1
|
Potter SJ, Zhang L, Kotliar M, Wu Y, Schafer C, Stefan K, Boukas L, Qu’d D, Bodamer O, Simpson BN, Barski A, Lindsley AW, Bjornsson HT. KMT2D regulates activation, localization, and integrin expression by T-cells. Front Immunol 2024; 15:1341745. [PMID: 38765012 PMCID: PMC11099208 DOI: 10.3389/fimmu.2024.1341745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 05/21/2024] Open
Abstract
Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.
Collapse
Affiliation(s)
- Sarah J. Potter
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Li Zhang
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Kotliar
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yuehong Wu
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Caitlin Schafer
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Kurtis Stefan
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Leandros Boukas
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dima Qu’d
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, United States
- The Roya Kabuki Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, MA, United States
| | - Brittany N. Simpson
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew W. Lindsley
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hans T. Bjornsson
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Faculty of Medicine, The University of Iceland, Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
2
|
Gila F, Alamdari-Palangi V, Rafiee M, Jokar A, Ehtiaty S, Dianatinasab A, Khatami SH, Taheri-Anganeh M, Movahedpour A, Fallahi J. Gene-edited cells: novel allogeneic gene/cell therapy for epidermolysis bullosa. J Appl Genet 2024:10.1007/s13353-024-00839-2. [PMID: 38459407 DOI: 10.1007/s13353-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Arezoo Jokar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiaty
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Kim MS, Ha SE, Wu M, Zogg H, Ronkon CF, Lee MY, Ro S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22179185. [PMID: 34502094 PMCID: PMC8430714 DOI: 10.3390/ijms22179185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.
Collapse
Affiliation(s)
- Min-Seob Kim
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Se-Eun Ha
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Charles F. Ronkon
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moon-Young Lee
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Correspondence: (M.-Y.L.); (S.R.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
- Correspondence: (M.-Y.L.); (S.R.)
| |
Collapse
|
4
|
Huitema L, Phillips T, Alexeev V, Igoucheva O. Immunological mechanisms underlying progression of chronic wounds in recessive dystrophic epidermolysis bullosa. Exp Dermatol 2021; 30:1724-1733. [PMID: 34142388 PMCID: PMC9290674 DOI: 10.1111/exd.14411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
Hereditary epidermolysis bullosa (EB) is a mechanobullous skin fragility disorder characterized by defective epithelial adhesion, leading to mechanical stress‐induced skin blistering. Based on the level of tissue separation within the dermal‐epidermal junction, EB is categorized into simplex (EBS), junctional (JEB), dystrophic (DEB) and Kindler syndrome. There is no cure for EB, and painful chronic cutaneous wounds are one of the major complications in recessive (RDEB) patients. Although RDEB is considered a cutaneous disease, recent data support the underlying systemic immunological defects. Furthermore, chronic wounds are often colonized with pathogenic microbiota, leading to excessive inflammation and altered wound healing. Consequently, patients with RDEB suffer from a painful sensation of chronic, cutaneous itching/burning and an endless battle with bacterial infections. To improve their quality of life and life expectancy, it is important to prevent cutaneous infections, dampen chronic inflammation and stimulate wound healing. A clear scientific understanding of the immunological events underlying the maintenance of chronic poorly healing wounds in RDEB patients is necessary to improve disease management and better understand other wound healing disorders. In this review, we summarize current knowledge of the role of professional phagocytes, such as neutrophils, macrophages and dendritic cells, the role of T‐cell‐mediated immunity in lymphoid organs, and the association of microbiota with poor wound healing in RDEB. We conclude that RDEB patients have an underlying immunity defect that seems to affect antibacterial immunity.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Michopoulou A, Montmasson M, Garnier C, Lambert E, Dayan G, Rousselle P. A novel mechanism in wound healing: Laminin 332 drives MMP9/14 activity by recruiting syndecan-1 and CD44. Matrix Biol 2020; 94:1-17. [PMID: 32621878 DOI: 10.1016/j.matbio.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Re-epithelialization describes the resurfacing of a skin wound with new epithelium. In response to various stimuli including that of growth factors, cytokines and extracellular matrix (ECM), wound edge epidermal keratinocytes undergo cytoskeleton rearrangements compatible with their motile behavior and develop protrusive adhesion contacts. Matrix metalloproteinases (MMP) expression is crucial for proper cell movement and ECM remodeling; however, their deposition mechanism is unknown in keratinocytes. Here, we show that similar to cytokine IL-1ß, the precursor laminin 332 pro-migratory fragment G45 induces expression of the MMP-9 pro-enzyme, which together with MMP-14, further exerts its proteolytic activity within epithelial podosomes. This event strictly depends on the expression of the proteoglycan receptor syndecan-1 that was found in a ring surrounding the podosome core, co-localised with CD44. Our findings uncover that by directly recruiting both syndecan-1 and CD44, the laminin-332 G45 domain plays a major role in regulating mechanisms underlying keratinocyte / ECM remodeling during wound repair.
