1
|
Chuah JJM, Hertzog PJ, Campbell NK. Immunoregulation by type I interferons in the peritoneal cavity. J Leukoc Biol 2021; 111:337-353. [PMID: 34612523 DOI: 10.1002/jlb.3mr0821-147r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The peritoneal cavity, a fluid-containing potential space surrounding the abdominal and pelvic organs, is home to a rich network of immune cells that maintain tissue homeostasis and provide protection against infection. However, under pathological conditions such as peritonitis, endometriosis, and peritoneal carcinomatosis, the peritoneal immune system can become dysregulated, resulting in nonresolving inflammation and disease progression. An enhanced understanding of the factors that regulate peritoneal immune cells under both homeostatic conditions and in disease contexts is therefore required to identify new treatment strategies for these often life-limiting peritoneal pathologies. Type I interferons (T1IFNs) are a family of cytokines with broad immunoregulatory functions, which provide defense against viruses, bacteria, and cancer. There have been numerous reports of immunoregulation by T1IFNs within the peritoneal cavity, which can contribute to both the resolution or propagation of peritoneal disease states, depending on the specifics of the disease setting and local environment. In this review, we provide an overview of the major immune cell populations that reside in the peritoneal cavity (or infiltrate it under inflammatory conditions) and highlight their contribution to the initiation, progression, or resolution of peritoneal diseases. Additionally, we will discuss the role of T1IFNs in the regulation of peritoneal immune cells, and summarize the results of laboratory studies and clinical trials which have investigated T1IFNs in peritonitis/sepsis, endometriosis, and peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Jasmine J M Chuah
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicole K Campbell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Enyindah-Asonye G, Li Y, Xin W, Singer NG, Gupta N, Fung J, Lin F. CD6 Receptor Regulates Intestinal Ischemia/Reperfusion-induced Injury by Modulating Natural IgM-producing B1a Cell Self-renewal. J Biol Chem 2016; 292:661-671. [PMID: 27909060 DOI: 10.1074/jbc.m116.749804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/07/2016] [Indexed: 01/26/2023] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a relatively common pathological condition that can lead to multi-organ failure and mortality. Regulatory mechanism for this disease is poorly understood, although it is established that circulating pathogenic natural IgM, which is primarily produced by B1a cells outside of the peritoneal cavity, are integrally involved. CD6 was originally identified as a marker for T cells and was later found to be present on some subsets of B cells in humans; however, whether CD6 plays any role in intestinal I/R-induced injury and, if so, the underlying mechanisms, remain unknown. Here we report that CD6-/- mice were significantly protected from intestinal inflammation and mucosal damage compared with WT mice in a model of intestinal I/R-induced injury. Mechanistically, we found that CD6 was selectively expressed on B1 cells outside of the bone marrow and peritoneal cavity and that pathogenic natural IgM titers were reduced in the CD6-/- mice in association with significantly decreased B1a cell population. Our results reveal an unexpected role of CD6 in the pathogenesis of intestinal IR-induced injury by regulating the self-renewal of B1a cells.
Collapse
Affiliation(s)
- Gospel Enyindah-Asonye
- From the Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Yan Li
- From the Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nora G Singer
- Division of Rheumatology, MetroHealth Medical Center and Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Neetu Gupta
- From the Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - John Fung
- Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Feng Lin
- From the Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
3
|
Aas-Hanssen K, Thompson KM, Bogen B, Munthe LA. Systemic Lupus Erythematosus: Molecular Mimicry between Anti-dsDNA CDR3 Idiotype, Microbial and Self Peptides-As Antigens for Th Cells. Front Immunol 2015; 6:382. [PMID: 26284067 PMCID: PMC4517057 DOI: 10.3389/fimmu.2015.00382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is marked by a T helper (Th) cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia. A feature of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-microbial, anti-histone, and anti-idiotype Th cell responses have been hypothesized to play a role. It has been entirely unclear if these seemingly disparate Th cell responses and hypotheses could be related or unified. Here, we describe that H chain CDR3 idiotypes from IgG+ B cells of lupus mice have sequence similarities with both microbial and self peptides. Matched sequences were more frequent within the mutated CDR3 repertoire and when sequences were derived from lupus mice with expanded anti-dsDNA B cells. Analyses of histone sequences showed that particular histone peptides were similar to VDJ junctions. Moreover, lupus mice had Th cell responses toward histone peptides similar to anti-dsDNA CDR3 sequences. The results suggest that Th cells in lupus may have multiple cross-reactive specificities linked to the IgVH CDR3 Id-peptide sequences as well as similar DNA-associated protein motifs.
