferentially recognized the US10 ID-S-Ag (P < 0.001). We have identified previously unreported immunodominant HSV antigens, among which were 4 ID-A-Ags and 1 ID-S-Ag. These newly identified ID-A-Ags could lead to the development of an efficient "asymptomatic" vaccine against ocular, orofacial, and genital herpes.
Collapse
|
16
|
Discovery of potential diagnostic and vaccine antigens in herpes simplex virus 1 and 2 by proteome-wide antibody profiling. J Virol 2012; 86:4328-39. [PMID: 22318154 DOI: 10.1128/jvi.05194-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Routine serodiagnosis of herpes simplex virus (HSV) infections is currently performed using recombinant glycoprotein G (gG) antigens from herpes simplex virus 1 (HSV-1) and HSV-2. This is a single-antigen test and has only one diagnostic application. Relatively little is known about HSV antigenicity at the proteome-wide level, and the full potential of mining the antibody repertoire to identify antigens with other useful diagnostic properties and candidate vaccine antigens is yet to be realized. To this end we produced HSV-1 and -2 proteome microarrays in Escherichia coli and probed them against a panel of sera from patients serotyped using commercial gG-1 and gG-2 (gGs for HSV-1 and -2, respectively) enzyme-linked immunosorbent assays. We identified many reactive antigens in both HSV-1 and -2, some of which were type specific (i.e., recognized by HSV-1- or HSV-2-positive donors only) and others of which were nonspecific or cross-reactive (i.e., recognized by both HSV-1- and HSV-2-positive donors). Both membrane and nonmembrane virion proteins were antigenic, although type-specific antigens were enriched for membrane proteins, despite being expressed in E. coli.
Collapse
|
17
|
Jing L, Haas J, Chong TM, Bruckner JJ, Dann GC, Dong L, Marshak JO, McClurkan CL, Yamamoto TN, Bailer SM, Laing KJ, Wald A, Verjans GMGM, Koelle DM. Cross-presentation and genome-wide screening reveal candidate T cells antigens for a herpes simplex virus type 1 vaccine. J Clin Invest 2012; 122:654-73. [PMID: 22214845 DOI: 10.1172/jci60556] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/09/2011] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) not only causes painful recurrent oral-labial infections, it can also cause permanent brain damage and blindness. There is currently no HSV-1 vaccine. An effective vaccine must stimulate coordinated T cell responses, but the large size of the genome and the low frequency of HSV-1-specific T cells have hampered the search for the most effective T cell antigens for inclusion in a candidate vaccine. We have now developed what we believe to be novel methods to efficiently generate a genome-wide map of the responsiveness of HSV-1-specific T cells, and demonstrate the applicability of these methods to a second complex microbe, vaccinia virus. We used cross-presentation and CD137 activation-based FACS to enrich for polyclonal CD8+ T effector T cells. The HSV-1 proteome was prepared in a flexible format for analyzing both CD8+ and CD4+ T cells from study participants. Scans with participant-specific panels of artificial APCs identified an oligospecific response in each individual. Parallel CD137-based CD4+ T cell research showed discrete oligospecific recognition of HSV-1 antigens. Unexpectedly, the two HSV-1 proteins not previously considered as vaccine candidates elicited both CD8+ and CD4+ T cell responses in most HSV-1-infected individuals. In this era of microbial genomics, our methods - also demonstrated in principle for vaccinia virus for both CD8+ and CD4+ T cells - should be broadly applicable to the selection of T cell antigens for inclusion in candidate vaccines for many pathogens.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Laing KJ, Dong L, Sidney J, Sette A, Koelle DM. Immunology in the Clinic Review Series; focus on host responses: T cell responses to herpes simplex viruses. Clin Exp Immunol 2012; 167:47-58. [PMID: 22132884 PMCID: PMC3248086 DOI: 10.1111/j.1365-2249.2011.04502.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2011] [Indexed: 01/04/2023] Open
Abstract
Herpes virus infections are chronic and co-exist with acquired immune responses that generally prevent severe damage to the host, while allowing periodic shedding of virus and maintenance of its transmission in the community. Herpes simplex viruses type 1 and 2 (HSV-1, HSV-2) are typical in this regard and are representative of the viral subfamily Alphaherpesvirinae, which has a tropism for neuronal and epithelial cells. This review will emphasize recent progress in decoding the physiologically important CD8(+) and CD4(+) T cell responses to HSV in humans. The expanding data set is discussed in the context of the search for an effective HSV vaccine as therapy for existing infections and to prevent new infections.
Collapse
Affiliation(s)
- K J Laing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
19
|
Al-Dujaili LJ, Clerkin PP, Clement C, McFerrin HE, Bhattacharjee PS, Varnell ED, Kaufman HE, Hill JM. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated? Future Microbiol 2011; 6:877-907. [PMID: 21861620 DOI: 10.2217/fmb.11.73] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases.