Collapse
Affiliation(s)
- Anna Michopoulou
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Guila Dayan
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, UMR 5305; CNRS; Univ. Lyon 1; SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
6
|
Keith AR, Twaroski K, Ebens CL, Tolar J. Leading edge: emerging drug, cell, and gene therapies for junctional epidermolysis bullosa. Expert Opin Biol Ther 2020; 20:911-923. [PMID: 32178539 PMCID: PMC7392816 DOI: 10.1080/14712598.2020.1740678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Junctional epidermolysis bullosa (JEB) is a rare inherited genetic disorder with limited treatments beyond palliative care. A major hallmark of JEB is skin blistering caused by functional loss or complete absence of major structural proteins of the skin. Impaired wound healing in patients with JEB gives rise to chronic cutaneous ulcers that require daily care. Wound care and infection control are the current standard of care for this patient population. AREAS COVERED This review covers research and clinical implementation of emerging drug, cell, and gene therapies for JEB. Current clinical trials use topical drug delivery to manipulate the inflammation and re-epithelialization phases of wound healing or promote premature stop codon readthrough to accelerate chronic wound closure. Allogeneic cell therapies for JEB have been largely unsuccessful, with autologous skin grafting emerging as a reliable method of resolving the cutaneous manifestations of JEB. Genetic correction and transplant of autologous keratinocytes have demonstrated persistent amelioration of chronic wounds in a subset of patients. EXPERT OPINION Emerging therapies address the cutaneous symptoms of JEB but are unable to attend to systemic manifestations of the disease. Investigations into the molecular mechanism(s) underpinning the failure of systemic allogeneic cell therapies are necessary to expand the range of effective JEB therapies.
Collapse
Affiliation(s)
- Allison R. Keith
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirk Twaroski
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christen L. Ebens
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Hardy E, Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol 2020; 11:47. [PMID: 32116759 PMCID: PMC7013034 DOI: 10.3389/fphys.2020.00047] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone’s main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
9
|
Simon T, Bromberg JS. Regulation of the Immune System by Laminins. Trends Immunol 2017; 38:858-871. [PMID: 28684207 DOI: 10.1016/j.it.2017.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/11/2023]
Abstract
Laminins are trimeric proteins that are major components of the basement membranes that separate endothelia and epithelia from the underlying tissue. Sixteen laminin isoforms have been described, each with distinct tissue expression patterns and functions. While laminins have a critical structural role, recent evidence also indicates that they also impact the migration and functions of immune cells. Laminins are differentially expressed upon immunity or tolerance and orientate the immune response. This review will summarize the structure of laminins, the modulation of their expression, and their interactions with the immune system. Finally, the role of the laminins in autoimmune diseases and transplantation will be discussed.