Collapse
Affiliation(s)
- Kristin Aas-Hanssen
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Keith M Thompson
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway ; KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Ludvig A Munthe
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|
4
|
Baumgarth N, Waffarn EE, Nguyen TTT. Natural and induced B-1 cell immunity to infections raises questions of nature versus nurture. Ann N Y Acad Sci 2015; 1362:188-99. [PMID: 26060895 DOI: 10.1111/nyas.12804] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mouse B-1 cells are not only major producers of steady-state natural antibodies but also rapid responders to infections and inflammation. These discrete functions may be the outcomes of distinct environmental or developmental triggers that drive B-1 cells toward IgM production or an effector cell fate. Alternatively, distinct B-1 cell subsets may exist, which differ in their functional plasticity. In this paper, we summarize existing data suggesting that B-1 cells form a heterogeneous group of cells with distinct developmental requirements and nonoverlapping functions. Most spleen B-1 cells differ in development from that of bone marrow and peritoneal cavity B-1 cells, in that they develop in the absence of natural IgM. Functional heterogeneity is revealed by findings that B-1 cells in the bone marrow and spleen, but not the peritoneal cavity, generate natural serum IgM, while the latter are rapid responders to inflammatory and infectious insults, resulting in their relocation to secondary lymphoid tissues. A clearer understanding of the developmental and functional differences within the B-1 cell pool may reveal how they might be harnessed for prophylaxis or therapy.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, California.,Graduate Group in Immunology, University of California, Davis, California.,Department of Pathology, Microbiology, Immunology, University of California, Davis, California
| | - Elizabeth E Waffarn
- Center for Comparative Medicine, University of California, Davis, California
| | - Trang T T Nguyen
- Center for Comparative Medicine, University of California, Davis, California.,Graduate Group in Immunology, University of California, Davis, California
| |
Collapse
|
5
|
Kaku H, Cheng KF, Al-Abed Y, Rothstein TL. A novel mechanism of B cell-mediated immune suppression through CD73 expression and adenosine production. THE JOURNAL OF IMMUNOLOGY 2014; 193:5904-13. [PMID: 25392527 DOI: 10.4049/jimmunol.1400336] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immune suppression by regulatory T cells and regulatory B cells is a critical mechanism to limit excess inflammation and autoimmunity. IL-10 is considered the major mediator of B cell-induced immune suppression. We report a novel mechanism for immune suppression through adenosine generation by B cells. We identified a novel population of B cells that expresses CD73 as well as CD39, two ectoenzymes that together catalyze the extracellular dephosphorylation of adenine nucleotides to adenosine. Whereas CD39 expression is common among B cells, CD73 expression is not. Approximately 30-50% of B-1 cells (B220(+)CD23(-)) and IL-10-producing B (B10) cells (B220(+)CD5(+)CD1d(hi)) are CD73(hi), depending on mouse strain, whereas few conventional B-2 cells (B220(+)CD23(+)AA4.1(-)) express CD73. In keeping with expression of both CD73 and CD39, we found that CD73(+) B cells produce adenosine in the presence of substrate, whereas B-2 cells do not. CD73(-/-) mice were more susceptible to dextran sulfate sodium salt (DSS)-induced colitis than wild type (WT) mice were, and transfer of CD73(+) B cells ameliorated the severity of colitis, suggesting that B cell CD73/CD39/adenosine can modulate DSS-induced colitis. IL-10 production by B cells is not affected by CD73 deficiency. Interestingly, adenosine generation by IL-10(-/-) B cells is impaired because of reduced expression of CD73, indicating an unexpected connection between IL-10 and adenosine and suggesting caution in interpreting the results of studies with IL-10(-/-) cells. Our findings demonstrate a novel regulatory role of B cells on colitis through adenosine generation in an IL-10-independent manner.