Collapse
Affiliation(s)
- Lena J Al-Dujaili
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
T-helper cell-mediated proliferation and cytokine responses against recombinant Merkel cell polyomavirus-like particles. PLoS One 2011; 6:e25751. [PMID: 21991346 PMCID: PMC3185038 DOI: 10.1371/journal.pone.0025751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/09/2011] [Indexed: 12/26/2022] Open
Abstract
The newly discovered Merkel Cell Polyomavirus (MCPyV) resides in approximately 80% of Merkel cell carcinomas (MCC). Causal role of MCPyV for this rare and aggressive skin cancer is suggested by monoclonal integration and truncation of large T (LT) viral antigen in MCC cells. The mutated MCPyV has recently been found in highly purified leukemic cells from patients with chronic lymphocytic leukemia (CLL), suggesting a pathogenic role also in CLL. About 50-80% of adults display MCPyV-specific antibodies. The humoral immunity does not protect against the development of MCC, as neutralizing MCPyV antibodies occur in higher levels among MCC patients than healthy controls. Impaired T-cell immunity has been linked with aggressive MCC behavior. Therefore, cellular immunity appears to be important in MCPyV infection surveillance. In order to elucidate the role of MCPyV-specific Th-cell immunity, peripheral blood mononuclear cells (PBMC) of healthy adults were stimulated with MCPyV VP1 virus-like particles (VLPs), using human bocavirus (HBoV) VLPs and Candida albicans antigen as positive controls. Proliferation, IFN-γ, IL-13 and IL-10 responses were examined in 15 MCPyV-seropositive and 15 seronegative volunteers. With the MCPyV antigen, significantly stronger Th-cell responses were found in MCPyV-seropositive than MCPyV-seronegative subjects, whereas with the control antigens, the responses were statistically similar. The most readily detectable cytokine was IFN-γ. The MCPyV antigen tended to induce stronger IFN-γ responses than HBoV VLP antigen. Taken together, MCPyV-specific Th-cells elicit vigorous IFN-γ responses. IFN-γ being a cytokine with major antiviral and tumor suppressing functions, Th-cells are suggested to be important mediators of MCPyV-specific immune surveillance.
Collapse
|
21
|
Wald A, Koelle DM, Fife K, Warren T, Leclair K, Chicz RM, Monks S, Levey DL, Musselli C, Srivastava PK. Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons. Vaccine 2011; 29:8520-9. [PMID: 21945262 DOI: 10.1016/j.vaccine.2011.09.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 12/27/2022]
Abstract
HSV-2, the primary causative agent of genital herpes, establishes latency in sensory ganglia and reactivates causing recurrent lesions and viral shedding. Induction or expansion of CD4(+) and CD8(+) T cell responses are expected to be important for a successful therapeutic vaccine against HSV-2. A candidate vaccine consisting of 32 synthetic 35mer HSV-2 peptides non-covalently complexed with recombinant human Hsc70 protein (named HerpV, formerly AG-707) was tested for safety and immunogenicity in a Phase I study. These peptides are derived from 22 HSV-2 proteins representative of all phases of viral replication. Thirty-five HSV-2 infected participants were randomized and treated in one of four groups: HerpV+QS-21 (saponin adjuvant), HerpV, QS-21, or vehicle. The vaccine was well tolerated and safe. All seven participants with evaluable samples who were administered HerpV with QS-21 demonstrated a statistically significant CD4(+) T cell response to HSV-2 antigens, and the majority of such participants demonstrated a statistically significant CD8(+) T cell response as well. To our knowledge, this is the first candidate vaccine against HSV-2 to demonstrate a broad CD4(+) and CD8(+) T cell response in HSV-2(+) participants, and the first HSP-based vaccine to show immune responses against viral antigens in humans.
Collapse
Affiliation(s)
- Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Iyer JG, Afanasiev OK, McClurkan C, Paulson K, Nagase K, Jing L, Marshak JO, Dong L, Carter J, Lai I, Farrar E, Byrd D, Galloway D, Yee C, Koelle DM, Nghiem P. Merkel cell polyomavirus-specific CD8⁺ and CD4⁺ T-cell responses identified in Merkel cell carcinomas and blood. Clin Cancer Res 2011; 17:6671-80. [PMID: 21908576 DOI: 10.1158/1078-0432.ccr-11-1513] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Merkel cell polyomavirus (MCPyV) is prevalent in the general population, integrates into most Merkel cell carcinomas (MCC), and encodes oncoproteins required for MCC tumor growth. We sought to characterize T-cell responses directed against viral proteins that drive this cancer as a step toward immunotherapy. EXPERIMENTAL DESIGN Intracellular cytokine cytometry, IFN-γ enzyme-linked immunospot (ELISPOT) assay, and a novel HLA-A*2402-restricted MCPyV tetramer were used to identify and characterize T-cell responses against MCPyV oncoproteins in tumors and blood of MCC patients and control subjects. RESULTS We isolated virus-reactive CD8 or CD4 T cells from MCPyV-positive MCC tumors (2 of 6) but not from virus-negative tumors (0 of 4). MCPyV-specific T-cell responses were also detected in the blood of MCC patients (14 of 27) and control subjects (5 of 13). These T cells recognized a broad range of peptides derived from capsid proteins (2 epitopes) and oncoproteins (24 epitopes). HLA-A*2402-restricted MCPyV oncoprotein processing and presentation by mammalian cells led to CD8-mediated cytotoxicity. Virus-specific CD8 T cells were markedly enriched among tumor infiltrating lymphocytes as compared with blood, implying intact T-cell trafficking into the tumor. Although tetramer-positive CD8 T cells were detected in the blood of 2 of 5 HLA-matched MCC patients, these cells failed to produce IFN-γ when challenged ex vivo with peptide. CONCLUSIONS Our findings suggest that MCC tumors often develop despite the presence of T cells specific for MCPyV T-Ag oncoproteins. The identified epitopes may be candidates for peptide-specific vaccines and tumor- or virus-specific adoptive immunotherapies to overcome immune evasion mechanisms in MCC patients.