Collapse
Affiliation(s)
- Thomas Simon
- Departments of Surgery and Microbiology and Immunology, Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan S Bromberg
- Departments of Surgery and Microbiology and Immunology, Center for Vascular and Inflammatory Disease, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
11
|
Canté-Barrett K, Mendes RD, Li Y, Vroegindeweij E, Pike-Overzet K, Wabeke T, Langerak AW, Pieters R, Staal FJT, Meijerink JPP. Loss of CD44 dim Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus. Front Immunol 2017; 8:32. [PMID: 28163708 PMCID: PMC5247458 DOI: 10.3389/fimmu.2017.00032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Human T-cell development is less well studied than its murine counterpart due to the lack of genetic tools and the difficulty of obtaining cells and tissues. Here, we report the transcriptional landscape of 11 immature, consecutive human T-cell developmental stages. The changes in gene expression of cultured stem cells on OP9-DL1 match those of ex vivo isolated murine and human thymocytes. These analyses led us to define evolutionary conserved gene signatures that represent pre- and post-αβ T-cell commitment stages. We found that loss of dim expression of CD44 marks human T-cell commitment in early CD7+CD5+CD45dim cells, before the acquisition of CD1a surface expression. The CD44−CD1a− post-committed thymocytes have initiated in frame T-cell receptor rearrangements that are accompanied by loss of capacity to differentiate toward myeloid, B- and NK-lineages, unlike uncommitted CD44dimCD1a− thymocytes. Therefore, loss of CD44 represents a previously unrecognized human thymocyte stage that defines the earliest committed T-cell population in the thymus.
Collapse
Affiliation(s)
- Kirsten Canté-Barrett
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Rui D Mendes
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , Netherlands
| | - Yunlei Li
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , Netherlands
| | - Eric Vroegindeweij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Tamara Wabeke
- Department of Immunology, Erasmus Medical Center , Rotterdam , Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus Medical Center , Rotterdam , Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Jules P P Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
12
|
Gounko NV, Martens E, Opdenakker G, Rybakin V. Thymocyte development in the absence of matrix metalloproteinase-9/gelatinase B. Sci Rep 2016; 6:29852. [PMID: 27432536 PMCID: PMC4949482 DOI: 10.1038/srep29852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMP) play critical roles in a variety of immune reactions by facilitating cell migration, and affect cell communication by processing both cytokines and cell surface receptors. Based on published data indicating that MMP-9 is upregulated upon T cell activation and also in the thymus upon the induction of negative selection, we investigated the contribution of MMP-9 into mouse T cell development and differentiation in the thymus. Our data suggest that MMP-9 deficiency does not result in major abnormalities in the development of any conventionally selected or agonist selected subsets and does not interfere with thymocyte apoptosis and clearance, and that MMP-9 expression is not induced in immature T cells at any stage of their thymic development.
Collapse
Affiliation(s)
- Natalia V Gounko
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.,Electron Microscopy Platform, Center for the Biology of Disease VIB and Center for Human Genetics KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Vasily Rybakin
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| |
Collapse
|
13
|
Savino W, Mendes-da-Cruz DA, Golbert DCF, Riederer I, Cotta-de-Almeida V. Laminin-Mediated Interactions in Thymocyte Migration and Development. Front Immunol 2015; 6:579. [PMID: 26635793 PMCID: PMC4648024 DOI: 10.3389/fimmu.2015.00579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022] Open
Abstract
Intrathymic T-cell differentiation is a key process for the development and maintenance of cell-mediated immunity, and occurs concomitantly to highly regulated migratory events. We have proposed a multivectorial model for describing intrathymic thymocyte migration. One of the individual vectors comprises interactions mediated by laminins (LMs), a heterotrimeric protein family of the extracellular matrix. Several LMs are expressed in the thymus, being produced by microenvironmental cells, particularly thymic epithelial cells (TECs). Also, thymocytes and epithelial cells express integrin-type LM receptors. Functionally, it has been reported that the dy/dy mutant mouse (lacking the LM isoform 211) exhibits defective thymocyte differentiation. Several data show haptotactic effects of LMs upon thymocytes, as well as their adhesion on TECs; both effects being prevented by anti-LM or anti-LM receptor