Collapse
Affiliation(s)
- Hiroaki Kaku
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; and
| | - Kai Fan Cheng
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; and
| |
Collapse
|
6
|
Aas-Hanssen K, Funderud A, Thompson KM, Bogen B, Munthe LA. Idiotype-specific Th cells support oligoclonal expansion of anti-dsDNA B cells in mice with lupus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2691-8. [PMID: 25127856 DOI: 10.4049/jimmunol.1400640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is marked by a Th cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions and hypergammaglobulinemia. The specificity of Th cells in lupus remains unclear, but B cell Ids have been suggested. A hallmark is the presence of anti-dsDNA, mutated IgG autoantibodies with a preponderance of arginines in CDR3 of the Ig variable H chain (IgVH). B cells can present V region-derived Id peptides on their MHC class II molecules to Id-specific Th cells. We show that Id-specific Th cells support the proliferation of anti-dsDNA Id(+) B cells in mice suffering from systemic autoimmune disease with SLE-like features. Mice developed marked clonal expansions of B cells; half of the IgVH sequences were clonally related. Anti-dsDNA B cells made up 40% of B cells in end-stage disease. The B cells expressed mutated IgVH with multiple arginines in CDR3. Hence, Id-driven T cell-B cell collaboration supported the production of classical anti-dsDNA Abs, recapitulating the characteristics of such Abs in SLE. The results support the concept that Id-specific Th cells may trigger the development of SLE and suggest that manipulation of the Id-specific T cell repertoire could play a role in treatment.
Collapse
Affiliation(s)
- Kristin Aas-Hanssen
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| | - Ane Funderud
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| | - Keith M Thompson
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| | - Bjarne Bogen
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and K.G. Jebsen Centre for Influenza Vaccine Research, Department of Immunology, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway
| | - Ludvig A Munthe
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| |
Collapse
|
7
|
Margry B, Wieland WH, van Kooten PJ, van Eden W, Broere F. Peritoneal cavity B-1a cells promote peripheral CD4+T-cell activation. Eur J Immunol 2013; 43:2317-26. [DOI: 10.1002/eji.201343418] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Bram Margry
- Department of Infectious Diseases and Immunology; Utrecht University; Utrecht the Netherlands
| | - Willemien H. Wieland
- Department of Infectious Diseases and Immunology; Utrecht University; Utrecht the Netherlands
| | - Peter J. van Kooten
- Department of Infectious Diseases and Immunology; Utrecht University; Utrecht the Netherlands
| | - Willem van Eden
- Department of Infectious Diseases and Immunology; Utrecht University; Utrecht the Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology; Utrecht University; Utrecht the Netherlands
| |
Collapse
|
8
|
Roy B, Agarwal S, Brennecke AM, Krey M, Pabst O, Düber S, Weiss S. B-1-cell subpopulations contribute differently to gut immunity. Eur J Immunol 2013; 43:2023-32. [PMID: 23677546 DOI: 10.1002/eji.201243070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/03/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023]
Abstract
In mice, B-1 (B1a/B1b) cells are mainly located in the peritoneal cavity. B-1 cells are well known for their role in the early stages of Ab-mediated immune responses against pathogenic invasion as well as for the production of natural IgM antibodies. Although such B cells have been claimed to give rise to intestinal plasma cells producing IgA, a clear role of B-1 cells in IgA production in the gut-associated tissues is still not defined. Here, we employed the transgenic L2 mouse model characterized by the lack of B-2 cells and presence of B-1 cells as major B-cell subpopulation. The oligoclonality of the Ab repertoire in this mouse allowed us to take typical B1a cell VH sequences as indicators of the presence of IgM-producing B-1a cells in Peyer's patches as well as in lamina propria. However, amongst the IgAVH sequences recovered from the same tissues, none of the sequences showed B1a-cell specificity. Interestingly, all IgAVH sequences derived from the lamina propria of L2 mice displayed extensive numbers of nucleotide exchanges, indicating somatic hypermutation, and affinity maturation. This suggests that the contribution of natural unmutated IgA by B-1a cells to intestinal immunity is negligible.