Collapse
Affiliation(s)
- Jayasri G Iyer
- Department of Medicine/Dermatology, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Development of an interferon-gamma ELISPOT assay to detect human T cell responses to HSV-2. Vaccine 2011; 29:7058-66. [PMID: 21801778 DOI: 10.1016/j.vaccine.2011.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/08/2011] [Accepted: 07/08/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND The need for an HSV-2 vaccine is great considering the increasing prevalence of HSV-2 despite the widespread use of antiviral drugs. Human clinical trials of HSV-2 vaccines that elicit neutralizing antibodies have proven to be only partially effective suggesting that induction of effective T cell responses to HSV-2 is also a critical component to an efficacious vaccine. A sensitive and specific assay to measure HSV-specific T cell responses is a necessary part of vaccine development and thus we undertook the development of an interferon-γ (IFN-γ) ELISPOT assay to measure T cell responses to HSV-2. METHODS PBMC from HSV-seronegative (HSVneg) (n=35), HSV-1-seropositive (HSV-1+/2-) (n=20) and HSV-2-seropositive (HSV-2+) subjects (n=26) were screened by IFN-γ ELISPOT for T cell responses using 34 peptide pools representing 16 HSV-2 proteins including mostly virion and immediate-early (IE) proteins. RESULTS Overall, 85% of HSV-2+ subjects had a positive response to the HSV-2 peptide pools and on average, HSV-2+ subjects responded to 3 peptide pools (range 1-10). The most frequent responses were to gD-2, UL39, UL46, ICP0, UL49, gB-2, and ICP4. In contrast, only 2 of 35 (6%) HSVneg subjects had detectable T cell responses and in both cases, responses were of low magnitude relative to responses in HSV-2+ subjects and were directed at a single peptide pool. The response rate to the HSV-2 peptide pools in HSV-1+/2- subjects was 40% suggesting that the HSV-2 peptide pools contain a significant number of type-common T cell epitopes. The IFN-γ ELISPOT assay detected CD4 and CD8 T cells directed at HSV-2 peptides as confirmed by intracellular cytokine staining and flow cytometry. CONCLUSION We have developed a quantitative IFN-γ ELISPOT assay that detects both CD4 and CD8 T cells to HSV-2 peptides. This assay does not require large quantities of PBMC to generate dendritic cells for T cell stimulation, making it an ideal assay for monitoring the immunogenicity of candidate HSV-2 vaccines designed to elicit T cell responses to HSV-2 specific epitopes.
Collapse
|
24
|
Mo A, Musselli C, Chen H, Pappas J, Leclair K, Liu A, Chicz RM, Truneh A, Monks S, Levey DL, Srivastava PK. A heat shock protein based polyvalent vaccine targeting HSV-2: CD4(+) and CD8(+) cellular immunity and protective efficacy. Vaccine 2011; 29:8530-41. [PMID: 21767588 DOI: 10.1016/j.vaccine.2011.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/24/2011] [Accepted: 07/04/2011] [Indexed: 11/25/2022]
Abstract
Efforts to develop a subunit vaccine against genital herpes have been hampered by lack of knowledge of the protective antigens of HSV-2, the causative agent of the disease. Vaccines based either on selected antigens or attenuated live virus approaches have not demonstrated meaningful clinical activity. We present here results of a therapeutic vaccine candidate, HerpV (formerly called AG-707), consisting of 32 HSV-2 peptides derived from 22 HSV-2 proteins, complexed non-covalently to the HSP70 chaperone and formulated with QS-21 saponin adjuvant. HerpV is observed to be immunogenic, generating CD4(+) and CD8(+) T cell responses in three mouse strains including HLA-A2 transgenic mice. Optimal T cell stimulation was dependent on the synergistic adjuvant properties of QS-21 with hsp70. The vaccine provided significant protection from viral challenge in a mouse prophylaxis model and showed signals of activity in a guinea pig therapeutic model of existing infection. Peripheral blood mononuclear cells from human HSV-2(+) subjects also showed reactivity in vitro to a subset of individual peptides and to the pool of all 32 peptides. Recombinant human Hsc70 complexed with the 32 peptides also stimulated the expansion of CD8(+) T cells from HSV-2(+) subjects in vitro. These studies demonstrate that HerpV is a promising immunotherapy candidate for genital herpes, and provide a foundation for evaluating HerpV in human HSV-2(+) subjects with the intent of eliciting CD4(+) and CD8(+) T cell responses to a broad array of viral antigens.
Collapse
|
25
|
Schiffer JT, Abu-Raddad L, Mark KE, Zhu J, Selke S, Magaret A, Wald A, Corey L. Frequent release of low amounts of herpes simplex virus from neurons: results of a mathematical model. Sci Transl Med 2010; 1:7ra16. [PMID: 20161655 DOI: 10.1126/scitranslmed.3000193] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herpes simplex virus-2 (HSV-2) is a sexually transmitted infection that is the leading cause of genital ulcers worldwide. Infection is life long and is characterized by repeated asymptomatic and symptomatic shedding episodes of virus that are initiated when virus is released from neurons into the genital tract. The pattern of HSV-2 release from neurons into the genital tract is poorly understood. We fit a mathematical model of HSV-2 pathogenesis to curves generated from daily quantification of HSV in mucosal swabs performed from patients with herpetic genital ulcers. We used virologic parameters derived from model fitting for stochastic model simulations. These simulations reproduced previously documented estimates for shedding frequency, and herpetic lesion diameter and frequency. The most realistic model output occurred when we assumed minimal amounts of daily neuronal virus introduction. In our simulations, small changes in average total quantity of HSV-2 released from neurons influenced detectable shedding frequency, while changes in frequency of neuronal HSV-2 release had little effect. Frequent HSV-2 shedding episodes in humans are explained by nearly constant release of small numbers of viruses from neurons that terminate in the genital tract.