antibodies. Interestingly, LM synergizes with chemokines to enhance thymocyte migration, whereas classe-3 semaphorins and B ephrins, which exhibit chemorepulsive effects in the thymus, downregulate LM-mediated migratory responses of thymocytes. More recently, we showed that knocking down the ITGA6 gene (which encodes the α6 integrin chain of LM receptors) in human TECs modulates a large number of cell migration-related genes and results in changes of adhesion pattern of thymocytes onto the thymic epithelium. Overall, LM-mediated interactions can be placed at the cross-road of the multivectorial process of thymocyte migration, with a direct influence per se, as well as by modulating other molecular interactions associated with the intrathymic-trafficking events.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | | | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| |
Collapse
|
14
|
Resop RS, Uittenbogaart CH. Human T-Cell Development and Thymic Egress: An Infectious Disease Perspective. FORUM ON IMMUNOPATHOLOGICAL DISEASES AND THERAPEUTICS 2015; 6:33-49. [PMID: 28670486 PMCID: PMC5489135 DOI: 10.1615/forumimmundisther.2015014226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emigration of mature naïve CD4 SP T cells from the human thymus to the periphery is not fully understood, although elucidation of the mechanisms that govern egress of T cells is crucial to understanding both basic immunology and the immune response in diseases such as HIV infection. Recent work has brought to light the requirement for sphingosine-1-phosphate (S1P) and its receptors in a variety of fields including mature naïve T-cell egress from the thymus of mice. We are examining the expression and function of this novel requisite T-cell egress receptor within the human thymus, characterizing changes observed in the expression and function of this receptor in infectious diseases. To perform this work, we use a variety of humanized murine models reviewed in this article. Future work in the field of T-cell egress, especially as it pertains to S1P receptors, should advance the fields of basic T-cell immunology and immunopathology and open new avenues for exploration into novel therapeutics.
Collapse
Affiliation(s)
- Rachel S. Resop
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen Medical School at UCLA, Los Angeles, CA 90095
- Department of Pediatrics, David Geffen Medical School at UCLA, Los Angeles, CA 90095
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen Medical School at UCLA, Los Angeles, CA 90095
- Department of Pediatrics, David Geffen Medical School at UCLA, Los Angeles, CA 90095
- University of California at Los Angeles AIDS Institute, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen Medical School at UCLA, Los Angeles, CA 90095
| |
Collapse
|
15
|
Vivinus-Nébot M, Frin-Mathy G, Bzioueche H, Dainese R, Bernard G, Anty R, Filippi J, Saint-Paul MC, Tulic MK, Verhasselt V, Hébuterne X, Piche T. Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut 2014; 63:744-52. [PMID: 23878165 DOI: 10.1136/gutjnl-2012-304066] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the role of colonic barrier defects and low-grade inflammation in irritable bowel syndrome (IBS)-like symptoms in quiescent inflammatory bowel disease (IBD). DESIGN Caecal biopsies were collected from 51 IBS, 49 quiescent IBD (31 Crohn's disease (CD) and 18 ulcerative colitis (UC)) patients and 27 controls. IBS was assessed using the Rome III criteria and the IBS severity score. Epithelial barrier integrity was evaluated by determining the paracellular permeability of biopsies mounted in Ussing chambers and the mRNA expression of tight junction proteins (ZO-1, α-catenin and occludin). Low-grade inflammation was evaluated by counting cells, including intraepithelial lymphocytes (IELs), eosinophils and mast cells, and by determining the mRNA and protein expression of tumour necrosis factor (TNF)-α in biopsies and culture supernatants. RESULTS IBS-like symptoms were present in 35.4 and 38% of CD and UC patients, respectively. Paracellular permeability was significantly increased in both quiescent IBD with IBS-like symptoms and IBS compared with quiescent IBD without IBS-like symptoms (p<0.01, respectively) or controls (p<0.01, respectively). Significantly lower expression of ZO-1 and α-catenin was detected in IBS and quiescent IBD with IBS-like symptoms. IELs and TNF-α were significantly increased in quiescent IBD with IBS-like symptoms, but not in IBS. CONCLUSIONS In quiescent IBD, IBS-like symptoms related to persistent subclinical inflammation associated with increased colonic paracellular permeability. A persistent increase in TNF-α in colonic mucosa may contribute to the epithelial barrier defects associated with abdominal pain in quiescent IBD, but not in IBS. Optimisation of anti-inflammatory therapy may be considered in quiescent IBD with IBS-like symptoms.