Collapse
Affiliation(s)
- Bishnudeo Roy
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Sindhava VJ, Scholz JL, Cancro MP. Roles for BLyS family members in meeting the distinct homeostatic demands of innate and adaptive B cells. Front Immunol 2013; 4:37. [PMID: 23443938 PMCID: PMC3580333 DOI: 10.3389/fimmu.2013.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
B-1 and B-2 B cell populations have different progenitors, receptor diversity, anatomic location, and functions – suggesting vastly differing requisites for homeostatic regulation. There is evidence that the B lymphocyte stimulator (BLyS) family of cytokines and receptors, key factors in the homeostatic regulation of B-2 B cell subsets, is also a major player in the B-1 compartment. Here we review the development and differentiation of these two primary B cell lineages and their immune functions. We discuss evidence that BLyS or a proliferation-inducing ligand (APRIL) availability in different anatomic sites, coupled with signature BLyS receptor expression patterns on different B cell subsets, may be important for homeostatic regulation of B-1 as well as B-2 populations. Finally, we extend our working model of B cell homeostasis to integrate B-1s.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | | | |
Collapse
|
10
|
Riewaldt J, Düber S, Boernert M, Krey M, Dembinski M, Weiss S, Garbe AI, Kretschmer K. Severe Developmental B Lymphopoietic Defects in Foxp3-Deficient Mice are Refractory to Adoptive Regulatory T Cell Therapy. Front Immunol 2012; 3:141. [PMID: 22679447 PMCID: PMC3367401 DOI: 10.3389/fimmu.2012.00141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/16/2012] [Indexed: 01/21/2023] Open
Abstract
The role of Foxp3-expressing regulatory T (Treg) cells in tolerance and autoimmunity is well-established. However, although of considerable clinical interest, the role of Treg cells in the regulation of hematopoietic homeostasis remains poorly understood. Thus, we analysed B and T lymphopoiesis in the scurfy (Sf) mouse model of Treg cell deficiency. In these experiments, the near-complete block of B lymphopoiesis in the BM of adolescent Sf mice was attributed to autoimmune T cells. We could exclude a constitutive lympho-hematopoietic defect or a B cell-intrinsic function of Foxp3. Efficient B cell development in the BM early in ontogeny and pronounced extramedullary B lymphopoietic activity resulted in a peripheral pool of mature B cells in adolescent Sf mice. However, marginal zone B and B-1a cells were absent throughout ontogeny. Developmental B lymphopoietic defects largely correlated with defective thymopoiesis. Importantly, neonatal adoptive Treg cell therapy suppressed exacerbated production of inflammatory cytokines and restored thymopoiesis but was ineffective in recovering defective B lymphopoiesis, probably due to a failure to compensate production of stroma cell-derived IL-7 and CXCL12. Our observations on autoimmune-mediated incapacitation of the BM environment in Foxp3-deficient mice will have direct implications for the rational design of BM transplantation protocols for patients with severe genetic deficiencies in functional Foxp3+ Treg cells.