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dong L, Li P, Oenema T, McClurkan CL, Koelle DM. Public TCR use by herpes simplex virus-2-specific human CD8 CTLs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3063-71. [PMID: 20139278 PMCID: PMC2863070 DOI: 10.4049/jimmunol.0903622] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recombination of germline TCR alpha and beta genes generates polypeptide receptors for MHC peptide. Ag exposure during long-term herpes simplex infections may shape the T cell repertoire over time. We investigated the CD8 T cell response to HSV-2 in chronically infected individuals by sequencing the hypervariable regions encoding TCR alpha and beta polypeptides from T cell clones recognizing virion protein 22 aa 49-57, an immunodominant epitope. The most commonly detected TCRBV gene segment, found in four of five subjects and in 12 of 50 independently derived T cell clones, was TCRBV12-4. Nineteen to seventy-two percent of tetramer-binding cells in PBMCs were stained ex vivo with a TCRBV12 mAb. Three alpha-chain and three beta-chain public TCR sequences were shared between individuals. Public heterodimers were also detected. Promiscuous pairing of a specific TCRVA1-1 sequence with several different TCRB polypeptides was observed, implying a dominant structural role for the TCRA chain for these clonotypes. Functional avidity for cytotoxicity and IFN-gamma release was relatively invariant, except for one subject with both high avidity and unique TCR sequences and lower HSV-2 shedding. These data indicate that the CD8 response to a dominant alpha-herpesvirus epitope converges on preferred TCR sequences with relatively constant functional avidity.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigen-Presenting Cells/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Line, Transformed
- Clone Cells
- Cytotoxicity Tests, Immunologic/methods
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Genes, T-Cell Receptor alpha/immunology
- Genes, T-Cell Receptor beta/immunology
- HLA-B Antigens/biosynthesis
- HLA-B Antigens/genetics
- HLA-B Antigens/immunology
- HLA-B7 Antigen
- Herpesvirus 2, Human/immunology
- Humans
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Interferon-gamma/metabolism
- Molecular Sequence Data
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Virus Latency/immunology
Collapse
Affiliation(s)
- Lichun Dong
- Department of Medicine, University of Washington, Seattle, Washington
| | - Penny Li
- Department of Medicine, University of Washington, Seattle, Washington
| | - Tjitske Oenema
- Department of Medicine, University of Washington, Seattle, Washington
- University of Groningen, Groningen, Netherlands
| | | | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Benaroya Research Institute, Seattle, Washington
- Department of Global Health Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
27
|
Chentoufi AA, Dasgupta G, Christensen ND, Hu J, Choudhury ZS, Azeem A, Jester JV, Nesburn AB, Wechsler SL, BenMohamed L. A novel HLA (HLA-A*0201) transgenic rabbit model for preclinical evaluation of human CD8+ T cell epitope-based vaccines against ocular herpes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2561-71. [PMID: 20124097 PMCID: PMC3752373 DOI: 10.4049/jimmunol.0902322] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We introduced a novel humanized HLA-A*0201 transgenic (HLA Tg) rabbit model to assess the protective efficacy of a human CD8(+) T cell epitope-based vaccine against primary ocular herpes infection and disease. Each of the three immunodominant human CD8(+) T cell peptide epitopes from HSV-1 glycoprotein D (gD(53-61), gD(70-78), and gD(278-286)) were joined with a promiscuous human CD4(+) T cell peptide epitope (gD(49-82)) to construct three separate pairs of CD4-CD8 peptides. Each CD4-CD8 peptide pair was then covalently linked to an N(epsilon)-palmitoyl-lysine residue via a functional base lysine amino group to construct CD4-CD8 lipopeptides. HLA Tg rabbits were immunized s.c. with a mixture of the three CD4-CD8 HSV-1 gD lipopeptides. The HSV-gD-specific T cell responses induced by the mixture of CD4-CD8 lipopeptide vaccine and the protective efficacy against acute virus replication and ocular disease were determined. Immunization induced HSV-gD(49-82)-specific CD4(+) T cells in draining lymph node (DLN); induced HLA-restricted HSV-gD(53-61), gD(70-78), and gD(278-286)-specific CD8(+) T cells in DLN, conjunctiva, and trigeminal ganglia and reduced HSV-1 replication in tears and corneal eye disease after ocular HSV-1 challenge. In addition, the HSV-1 epitope-specific CD8(+) T cells induced in DLNs, conjunctiva, and the trigeminal ganglia were inversely proportional with corneal disease. The humanized HLA Tg rabbits appeared to be a useful preclinical animal model for investigating the immunogenicity and protective efficacy of human CD8(+) T cell epitope-based prophylactic vaccines against ocular herpes. The relevance of HLA Tg rabbits for future investigation of human CD4-CD8 epitope-based therapeutic vaccines against recurrent HSV-1 is discussed.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | | | - Jiafen Hu
- Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033
| | - Zareen S. Choudhury
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Arfan Azeem
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - James V. Jester
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Steven L. Wechsler
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697
- The Center for Virus Research, University of California Irvine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
- Institute for Immunology, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
28
|
Posavad CM, Remington M, Mueller DE, Zhao L, Magaret AS, Wald A, Corey L. Detailed characterization of T cell responses to herpes simplex virus-2 in immune seronegative persons. THE JOURNAL OF IMMUNOLOGY 2010; 184:3250-9. [PMID: 20164419 DOI: 10.4049/jimmunol.0900722] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In 2003, we described a small cohort of subjects (n = 6) who possessed no detectable serum Abs to HSV-1 or HSV-2 and no clinical or virological evidence of mucosal HSV infection yet possessed consistently detectable HSV-specific T cell responses measured primarily by lymphoproliferative (LP) and CTL assays to whole HSV-2 Ag. We termed these persons immune seronegative (IS). This report characterizes the T cell responses in 22 IS subjects largely recruited from studies of HSV-seronegative subjects in ongoing sexual relationships with HSV-2-seropositive (HSV-2(+)) partners using pools of overlapping peptides spanning 16 immuno-prevalent HSV-2 proteins. Overall, 77% of IS subjects had HSV-specific LP responses, 85% had IFN-gamma ELISPOT responses to at least one HSV-2 peptide pool, and 55% had both LP and IFN-gamma ELISPOT responses. In some cases, IFN-gamma ELISPOT responses were in excess of 500 spot-forming cells per 10(6) PBMCs and persisted for over 5 y. Although HSV-2(+) subjects (n = 40) had frequent responses to glycoproteins and tegument and immediate-early (IE) proteins of HSV-2, T cell responses in IS subjects were directed primarily at UL39 and the IE proteins ICP4 and ICP0. These data suggest that the antigenic repertoire of T cells in IS subjects is skewed compared with that of HSV-2(+) subjects and that IS subjects had more frequent T cell responses to IE proteins and infrequent T cell responses to virion components. Understanding the mechanism(s) by which such responses are elicited may provide important insights in developing novel strategies for preventing acquisition of sexually acquired HSV-2.
