1
|
Jajosky RP, Patel KR, Allen JWL, Zerra PE, Chonat S, Ayona D, Maier CL, Morais D, Wu SC, Luckey CJ, Eisenbarth SC, Roback JD, Fasano RM, Josephson CD, Manis JP, Chai L, Hendrickson JE, Hudson KE, Arthur CM, Stowell SR. Antibody-mediated antigen loss switches augmented immunity to antibody-mediated immunosuppression. Blood 2023; 142:1082-1098. [PMID: 37363865 PMCID: PMC10541552 DOI: 10.1182/blood.2022018591] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Antibodies against fetal red blood cell (RBC) antigens can cause hemolytic disease of the fetus and newborn (HDFN). Reductions in HDFN due to anti-RhD antibodies have been achieved through use of Rh immune globulin (RhIg), a polyclonal antibody preparation that causes antibody-mediated immunosuppression (AMIS), thereby preventing maternal immune responses against fetal RBCs. Despite the success of RhIg, it is only effective against 1 alloantigen. The lack of similar interventions that mitigate immune responses toward other RBC alloantigens reflects an incomplete understanding of AMIS mechanisms. AMIS has been previously attributed to rapid antibody-mediated RBC removal, resulting in B-cell ignorance of the RBC alloantigen. However, our data demonstrate that antibody-mediated RBC removal can enhance de novo alloimmunization. In contrast, inclusion of antibodies that possess the ability to rapidly remove the target antigen in the absence of detectable RBC clearance can convert an augmented antibody response to AMIS. These results suggest that the ability of antibodies to remove target antigens from the RBC surface can trigger AMIS in situations in which enhanced immunity may otherwise occur. In doing so, these results hold promise in identifying key antibody characteristics that can drive AMIS, thereby facilitating the design of AMIS approaches toward other RBC antigens to eliminate all forms of HDFN.
Collapse
Affiliation(s)
- Ryan P. Jajosky
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA
| | - Kashyap R. Patel
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jerry William L. Allen
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Patricia E. Zerra
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Diyoly Ayona
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Cheryl L. Maier
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shang-Chuen Wu
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - C. John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John D. Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ross M. Fasano
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Cassandra D. Josephson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Hematology and Oncology, Johns Hopkins University All Children's Hospital, St. Petersburg, FL
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - John P. Manis
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Li Chai
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jeanne E. Hendrickson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY
| | - Connie M. Arthur
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA
| | - Sean R. Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Chornenkyy Y, Yamamoto T, Hara H, Stowell SR, Ghiran I, Robson SC, Cooper DKC. Future prospects for the clinical transfusion of pig red blood cells. Blood Rev 2023; 61:101113. [PMID: 37474379 PMCID: PMC10968389 DOI: 10.1016/j.blre.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Transfusion of allogeneic human red blood cell (hRBCs) is limited by supply and compatibility between individual donors and recipients. In situations where the blood supply is constrained or when no compatible RBCs are available, patients suffer. As a result, alternatives to hRBCs that complement existing RBC transfusion strategies are needed. Pig RBCs (pRBCs) could provide an alternative because of their abundant supply, and functional similarities to hRBCs. The ability to genetically modify pigs to limit pRBC immunogenicity and augment expression of human 'protective' proteins has provided major boosts to this research and opens up new therapeutic avenues. Although deletion of expression of xenoantigens has been achieved in genetically-engineered pigs, novel genetic methods are needed to introduce human 'protective' transgenes into pRBCs at the high levels required to prevent hemolysis and extend RBC survival in vivo. This review addresses recent progress and examines future prospects for clinical xenogeneic pRBC transfusion.
Collapse
Affiliation(s)
- Yevgen Chornenkyy
- Department of Pathology, McGaw Medical Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Takayuki Yamamoto
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Division of Transplantation, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - David K C Cooper
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Arthur CM, Stowell SR. The Development and Consequences of Red Blood Cell Alloimmunization. ANNUAL REVIEW OF PATHOLOGY 2023; 18:537-564. [PMID: 36351365 PMCID: PMC10414795 DOI: 10.1146/annurev-pathol-042320-110411] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While red blood cell (RBC) transfusion is the most common medical intervention in hospitalized patients, as with any therapeutic, it is not without risk. Allogeneic RBC exposure can result in recipient alloimmunization, which can limit the availability of compatible RBCs for future transfusions and increase the risk of transfusion complications. Despite these challenges and the discovery of RBC alloantigens more than a century ago, relatively little has historically been known regarding the immune factors that regulate RBC alloantibody formation. Through recent epidemiological approaches, in vitro-based translational studies, and newly developed preclinical models, the processes that govern RBC alloimmunization have emerged as more complex and intriguing than previously appreciated. Although common alloimmunization mechanisms exist, distinct immune pathways can be engaged, depending on the target alloantigen involved. Despite this complexity, key themes are beginning to emerge that may provide promising approaches to not only actively prevent but also possibly alleviate the most severe complications of RBC alloimmunization.