Collapse
Affiliation(s)
- Julia Riewaldt
- Center for Regenerative Therapies Dresden, Technical University Dresden Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Geherin SA, Fintushel SR, Lee MH, Wilson RP, Patel RT, Alt C, Young AJ, Hay JB, Debes GF. The skin, a novel niche for recirculating B cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:6027-35. [PMID: 22561151 DOI: 10.4049/jimmunol.1102639] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
B cells infiltrate the skin in many chronic inflammatory diseases caused by autoimmunity or infection. Despite potential contribution to disease, skin-associated B cells remain poorly characterized. Using an ovine model of granulomatous skin inflammation, we demonstrate that B cells increase in the skin and skin-draining afferent lymph during inflammation. Surprisingly, skin B cells are a heterogeneous population that is distinct from lymph node B cells, with more large lymphocytes as well as B-1-like B cells that coexpress high levels of IgM and CD11b. Skin B cells have increased MHC class II, CD1, and CD80/86 expression compared with lymph node B cells, suggesting that they are well-suited for T cell activation at the site of inflammation. Furthermore, we show that skin accumulation of B cells and Ab-secreting cells during inflammation increases local Ab titers, which could augment host defense and autoimmunity. Although skin B cells express typical skin-homing receptors, such as E-selectin ligand and α-4 and β-1 integrins, they are unresponsive to ligands for chemokine receptors associated with T cell homing into skin. Instead, skin B cells migrate toward the cutaneously expressed CCR6 ligand CCL20. Our data support a model in which B cells use CCR6-CCL20 to recirculate through the skin, fulfilling a novel role in skin immunity and inflammation.
Collapse
Affiliation(s)
- Skye A Geherin
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Muller BH, Savatier A, L'Hostis G, Costa N, Bossus M, Michel S, Ott C, Becquart L, Ruffion A, Stura EA, Ducancel F. In Vitro Affinity Maturation of an Anti-PSA Antibody for Prostate Cancer Diagnostic Assay. J Mol Biol 2011; 414:545-62. [DOI: 10.1016/j.jmb.2011.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/30/2011] [Accepted: 10/05/2011] [Indexed: 11/28/2022]
|
13
|
Induction of B-cell development in adult mice reveals the ability of bone marrow to produce B-1a cells. Blood 2009; 114:4960-7. [DOI: 10.1182/blood-2009-04-218156] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
To study B-cell development from bone marrow (BM), we generated recombination-activating gene 1 (Rag1)–targeted mice lacking mature lymphocytes. B-cell development can be induced in such mice by B cell–specific restoration of a functional Rag1 transcription unit. Follicular and marginal zone B cells populated the spleen when Rag1 expression was permitted. Notably, the peritoneal cavity was dominated by bona fide B-1a cells, as judged by surface markers and functional properties. These BM-derived B-1a cells exhibited a polyclonal VDJ repertoire with substantial N nucleotide insertions. Nevertheless, physiologic frequencies of phosphatidylcholine-specific B cells were detected. Importantly, the BM of young and 5-month-old mice was indistinguishable with regard to the potential to generate B-1a cells.
Collapse
|
14
|
Roy B, Shukla S, Stoermann B, Kremmer E, Düber S, Weiss S. Loss of λ2315 transgene copy numbers influences the development of B1 cells. Mol Immunol 2009; 46:1542-50. [DOI: 10.1016/j.molimm.2008.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 12/30/2008] [Indexed: 01/19/2023]
|
15
|
Stoermann B, Kretschmer K, Düber S, Weiss S. B-1a cells are imprinted by the microenvironment in spleen and peritoneum. Eur J Immunol 2007; 37:1613-20. [PMID: 17492803 DOI: 10.1002/eji.200636640] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
B-1a cells are found mainly in the peritoneal cavity of mice but are also present in the spleen. Gene expression profiling defined many genes differentially expressed in B-1a cells from these two sites. To see whether this gene expression pattern was imprinted by the particular microenvironment, peritoneal or spleen cells from recombinant L2 mice mainly consisting of B-1a cells were adoptively transferred into Rag1-/- mice. Re-isolated peritoneal and splenic B-1a cells were analyzed for expression of three indicator genes--vcam-1, adamdec1 and spi-c. The expression of these genes was up-regulated in splenic and down-regulated in peritoneal cells. This particular pattern was observed for peritoneal or splenic donor cells transferred either intraperitoneally or intravenously. Similar results were obtained when levels of surface IgM or frequencies of Mac-1+ B-1 cells were compared after transfer. This suggests that the environment induces the particular genetic program of B-1a cells and argues against an independent ontogeny.