Collapse
Affiliation(s)
- Christine M Posavad
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Olivera GC, Albareda MC, Alvarez MG, De Rissio AM, Fichera LE, Cooley G, Yachelini P, Hrellac HA, Riboldi H, Laucella SA, Tarleton RL, Postan M. Trypanosoma cruzi-specific immune responses in subjects from endemic areas of Chagas disease of Argentina. Microbes Infect 2010; 12:359-63. [PMID: 20123034 DOI: 10.1016/j.micinf.2010.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 11/29/2022]
Abstract
Trypanosoma cruzi-specific immune responses were evaluated in a total of 88 subjects living in areas endemic of Chagas disease of Argentina by IFN-gamma ELISPOT assays and immunoblotting. Positive T. cruzi antigen-induced IFN-gamma responses were detected in 42% of subjects evaluated (15/26 positive by conventional serology and 22/62 seronegative subjects). Using immunoblotting, T. cruzi-specific IgG reactivity was detected in all seropositive subjects and in 11% (7/61) of subjects negative by conventional serology. Measurements of T cell responses and antibodies by immunoblotting, in conjunction with conventional serology, might enhance the capability of detection of exposure to T. cruzi in endemic areas.
Collapse
Affiliation(s)
- Gabriela C Olivera
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Av. Paseo Colón 568, Buenos Aires 1063, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Muller WJ, Dong L, Vilalta A, Byrd B, Wilhelm KM, McClurkan CL, Margalith M, Liu C, Kaslow D, Sidney J, Sette A, Koelle DM. Herpes simplex virus type 2 tegument proteins contain subdominant T-cell epitopes detectable in BALB/c mice after DNA immunization and infection. J Gen Virol 2009; 90:1153-1163. [PMID: 19264627 PMCID: PMC2675279 DOI: 10.1099/vir.0.008771-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/08/2009] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic T cells are important in controlling herpes simplex virus type 2 (HSV-2) reactivation and peripheral lesion resolution. Humans latently infected with HSV-2 have cytotoxic T cells directed against epitopes present in tegument proteins. Studies in mice of immunity to HSV have commonly focused on immunodominant responses in HSV envelope glycoproteins. These antigens have not proved to be an effective prophylactic vaccine target for most of the human population. The murine immune response against HSV tegument proteins has not been explored. We analysed cellular responses in BALB/c mice directed against the tegument proteins encoded by UL46, UL47 and UL49 and against the envelope glycoprotein gD after DNA vaccination or HSV-2 infection. After DNA vaccination, the splenocyte T-cell response to overlapping peptides from UL46 and UL47 was more than 500 gamma interferon spot-forming units per 10(6) responder cells. Peptide truncation studies, responder cell fractionation and major histocompatibility complex binding studies identified several CD8(+) and CD4(+) epitopes. Cellular responses to tegument protein epitopes were also detected after HSV-2 infection. Tegument proteins are rational candidates for further HSV-2 vaccine research.
Collapse
Affiliation(s)
- William J. Muller
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Benjamin Byrd
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kai M. Wilhelm
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | - Chao Liu
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health Medicine, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
31
|
Phase I study of a herpes simplex virus type 2 (HSV-2) DNA vaccine administered to healthy, HSV-2-seronegative adults by a needle-free injection system. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1638-43. [PMID: 18784341 DOI: 10.1128/cvi.00167-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We conducted a double-blind, vehicle-controlled, dose escalation safety and immunogenicity trial of a candidate herpes simplex virus type 2 (HSV-2) surface glycoprotein D2 (gD2) DNA vaccine administered by use of a needle-free device. Sixty-two healthy adults were randomized using a 4:1 vaccine-to-placebo ratio. Half of the participants were HSV-1 seronegative, and all were HSV-2 seronegative. Vaccine doses included 100 microg, 300 microg, 1,000 microg or 3,000 microg of a plasmid expressing the gD2 protein. Subjects received vaccine at 0, 4, 8, and 24 weeks. Some subjects received an additional 1,000-microg boost at 52 weeks. We found that the vaccine was safe and well tolerated, with most adverse events being local site reactions. No dose-limiting toxicities were observed. gD2-specific cytotoxic T-lymphocyte and lymphoproliferation responses were detected 2 weeks after the third vaccine injection in one of four HSV-1-seronegative, HSV-2-seronegative participants who received 3,000 microg of vaccine. A DNA-based vaccination strategy against HSV-2 appears to be safe and may generate a vaccine-specific cellular immune response, but high vaccine doses are likely needed to elicit an immune response in most vaccinees.
Collapse
|
32
|
Hobbs MR, Jones BB, Otterud BE, Leppert M, Kriesel JD. Identification of a herpes simplex labialis susceptibility region on human chromosome 21. J Infect Dis 2008; 197:340-6. [PMID: 18199027 DOI: 10.1086/525540] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. METHODS To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. RESULTS Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. CONCLUSIONS The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.