Collapse
Affiliation(s)
- Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, ,
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, ,
| |
Collapse
|
4
|
Garraud O, Chiaroni J. An overview of red blood cell and platelet alloimmunisation in transfusion. Transfus Clin Biol 2022; 29:297-306. [PMID: 35970488 DOI: 10.1016/j.tracli.2022.08.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Post-transfusion alloimmunisation is the main complication of all those observed after one or more transfusion episodes. Alloimmunisation is observed after the transfusion of red blood cell concentrates but also of platelet concentrates. Besides alloimmunisation due to antigens carried almost exclusively by red blood cells such as those of the Rhesus-Kell system, alloimmunisation often raises against HLA antigens; the main responsibility for that, apart from platelet transfusions, lies with residual leukocytes in the products transfused, hence the central importance of effective leukoreduction right from the blood product preparation stage. Alloimmunization is not restricted to transfusion, but it is also observed during pregnancies, carrying out microtransfusions of blood from the fetus immunizing the mother through the placenta (in a retrograde way). Preexisting maternal-fetal immunization can complicate a transfusion program and intensify the creation of alloantibodies in several blood and tissue group systems. The occurrence of autoantibodies, created by several pathogenic reasons, can also interfere with the propensity of certain recipients of blood components to produce alloantibodies. The genetic condition of individuals is in fact strongly linked to the ability or not to recognize antigenic variants foreign to their own biological program and mount an alloimmune response. Some hemoglobin diseases, in carriers of which transfusions can be iterative and lifelong, are complicated by frequent alloimmunizations and amplification of the complications of these alloimmunizations, imposing even stricter transfusion rules. This review details the mechanisms favoring the occurrence of alloimmunization and the immunological principles for the production of molecular and cellular tools for alloimmunization. It concludes with the main preventive measures available to limit the occurrence of these frequent complications of varying severity but sometimes severe.
Collapse
Affiliation(s)
- Olivier Garraud
- Sainbiose-Inserm_U1059, Faculty of Medicine, University of Saint-Etienne, Saint-Etienne, France.
| | - Jacques Chiaroni
- Etablissement Français du Sang Provence-Alpes-Côte d'Azur-Corse, 13005 Marseille, France; Biologie des Groupes Sanguins, EFS, CNRS, ADES, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
5
|
Lindorfer MA, Taylor RP. FcγR-Mediated Trogocytosis 2.0: Revisiting History Gives Rise to a Unifying Hypothesis. Antibodies (Basel) 2022; 11:antib11030045. [PMID: 35892705 PMCID: PMC9326535 DOI: 10.3390/antib11030045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
There is increasing interest in the clinical implications and immunology of trogocytosis, a process in which the receptors on acceptor cells remove and internalize cognate ligands from donor cells. We have reported that this phenomenon occurs in cancer immunotherapy, in which cells that express FcγR remove and internalize CD20 and bound mAbs from malignant B cells. This process can be generalized to include other reactions including the immune adherence phenomenon and antibody-induced immunosuppression. We discuss in detail FcγR-mediated trogocytosis and the evidence supporting a proposed predominant role for liver sinusoidal endothelial cells via the action of the inhibitory receptor FcγRIIb2. We describe experiments to test the validity of this hypothesis. The elucidation of the details of FcγR-mediated trogocytosis has the potential to allow for the development of novel therapies that can potentially block or enhance this reaction, depending upon whether the process leads to unfavorable or positive biological effects.
Collapse
|
6
|
Pirenne F. How to avoid the problem of erythrocyte alloimmunization in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:689-695. [PMID: 34889373 PMCID: PMC8877235 DOI: 10.1182/hematology.2021000306] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Erythrocyte alloimmunization is a major barrier to transfusion in sickle cell disease (SCD) because it can lead to transfusion deadlock and the development of life-threatening hemolytic transfusion reactions (HTRs). Several risk factors have been identified, such as blood group polymorphism in these patients of African ancestry frequently exposed to antigens they do not carry and an inflammatory clinical state of the disease. The most important preventive measure is prophylactic red blood cell antigen matching, and there is a consensus that matching for Rh (D, C, E, c, e) and K antigens should be performed for all SCD patients. However, some patients are high responders and more at risk of developing antibodies and HTRs. For these patients, the extension of matching to other blood groups, including variant antigens of the RH blood group, the use of genotyping rather than serology to characterize significant blood groups, and the prophylactic administration of immunosuppressive treatments remain a matter of debate due to low levels of certainty concerning their effects and the difficulty of determining which patients, other than those already immunized, are at high risk. These issues were recently addressed by a panel of experts established by the American Society of Hematology. Here, we review and stratify the various interventions for preventing alloimmunization, based on the literature and our experience and taking into account the obstacles to their implementation and any future developments required.