Collapse
Affiliation(s)
- Britta Stoermann
- Molecular Immunology, HZI, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | |
Collapse
|
16
|
Wilson SM, Wilkie BN. B-1 and B-2 B-cells in the pig cannot be differentiated by expression of CD5. Vet Immunol Immunopathol 2006; 115:10-6. [PMID: 17098293 DOI: 10.1016/j.vetimm.2006.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 10/09/2006] [Accepted: 10/17/2006] [Indexed: 11/21/2022]
Abstract
In a number of species, such as mice, humans and cattle, B-cells can be differentiated into two populations based on the surface expression of CD5, a marker normally found on T-cells. These B-cell subsets have been found to differ with regard to location, development and phenotypic characteristics. The B-1 (CD5(+)) B-cells have also been shown to have a more restricted immunoglobulin isotype expression profile, limited combinatorial diversity in immunoglobulin heavy chains and lower somatic hyper-mutation. They are potent producers of IL-10. In the pig, CD5(+) and CD5(-) B-cell populations have previously been described in this laboratory. Here, we show that B-cells isolated and separated into CD5(+) and CD5(-) populations do not differ with regard to immunoglobulin isotype or IL-10 RNA expression, nor do the immunoglobulin heavy chain V(D)J re-arrangements differ in terms of gene usage, CDR3 length and composition or the frequency of hyper-mutations. In conclusion, expression of CD5 cannot be used to differentiate between pig blood B-1 and B-2 B-cells.
Collapse
Affiliation(s)
- Stephen M Wilson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ont. N1G 2W1, Canada.
| | | |
Collapse
|
17
|
Rothaeusler K, Baumgarth N. Evaluation of intranuclear BrdU detection procedures for use in multicolor flow cytometry. Cytometry A 2006; 69:249-59. [PMID: 16538653 PMCID: PMC3013156 DOI: 10.1002/cyto.a.20252] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Measurement of cell proliferation via BrdU incorporation in combination with multicolor cell surface staining would facilitate studies on cell subsets that require multiple markers for their identification. However, the extent to which the often harsh cell preparation procedures required affect the staining quality of more recently developed fluorescent dyes has not been assessed. METHODS Three cell preparation protocols for BrdU measurement were compared for their ability to maintain fluorescent surface staining and scatter parameters of in vivo BrdU-labeled cells by flow cytometry. A 10-color fluorescent panel was developed to test the quality of surface staining, following cell treatment and the ability to perform BrdU measurements on even small B lymphocyte subsets. RESULTS All cell preparation procedures affected the quality of fluorescent and/or scatter parameters to varying degrees. Paraformaldehyde/saponin-based procedures preserved sufficient fluorescent surface staining to determine BrdU incorporation rates among all splenic B cell subsets, including B-1a cells, which constitute roughly 0.5% of cells. Turnover rates of B-1a cells were similar to immature B cells and higher than those of the other mature B cell subsets. CONCLUSION Paraformaldehyde/saponin-based cell preparation procedures facilitate detailed cell turnover studies on small cell subsets in vivo, revealing new functional information on rare cell populations.