Collapse
Affiliation(s)
- Maurine R Hobbs
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
33
|
Estefanía E, Gómez-Lozano N, Portero F, de Pablo R, Solís R, Sepúlveda S, Vaquero M, González MA, Suárez E, Roustán G, Vilches C. Influence of KIR gene diversity on the course of HSV-1 infection: resistance to the disease is associated with the absence of KIR2DL2 and KIR2DS2. ACTA ACUST UNITED AC 2007; 70:34-41. [PMID: 17559579 DOI: 10.1111/j.1399-0039.2007.00844.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) causes lifelong latent infections in most humans. Periodical virus reactivations from latency in the neurons of sensitive ganglia lead to transport to mucocutaneous regions and productive replication, which results in recurrent inflammatory herpetic lesions or in asymptomatic virus shedding. The medical consequences of such lesions and the frequency of recurrences vary greatly in different subjects. Furthermore, many infected individuals never suffer manifestations of the disease, even when exposed to stimuli that trigger clinical recurrences in other humans. The origin of the variability in the clinical course of HSV-1 infection remains unexplained. Herpesviruses and other pathogens sabotage the expression of major histocompatibility complex class I molecules by infected cells, thus subverting T-cell-mediated immunity. Subversion of antigen presentation is counteracted by natural killer cells, which survey the human leukocyte antigen (HLA) expression by specific receptors. These include the killer cell immunoglobulin-like receptors (KIRs), which are encoded by a complex of extremely diverse and rapidly evolving genes. Here, we analyze the contribution of KIR gene diversity to the variable clinical course of HSV-1 infection by comparing the distribution of these genes in humans with clinical manifestations of the disease with that in asymptomatically infected donors. This study provides preliminary evidence that the receptors KIR2DL2 and KIR2DS2 predispose to symptomatic HSV-1 infection and favor the frequently recurring forms of the disease. Possible contribution of the 'HLA-C1' ligand to HSV-1 disease was not statistically supported. Because of an absolute genetic linkage between KIR2DL2 and KIR2DS2, we could not determine which receptor was primarily responsible for the observed association, but our results suggest that presence in the genome of KIR2DL2 and KIR2DS2 hinders an effective cellular response to HSV-1.
Collapse
Affiliation(s)
- E Estefanía
- Department of Immunology, Hospital Universitario Puerta de Hierro, Universidad Autónoma de Madrid, San Martin de Porres 4, 28035 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hosken N, McGowan P, Meier A, Koelle DM, Sleath P, Wagener F, Elliott M, Grabstein K, Posavad C, Corey L. Diversity of the CD8+ T-cell response to herpes simplex virus type 2 proteins among persons with genital herpes. J Virol 2007; 80:5509-15. [PMID: 16699031 PMCID: PMC1472180 DOI: 10.1128/jvi.02659-05] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytolytic T cells play a major role in controlling herpes simplex virus type 2 (HSV-2) infections in humans. In an effort to more thoroughly evaluate the response to HSV-2 directly, ex vivo, we developed an enzyme-linked immunospot (ELISPOT) assay that utilized pools of overlapping synthetic peptides presented by autologous dendritic cells to purified CD8(+) T cells. Donor response rates to individual open reading frames (ORFs) ranged from fewer than 5% responding to as many as 70% responding, with the greatest frequency of responses (by ORF) being directed against UL39, UL25, UL27, ICP0, UL46, and UL47 in descending order of frequency. HSV-2-seropositive subjects responded to as few as 3 or as many as 46 of the 48 ORFs tested, with a median of 11 ORFs recognized. HLA-B*07 expression correlated with stronger responses overall that were directed primarily against UL49 and UL46. Cumulative precursor frequencies in the blood ranged from 500 to almost 6,000 HSV-2 spot-forming units/10(6) CD8(+) T cells. The magnitude and breadth of the response in the infected population were greater than previously appreciated. Whether this variability in the CD8(+) T-cell response within individuals is associated with the frequency of viral reactivation warrants further study.
Collapse
Affiliation(s)
- Nancy Hosken
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jing L, Chong TM, Byrd B, McClurkan CL, Huang J, Story BT, Dunkley KM, Aldaz-Carroll L, Eisenberg RJ, Cohen GH, Kwok WW, Sette A, Koelle DM. Dominance and diversity in the primary human CD4 T cell response to replication-competent vaccinia virus. THE JOURNAL OF IMMUNOLOGY 2007; 178:6374-86. [PMID: 17475867 DOI: 10.4049/jimmunol.178.10.6374] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vaccination with replication-competent vaccinia protects against heterologous orthopoxvirus challenge. CD4 T cells have essential roles helping functionally important Ab and CD8 antiviral responses, and contribute to the durability of vaccinia-specific memory. Little is known about the specificity, diversity, or dominance hierarchy of orthopoxvirus-specific CD4 T cell responses. We interrogated vaccinia-reactive CD4 in vitro T cell lines with vaccinia protein fragments expressed from an unbiased genomic library, and also with a panel of membrane proteins. CD4 T cells from three primary vaccinees reacted with 44 separate antigenic regions in 35 vaccinia proteins, recognizing 8 to 20 proteins per person. The integrated responses to the Ags that we defined accounted for 49 to 81% of the CD4 reactivity to whole vaccinia Ag. Individual dominant Ags drove up to 30% of the total response. The gene F11L-encoded protein was immunodominant in two of three subjects and is fragmented in a replication-incompetent vaccine candidate. The presence of protein in virions was strongly associated with CD4 antigenicity. These findings are consistent with models in which exogenous Ag drives CD4 immunodominance, and provides tools to investigate the relationship between Ab and CD4 T cell specificity for complex pathogens.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, Seattle 98101, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Woo SB, Challacombe SJ. Management of recurrent oral herpes simplex infections. ACTA ACUST UNITED AC 2007; 103 Suppl:S12.e1-18. [PMID: 17379150 DOI: 10.1016/j.tripleo.2006.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 11/18/2022]
Abstract
The literature has been reviewed for evidence of the efficacy of antiviral agents in both the prophylaxis and treatment of recurrent oral herpes simplex virus (HSV) infections and discussed by a panel of experts. Emphasis was given to randomized controlled trials. Management of herpes-associated erythema multiforme and Bell palsy were also considered. The evidence suggests that 5% acyclovir (ACV) in the cream base may reduce the duration of lesions if applied early. Recurrent herpes labialis (RHL) and recurrent intraoral HSV infections can be effectively treated with systemic ACV 400 mg 3 times a day or systemic valacyclovir 500 to 1000 mg twice a day for 3 to 5 days (longer in the immunocompromised). RHL in the immunocompetent can be effectively prevented with (1) sunscreen alone (SPF 15 or above), (2) systemic ACV 400 mg 2 to 3 times a day, or (3) systemic valacyclovir 500 to 2000 mg twice a day. Valacyclovir 500 mg twice a day is also effective in suppressing erythema multiforme triggered by HSV. Further studies are needed to compare treatment efficacy between topical penciclovir, docosanol, and ACV cream for RHL.