Collapse
Affiliation(s)
- France Pirenne
- University Paris Est Creteil, Inserm, Institut Mondor de Recherche Biomedicale, Creteil, France
- Etablissement Français du sang Ile-de-France, Institut Mondor de Recherche Biomedicale, Creteil, France
- Correspondence France Pirenne, Etablissement Français du Sang, Hôpital Henri Mondor, 51 Ave du Maréchal de Lattre de Tassigny, 94000 Créteil, France; e-mail:
| |
Collapse
|
7
|
Watanaboonyongcharoen P, Akkawat B, Tohthong T, Rojnuckarin P. High B-cell activating factor levels in multi-transfused thalassemia patients. Transfus Med 2021; 31:350-356. [PMID: 34396626 DOI: 10.1111/tme.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To assess the associations between B-cell activating factor (BAFF) and alloimmunisation in multi-transfused thalassemia. BACKGROUND Red blood cell (RBC) alloimmunisation is a complication of multi-transfused thalassemia. BAFF is promoting B cells that produce alloantibodies. METHODS/MATERIALS Multi-transfused thalassemia, 15 years or older, were recruited in the cohort study. Alloantibodies and BAFF levels were analysed. RESULTS Of 114 patients, the overall prevalence of RBC alloimmunisation was 29.8%. The most common alloantibodies were anti-E, anti-Mia and anti-c. BAFF levels were different among the three groups; the patients with baseline alloantibodies (median ± interquartile range 1251 ± 474 pg/ml), without alloantibodies (1098 ± 453) and healthy controls (719 ± 306), p < 0.001. The BAFF level was elevated in the >25 years old patients (vs. the <25, p = 0.011) and the buffy-coat-reduced blood recipients (vs. the pre-storage leukocyte-depletion, p = 0.005). Absolute lymphocyte count was higher in the patients without baseline alloantibodies (vs. with baseline alloantibodies, p = 0.049) and the splenectomised patients (vs. the non-splenectomised patients, p < 0.001). Of the 72 patients without baseline antibodies, four who developed new antibodies showed no statistically different BAFF levels compared with those without new antibodies after 40-month follow-up (1296 ± 734 vs. 1062 ± 460, p = 0.491). In multivariate analysis, BAFF to absolute lymphocyte ratio was independently associated with RBC alloimmunisation (odds ratio 3.07, 95% confidence interval 1.124-8.369, p = 0.029). CONCLUSION B-cell activating factor (BAFF) levels were elevated in multi-transfused thalassemia and the BAFF to absolute lymphocyte ratio was associated with red blood cell (RBC) alloimmunisation.
Collapse
Affiliation(s)
- Phandee Watanaboonyongcharoen
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Transfusion Medicine Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Renal Immunology and Renal Transplant Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Benjaporn Akkawat
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanida Tohthong
- Transfusion Medicine Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Transfusion Medicine Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Unit in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Complement activation during intravascular hemolysis: Implication for sickle cell disease and hemolytic transfusion reactions. Transfus Clin Biol 2019; 26:116-124. [PMID: 30879901 DOI: 10.1016/j.tracli.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intravascular hemolysis is a hallmark of a large spectrum of diseases, including the sickle cell disease (SCD), and is characterized by liberation of red blood cell (RBC) degradation products in the circulation. Released Hb, heme, RBC fragments and microvesicles (MVs) exert pro-inflammatory, pro-oxidative and cytotoxic effects and contribute to vascular and tissue damage. The innate immune complement system not only contributes to the RBC lysis, but it is also itself activated by heme, RBC MVs and the hypoxia-altered endothelium, amplifying thus the cell and tissue damage. This review focuses on the implication of the complement system in hemolysis and hemolysis-mediated injuries in SCD and in cases of delayed hemolytic transfusion reactions (DHTR). We summarize the evidences for presence of biomarkers of complement activation in patients with SCD and the mechanisms of complement activation in DHTR. We discuss the role of antibodies-dependent activation of the classical complement pathway as well as the heme-dependent activation of the alternative pathway. Finally, we describe the available evidences for the efficacy of therapeutic blockade of complement in cases of DHTR. In conclusion, complement blockade is holding promises but future prospective studies are required to introduce Eculizumab or another upcoming complement therapeutic for DHTR and even in SCD.
Collapse
|