Collapse
Affiliation(s)
| | - Nicole Baumgarth
- Corresponding Author, Nicole Baumgarth, DVM, PhD, Center for Comparative Medicine, University of California, Davis, County Rd 98 & Hutchison Drive, Davis, CA 95616, Phone: 530 754 5813, FAX: 530 752 7914,
| |
Collapse
|
18
|
Hastings WD, Tumang JR, Behrens TW, Rothstein TL. Peritoneal B-2 cells comprise a distinct B-2 cell population with B-1b-like characteristics. Eur J Immunol 2006; 36:1114-23. [PMID: 16609926 DOI: 10.1002/eji.200535142] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
B-1 and B-2 cells are lymphocyte populations that differ in development, surface marker expression, tissue localization, and function. Though mainly found in the spleen, lymph nodes, and circulation of mice, small numbers of B-2 cells are found in the peritoneal cavity, a site predominantly populated by B-1 cells. Here, we characterized peritoneal B-2 cells, and determined their relationship to B-1 cells. We found that peritoneal B-2 cells appear to be intermediate between splenic B-2 and peritoneal B-1 cells in terms of surface marker expression of B220, CD80, and CD43, expression of several marker genes, and in vitro viability and IgM secretion. Adoptive transfer of peritoneal B-2 cells into severe combined immunodeficiency mice resulted in the acquisition of a phenotype reminiscent of B-1b cells, as shown by up-regulation of Mac-1 and CD43, and down-regulation of CD23. Moreover, adoptively transferred peritoneal B-2 cells recapitulated B-1 cell function by producing natural IgM in recipient mice. These data suggest that peritoneal B-2 cells express some characteristics of B-1b cells and that this similarity increases with additional time in the peritoneal cavity.
Collapse
Affiliation(s)
- William D Hastings
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
19
|
Francés R, Tumang JR, Kaku H, Gurdak SM, Rothstein TL. B-1 cells express transgelin 2: unexpected lymphocyte expression of a smooth muscle protein identified by proteomic analysis of peritoneal B-1 cells. Mol Immunol 2006; 43:2124-9. [PMID: 16487589 DOI: 10.1016/j.molimm.2005.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 12/20/2005] [Accepted: 12/23/2005] [Indexed: 12/23/2022]
Abstract
B-1 cells constitute a unique B cell subset that differs phenotypically, biochemically, and functionally from the predominant population of conventional B-2 cells. Functional differences include constitutive secretion of natural immunoglobulin and failure of BCR signaling to initiate proliferation. The origin of these differences remains uncertain. We hypothesized that unbiased analysis of differences in protein expression between highly pure populations of B-1 and B-2 cells might provide information not readily available through other means. To pursue this, we undertook 2D gel analysis of B-1 and B-2 cells combined with mass spectrometry. We identified the smooth muscle protein, transgelin 2, in peritoneal (but not splenic) B-1 cells and did not find it in splenic B-2 cells; these results were confirmed by Western blot analysis, which showed a more than 60-fold difference in transgelin 2 expression between peritoneal B-1 and splenic B-2 cells. In contrast, levels of transgelin 2 RNA differed to a much lesser extent (3-fold) in the two B cell populations, so transgelin 2 is an example of a molecule whose subset-specific expression is more readily detected by proteomic than transcriptomic analyses. Finally, transgelin 2 protein expression was induced in splenic B-2 cells; thus, transgelin 2 joins a number of other inducible molecules that are constitutively expressed by peritoneal B-1 but not splenic B-2 cells. Although the role of transgelin 2 in B-1 cell function remains uncertain, identification of this molecule demonstrates the value of examining protein expression in this B cell subset.
Collapse
Affiliation(s)
- Rubén Francés
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
20
|
Borsutzky S, Kretschmer K, Becker PD, Mühlradt PF, Kirschning CJ, Weiss S, Guzmán CA. The Mucosal Adjuvant Macrophage-Activating Lipopeptide-2 Directly Stimulates B Lymphocytes via the TLR2 without the Need of Accessory Cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:6308-13. [PMID: 15879130 DOI: 10.4049/jimmunol.174.10.6308] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The macrophage-activating lipopeptide-2 (MALP-2) is an agonist of the TLR heterodimer 2/6, which exhibits potent activity as mucosal adjuvant, promoting strong humoral and cellular responses. Although B cells expressing TLR2/6 are potential targets, very little is known about the effect of MALP-2 on B cells. Studies were performed using total spleen cells or purified B cells from WT mice or animals deficient in TLR2, T cells, B cells, or specific subpopulations of B cells. They demonstrated that MALP-2 promotes a T cell-independent activation and maturation of B cells (mainly follicular but also B-1a and marginal zone B cells) via TLR2. MALP-2 also increased the frequency of IgM- and IgG-secreting cells, but bystander cells were required for IgA secretion. Activated B cells exhibited increased expression of activation markers and ligands that are critical for cross-talk with T cells (CD19, CD25, CD80, CD86, MHC I, MHC II, and CD40). Immunization of mice lacking T cells showed that MALP-2-mediated stimulation of TLR2/6 was unable to circumvent the need of T cell help for efficient Ag-specific B cell activation. Immunization of mice lacking B cells demonstrated that B cells are critical for MALP-2-dependent improvement of T cell responses. The knowledge emerging from this work suggests that MALP-2-mediated activation of B cells through TLR2/6 is critical for adjuvanticity. B cell stimulation by pattern recognition receptors seems to be a basic mechanism that can be exploited to improve the immunogenicity of vaccine formulations.