Collapse
Affiliation(s)
- Sook-Bin Woo
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | |
Collapse
|
37
|
Van den Bosch GA, Ponsaerts P, Vanham G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VFI. Cellular immunotherapy for cytomegalovirus and HIV-1 infection. J Immunother 2006; 29:107-21. [PMID: 16531812 DOI: 10.1097/01.cji.0000184472.28832.d3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current antiviral drugs do not fully reconstitute the specific antiviral immune control in chronically human immunodeficiency virus (HIV)-1-infected patients or in cytomegalovirus (CMV)-infected patients after hematopoietic stem cell transplantation. Therefore, immunotherapy in which the patient's immune system is manipulated to enhance antiviral immune responses has become a promising area of viral immunology research. In this review, an overview is provided on the cellular immunotherapy strategies that have been developed for HIV infection and CMV reactivation in immunocompromised patients. As an introduction, the mechanisms behind the cellular immune system and their importance for the development of a workable immunotherapy approach are discussed. Next, the focus is shifted to the immunopathogenesis of CMV and HIV-1 infections to correlate these findings with the concepts and ideas behind the viral-specific immunotherapies discussed. Current and future perspectives of active and passive cellular immunotherapy for the treatment of CMV and HIV-1 infections are reviewed. Finally, pitfalls and key issues with regard to the development of immunotherapy protocols that can be applied in a clinical setting are addressed.
Collapse
Affiliation(s)
- Glenn A Van den Bosch
- Laboratory of Experimental Hematology, Faculty of Medicine, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Jing L, Chong TM, McClurkan CL, Huang J, Story BT, Koelle DM. Diversity in the acute CD8 T cell response to vaccinia virus in humans. THE JOURNAL OF IMMUNOLOGY 2006; 175:7550-9. [PMID: 16301664 PMCID: PMC1804211 DOI: 10.4049/jimmunol.175.11.7550] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Orthopoxviruses have complex proteomes. Infection provokes a brisk CD8 response, which is required in some systems for recovery from primary infection. Little is known concerning the Ags and epitopes recognized by CD8 T cells. We examined the fine specificity of cloned and bulk human vaccinia-specific CD8 CTL by expressing polypeptide fragments from a library of vaccinia genomic DNA. This epitope discovery method emphasizes virus-specific biological activity, as the responder cells are all reactive with whole vaccinia virus. Sixteen novel epitopes, restricted by several HLA A and B alleles, were defined to the nomamer peptide level in diverse vaccinia open reading frames. An additional seven epitope were mapped to short regions of vaccinia proteins. Targets of the CD8 response included proteins assigned to structural, enzymatic, transcription factor, and immune evasion functions, and included members of all viral kinetic classes. Most epitopes were conserved in other orthopoxviruses. Responses to at least 18 epitopes were detected within a single blood sample, revealing a surprising degree of diversity. These epitopes will be useful in natural history studies of CD8 responses to vaccinia, a nonpersisting virus with long-term memory, and in the design and evaluation of attenuated and replication-incompetent vaccinia strains being tested for variola and monkeypox prevention and for the delivery of heterologous Ags.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98195
| | - Tiana M. Chong
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195
| | | | - Jay Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195
| | - Brian T. Story
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA 98195
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195
- Department of Pathobiology, University of Washington, Seattle, WA 98195
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Benaroya Research Institute, Seattle, WA 98101
- Address correspondence and reprint requests to Dr. David M. Koelle at the current address: Harborview Medical Center, Mail Stop 359690, 325 Ninth Avenue, Seattle, WA 98104. E-mail address:
| |
Collapse
|
39
|
Abstract
PROBLEM Genital herpes simplex infections are generally limited to epithelia and neurons. Vaccines have had activity in herpes simplex virus (HSV)-seronegative women only. Understanding how HSV-specific T cells traffic to infected sites may assist in vaccine design. METHOD OF STUDY Herpes simplex virus epitopes recognized by HSV-specific CD8 T cells were identified and used to make fluorescent human leukocyte antigen (HLA)-peptide tetramers. Molecules related to lymphocyte rolling adhesion were studied by flow cytometry and cell binding. HSV-specific CD4 T cells identified ex vivo by cytokine accumulation or activation marker expression, or detected in vitro by 5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester (CFSE) dilution, were similarly investigated. RESULTS Herpes simplex virus-specific T cells are 10- to 100-fold more prevalent in lesional skin compared with blood and greatly enriched in lesions compared with normal skin. Diverse viral antigens are recognized by HSV-specific T cells. Functionally active E-selectin ligand, and cutaneous lymphocyte antigen (CLA), are expressed by circulating HSV-2-specific CD8 cells. CD4 cells display lower levels of CLA that are dramatically up-regulated upon re-stimulation with antigen. CONCLUSIONS Herpes simplex virus-2-specific CD8 and CD4 T cells differ in constitutive expression of skin homing molecules. Vaccines designed to induce proper homing are postulated to have increased efficacy.
Collapse
Affiliation(s)
- David M Koelle
- Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| | | | | |
Collapse
|
40
|
Danke NA, Koelle DM, Kwok WW. Persistence of Herpes Simplex Virus Type 2 VP16-Specific CD4+ T Cells. Hum Immunol 2005; 66:777-87. [PMID: 16112025 DOI: 10.1016/j.humimm.2005.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Patients with genital herpes have frequent viral reactivations. The repeated antigenic rechallenges can modulate the CD4+ memory T-cell repertoires during the course of infection. In this study, the CD4+ T-cell responses against the herpes simplex virus type 2 (HSV-2) tegument protein VP16 were studied in two HSV-2-infected subjects at two different time points that spanned a 5-year period. Although the VP16-specific T cells did exhibit variation of T-cell receptor Vbeta usages at the two time points, T cells that used identical Vbeta and CDR3 junction sequences were also observed at the two time points. These experiments demonstrate that the CD4+ T cells that are directed against HSV-2 VP16 protein in chronically infected individuals are oligoclonal and that T cells of specific clonotypes can be maintained throughout the course of the disease.