Collapse
Affiliation(s)
- M Vivinus-Nébot
- Department of Immunology, Pole of Biology, Hôpital Archet 1, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu X, Ge Q. Maturation and migration of murine CD4 single positive thymocytes and thymic emigrants. Comput Struct Biotechnol J 2014; 9:e201403003. [PMID: 24757506 PMCID: PMC3995209 DOI: 10.5936/csbj.201403003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 11/22/2022] Open
Abstract
T lymphopoiesis in the thymus was thought to be completed once they reach the single positive (SP) stage, when they are “fully mature” and wait to be exported at random or follow a “first in-first out” manner. Recently, accumulating evidence has revealed that newly generated SP thymocytes undergo further maturation in the thymic medulla before they follow a tightly regulated emigrating process to become recent thymic emigrants (RTEs). RTEs in the periphery then experience a post-thymic maturation and peripheral tolerance and eventually become licensed as mature naïve T cells. This review summarizes the recent progress in the late stage T cell development in and outside of the thymus. The regulation of this developmental process is also discussed.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Medical Immunology, Ministry of Health. Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, P R China
| | - Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health. Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, P R China
| |
Collapse
|
17
|
Pietraszek K, Brézillon S, Perreau C, Malicka-Błaszkiewicz M, Maquart FX, Wegrowski Y. Lumican - derived peptides inhibit melanoma cell growth and migration. PLoS One 2013; 8:e76232. [PMID: 24098450 PMCID: PMC3788744 DOI: 10.1371/journal.pone.0076232] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/22/2013] [Indexed: 12/27/2022] Open
Abstract
Lumican, a small leucine-rich proteoglycan of the extracellular matrix, presents potent anti-tumor properties. Previous works from our group showed that lumican inhibited melanoma cell migration and tumor growth in vitro and in vivo. Melanoma cells adhered to lumican, resulting in a remodeling of their actin cytoskeleton and preventing their migration. In addition, we identified a sequence of 17 amino acids within the lumican core protein, named lumcorin, which was able to inhibit cell chemotaxis and reproduce anti-migratory effect of lumican in vitro. The aim of the present study was to characterize the anti-tumor mechanism of action of lumcorin. Lumcorin significantly decreased the growth in monolayer and in soft agar of two melanoma cell lines - mice B16F1 and human SK-MEL-28 cells - in comparison to controls. Addition of lumcorin to serum free medium significantly inhibited spontaneous motility of these two melanoma cell lines. To characterize the mechanisms involved in the inhibition of cell migration by lumcorin, the status of the phosphorylation/dephosphorylation of proteins was examined. Inhibition of focal adhesion kinase phosphorylation was observed in presence of lumcorin. Since cancer cells have been shown to migrate and to invade by mechanisms that involve matrix metalloproteinases (MMPs), the expression and activity of MMPs were analyzed. Lumcorin induced an accumulation of an intermediate form of MMP-14 (~59kDa), and inhibited MMP-14 activity. Additionally, we identified a short, 10 amino acids peptide within lumcorin sequence, which was able to reproduce its anti-tumor effect on melanoma cells. This peptide may have potential pharmacological applications.
Collapse
Affiliation(s)
- Katarzyna Pietraszek
- Laboratoire de Biochimie Médicale et de Biologie Moléculaire, CNRS FRE 3481, Université de Reims-Champagne-Ardenne, Reims, France
| | | | | | | | | | | |
Collapse
|
18
|
Maturation and emigration of single-positive thymocytes. Clin Dev Immunol 2013; 2013:282870. [PMID: 24187562 PMCID: PMC3804360 DOI: 10.1155/2013/282870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/01/2013] [Indexed: 01/01/2023]
Abstract
T lymphopoiesis in the thymus was thought to be completed once it reaches the single positive (SP)
stage, a stage when T cells are “fully mature” and waiting to be exported at random or follow a “first-in-first-out” manner. Recent evidence, however, has revealed that the newly generated SP thymocytes undergo a multistage maturation program in the thymic medulla. Such maturation is followed by a tightly regulated emigration process and a further postthymic maturation of recent thymic emigrants (RTEs). This review summarizes recent progress in the late stage T cell development. The regulation of this developmental process is discussed.