Collapse
Affiliation(s)
- Stefan Borsutzky
- Vaccine Research Group, Division of Microbiology and Molecular Immunology Group, Division of Molecular Biotechnology, GBF-German Research Centre for Biotechnology, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Kretschmer K, Stopkowicz J, Scheffer S, Greten TF, Weiss S. Maintenance of peritoneal B-1a lymphocytes in the absence of the spleen. THE JOURNAL OF IMMUNOLOGY 2004; 173:197-204. [PMID: 15210775 DOI: 10.4049/jimmunol.173.1.197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Positive selection by autoantigens is believed to play an important role in the generation/maintenance of B-1a cells. Recently, it has been described that splenectomy results in the loss of an already established B-1a cell pool. To elucidate whether the spleen influences the peritoneal B-1a repertoire, we have analyzed the consequences of splenectomy in the recently established IgL-transgenic L2 mouse model. L2 mice are characterized by a severe block of B-2 development and predominance of B-1a cells, which exhibit a pronounced IgH oligoclonality, presumably due to positive selection by autoantigens. In this study, we show that, in striking contrast to splenectomized normal mice, L2 mice exhibit unchanged frequencies of peritoneal B-1a cells. The IgH repertoire of these B-1a cells, however, was severely perturbed in that the previously described predominant B-1a H chains were no longer present. The repertoire changes were partial since phosphatidylcholine-specific B-1a cells were present in similar numbers before and after splenectomy. Thus, splenic Ags appear to act as "survival factors" for major subsets of peritoneal B cells. The loss of B-1a cells in the absence of such factors is compensated by repertoire changes among B-1a cells in B cell lymphopenic L2 but not normal mice.
Collapse
Affiliation(s)
- Karsten Kretschmer
- Molecular Immunology, Gesellschaft für Biotechnologische Forschung, German Research Centre for Biotechnology, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
22
|
Kretschmer K, Jungebloud A, Stopkowicz J, Kleinke T, Hoffmann R, Weiss S. The selection of marginal zone B cells differs from that of B-1a cells. THE JOURNAL OF IMMUNOLOGY 2004; 171:6495-501. [PMID: 14662849 DOI: 10.4049/jimmunol.171.12.6495] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transgenic (Tg) L2 mice expressing high levels of the lambda2 (315) L chain contain only B cell populations involved in the first line of defense, i.e., B-1 and marginal zone (MZ) B cells. The strongly oligoclonal IgH chain repertoire of Tg B-1a cells in such mice was attributed to strong positive selection by autoantigens. In this study, we show that the MZ B cells of L2 mice correspond very closely to MZ B cells of normal mice, as revealed by surface marker expression and gene expression profiling. We demonstrate that the IgH chain repertoire of these Tg MZ B cells is extremely heterogeneous. This is in sharp contrast to the oligoclonality found in B-1a cells of the same mice, which was attributed to strong positive selection mediated by autoantigens. Therefore, the strong positive selection of the IgH chain repertoire in L2 mice is B-1a specific. Thus, our data demonstrate that despite common functional properties, MZ B and B-1a cells exhibit striking differences in their selection and/or maintenance requirements.
Collapse
Affiliation(s)
- Karsten Kretschmer
- Molecular Immunology, Gesellschaft für Biotechnologishe Forschung, German Research Centre for Biotechnology, Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|