Collapse
Affiliation(s)
- Nancy A Danke
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | | |
Collapse
|
41
|
Davies PW, Vallejo MC, Shannon KT, Amortegui AJ, Ramanathan S. Oral herpes simplex reactivation after intrathecal morphine: a prospective randomized trial in an obstetric population. Anesth Analg 2005; 100:1472-1476. [PMID: 15845709 DOI: 10.1213/01.ane.0000153013.34129.a7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is now evidence for an association between the use of epidural morphine and reactivation of herpes simplex labialis (HSL). There are no studies that definitively demonstrate the relationship between HSL reactivation and spinal intrathecal morphine. To investigate this relationship, we randomized and prospectively studied 100 obstetric patients with a history of HSL undergoing cesarean delivery under spinal anesthesia. One group received intrathecal morphine plus IV morphine via patient-controlled analgesia (ITM+PCA group) for postoperative analgesia, and a second group received only IV morphine via patient-controlled analgesia for postoperative analgesia (PCA-only group). Patients were followed for a 30-day period. In the ITM+PCA group 19 (38%) patients had HSL reactivation whereas eight (16.6%) had HSL reactivation in the morphine PCA-only group (P = 0.028). The incidence of pruritus in the ITM+PCA group was also more frequent in the early postoperative period. Our data show HSL reactivation in both the ITM+PCA group and PCA-only morphine group, with a more frequent incidence in the ITM+PCA group.
Collapse
Affiliation(s)
- Paul W Davies
- University of Pittsburgh School of Medicine, Department of Anesthesiology, Magee-Womens Hospital, Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
42
|
Kaufman HE, Azcuy AM, Varnell ED, Sloop GD, Thompson HW, Hill JM. HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci 2005; 46:241-7. [PMID: 15623779 PMCID: PMC1200985 DOI: 10.1167/iovs.04-0614] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To assess the frequency of shedding of herpes simplex virus type 1 (HSV-1) DNA in tears and saliva of asymptomatic individuals. METHODS Fifty subjects without signs of ocular herpetic disease participated. Serum samples from all subjects were tested for HSV IgG antibodies by enzyme-linked immunosorbent assay (ELISA) and for HSV-1 by neutralization assay. HSV-1 DNA copy number and frequency of shedding were determined by real-time polymerase chain reaction (PCR) analysis of tear and saliva samples collected twice daily for 30 consecutive days. RESULTS Thirty-seven (74%) of the 50 subjects were positive for HSV IgG by ELISA. The percentages of positive eye and mouth swabs were approximately equivalent: 33.5% (941/2806) and 37.5% (1020/2723), respectively. However, the percentage of samples with high HSV-1 genome copy numbers was greater in saliva than in tears, which may have been a result of the sample volume collected. Shedding frequency in tears was nearly the same in men (347/1003; 34.6%) and women (594/1705; 34.8%); in saliva, men had a higher frequency of shedding (457/1009; 45.3% vs. 563/1703; 33.1%, men versus women). Overall, 49 (98%) of 50 subjects shed HSV-1 DNA at least once during the course of the 30-day study. CONCLUSIONS The percentage of asymptomatic subjects who intermittently shed HSV-1 DNA in tears or saliva was higher than the percentage of subjects with positive ELISA or neutralization antibodies to HSV. Because most HSV transmission occurs during asymptomatic shedding, further knowledge of the prevalence of HSV-1 DNA in tears and saliva is warranted to control its spread. Shedding is simple to study, and its suppression may be an efficient way to evaluate new antivirals in humans.
Collapse
Affiliation(s)
- Herbert E Kaufman
- Department of Ophthalmology, LSU Eye Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
43
|
González JC, Kwok WW, Wald A, McClurkan CL, Huang J, Koelle DM. Expression of cutaneous lymphocyte-associated antigen and E-selectin ligand by circulating human memory CD4+ T lymphocytes specific for herpes simplex virus type 2. J Infect Dis 2004; 191:243-54. [PMID: 15609235 PMCID: PMC1255909 DOI: 10.1086/426944] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/09/2004] [Indexed: 01/26/2023] Open
Abstract
Virus-specific memory T lymphocytes traffic to sites of viral infection. Herpes simplex virus (HSV) type 2-specific CD4(+) and CD8(+) T lymphocytes differ with regard to their homing kinetics to infected tissues. We studied the expression of cutaneous lymphocyte-associated antigen (CLA) and E-selectin ligand (ESL) by HSV-2-specific CD4(+) T lymphocytes. Virus-reactive T lymphocytes were identified ex vivo by CD154 or interferon-gamma up-regulation. We detected selective expression of CLA by HSV-2-reactive CD4(+) T lymphocytes, but at levels lower than those we previously observed for CD8(+) T lymphocytes. Short-term HSV-2-reactive CD4(+) lines generated from peripheral-blood mononuclear cells preferentially express CLA, compared with cytomegalovirus- or influenza-specific cells. CLA is expressed by HSV-2-reactive cells that are initially CLA negative before restimulation. Short-term culture-expanded HSV-2-specific CD4(+) T lymphocytes also selectively express ESL. These findings have implications for the optimization of vaccines for HSV and other cutaneous pathogens.
Collapse
Affiliation(s)
| | | | - Anna Wald
- Departments of Medicine
- Epidemiology, and
| | | | - Jay Huang
- Laboratory Medicine, University of Washington
| | - David M. Koelle
- Departments of Medicine
- Pathobiology
- Laboratory Medicine, University of Washington
- Fred Hutchinson Cancer Research Center, and
- Benaroya Research Institute, Seattle, Washington
- Reprints or correspondence: Dr. David M. Koelle, Harborview Medical Center, Box 359690, 325 Ninth Ave., Seattle, WA 98104 (
)
| |
Collapse
|