Collapse
|
19
|
Matrix metalloproteinase (MMP)-2 and MMP-9 expression in tumor infiltrating CD3 lymphocytes from women with endometrial cancer. Int J Gynecol Cancer 2013; 22:1303-9. [PMID: 22964525 DOI: 10.1097/igc.0b013e318269e27b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE In this study, we hypothesized that not only endothelial malignant cells but also lymphocytes infiltrating tumor epithelium, in patients with endometrial cancer, could be an important source of the gelatinases (matrix metalloproteinase [MMP]-2 and MMP-9) extensive production, which in turn, may facilitate tumor cells infiltration and progression due to the extracellular matrix degradation. MATERIALS AND METHODS First, we isolated lymphocytes from the endometrial carcinoma samples taken from 41 patients who were operated on and from healthy endometrial tissue taken of the same patients after histological verification. Then, we detected the level of CD3-positive cells in endometrial tissues by flow cytometry. Simultaneously, we studied the messenger RNA expression of MMP-2 and MMP-9 in the isolated cells from malignant and unchanged endometrial tissues. Using immunohistochemistry, we compared the protein expression of MMP-2, MMP-9, and CD3 in the studied samples. RESULTS We showed the enhanced abundance of CD3 lymphocytes both by flow cytometry and immunohistochemistry in the samples from malignant tissues. The expression of MMP-9 in the endometrial carcinoma was increased significantly at the protein level but not at the messenger RNA level. We could not observe any differences concerning MMP-2 expression in both methods of detection. CONCLUSIONS CD-3 lymphocytes significantly infiltrate endometrial cancer tissue, but they do not seem to be the source of enhanced metalloproteinases 2 and 9 expression in the tumor environment. Still, owing to the immunohistochemistry staining, we could show the significant increase of MMP-9 protein in the very close vicinity of tumor-infiltrating CD3 lymphocytes. Could it be the result of CD3 lymphocyte action, or is it just the imperfection of the detecting method we used? This remains unclear. Further studies explaining the role of tumor infiltrating lymphocytes in mediating the endometrial cancer milieu are needed.
Collapse
|
20
|
Golbert DCF, Linhares-Lacerda L, Almeida LG, Correa-de-Santana E, de Oliveira AR, Mundstein AS, Savino W, de Vasconcelos ATR. Laminin database: a tool to retrieve high-throughput and curated data for studies on laminins. Nucleic Acids Res 2010; 39:D320-3. [PMID: 21087995 PMCID: PMC3013663 DOI: 10.1093/nar/gkq1055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Laminin(LM)-database, hosted at http://www.lm.lncc.br, is the first database focusing a non-collagenous extracellular matrix protein family, the LMs. Part of the knowledge available in this website is automatically retrieved, whereas a significant amount of information is curated and annotated, thus placing LM-database beyond a simple repository of data. In its home page, an overview of the rationale for the database is seen and readers can access a tutorial to facilitate navigation in the website, which in turn is presented with tabs subdivided into LMs, receptors, extracellular binding and other related proteins. Each tab opens into a given LM or LM-related molecule, where the reader finds a series of further tabs for 'protein', 'gene structure', 'gene expression' and 'tissue distribution' and 'therapy'. Data are separated as a function of species, comprising Homo sapiens, Mus musculus and Rattus novergicus. Furthermore, there is specific tab displaying the LM nomenclatures. In another tab, a direct link to PubMed, which can be then consulted in a specific way, in terms of the biological functions of each molecule, knockout animals and genetic diseases, immune response and lymphomas/leukemias. LM-database will hopefully be a relevant tool for retrieving information concerning LMs in health and disease, particularly regarding the hemopoietic system.
Collapse
Affiliation(s)
- Daiane C F Golbert
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Ave. Getúlio Vargas 333, 25651-075 Petrópolis, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Guess CM, Quaranta V. Defining the role of laminin-332 in carcinoma. Matrix Biol 2009; 28:445-55. [PMID: 19686849 PMCID: PMC2875997 DOI: 10.1016/j.matbio.2009.07.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/10/2023]
Abstract
The deadly feature of cancer, metastasis, requires invasion of cells through basement membranes (BM), which normally act as barriers between tissue compartments. In the case of many epithelially-derived cancers (carcinomas), laminin-332 (Ln-332) is a key component of the BM barrier. This review provides a historical examination of Ln-332 from its discovery through identification of its functions in BM and possible role in carcinomas. Current understanding points to distinct roles for the three Ln-332 subunits (alpha3, beta3, gamma2) in cell adhesion, extracellular matrix stability, and cell signaling processes in cancer. Given the large number of studies linking Ln-332 gamma2 subunit with cancer prognosis, particular attention is given to the crucial role of this subunit in cancer invasion and to the unanswered questions in this area.
Collapse
Affiliation(s)
- Cherise M Guess
- Meharry Medical College, Department of Microbial Pathogenesis & Immune Response; Nashville, TN 37232-6840, USA.
| | | |
Collapse
|
22
|
Marrero-Diaz R, Bravo-Cordero JJ, Megías D, García MA, Bartolomé RA, Teixido J, Montoya MC. Polarized MT1-MMP-CD44 interaction and CD44 cleavage during cell retraction reveal an essential role for MT1-MMP in CD44-mediated invasion. ACTA ACUST UNITED AC 2009; 66:48-61. [PMID: 19023892 DOI: 10.1002/cm.20325] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The adhesion molecule CD44 and the membrane-type matrix metalloproteinase MT1-MMP act coordinately in tumor cells to promote cell invasion through a yet unclear mechanism. We are interested in studying the interplay between CD44 and MT1-MMP in carcinoma cells embedded in HA containing three-dimensional collagen I matrices (3D HA-Col I) by time-lapse confocal microscopy imaging. Here we report the in vivo interaction between CD44 and MT1-MMP, revealed by fluorescence resonance energy transfer (FRET) microscopy. MT1-MMP interacts with CD44 preferentially at the trailing edge of the invading tumor cells during rear retraction and on membrane fragments released during the invasion process. A fluorescent biosensor designed to monitor the proteolytic processing of CD44 by live cell imaging demonstrates that cleavage of the CD44 extracellular domain is enriched in the retracting rear ends of invasive tumor cells. Invasion assays showed that MT1-MMP mediates CD44-dependent tumor-cell invasion, whereas CD44 is not essential for MT1-MMP-mediated invasion of 3D HA-Col I matrices. Together, our results support a role for MT1-MMP in cell retraction during CD44-mediated cell invasion.
Collapse
Affiliation(s)
- Raquel Marrero-Diaz
- Confocal Microscopy and Cytometry Unit, Biotechnology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Mendes-da-Cruz DA, Lepelletier Y, Brignier AC, Smaniotto S, Renand A, Milpied P, Dardenne M, Hermine O, Savino W. Neuropilins, semaphorins, and their role in thymocyte development. Ann N Y Acad Sci 2009; 1153:20-8. [PMID: 19236324 DOI: 10.1111/j.1749-6632.2008.03980.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some molecules described in the nervous system are also expressed in cells involved in the control of the immune response, suggesting they have a role as common mechanisms between neuroendocrine and immune systems. In this review, we focus on the expression and role of neuropilins (NPs) and their soluble ligands class 3 semaphorins in thymus physiology, particularly migration of developing thymocytes. We also discuss the concept of multivectorial thymocyte migration, including semaphorins, as a new individual cell migration vector.
Collapse
|
24
|
Beck IM, Rückert R, Brandt K, Mueller MS, Sadowski T, Brauer R, Schirmacher P, Mentlein R, Sedlacek R. MMP19 is essential for T cell development and T cell-mediated cutaneous immune responses. PLoS One 2008; 3:e2343. [PMID: 18523579 PMCID: PMC2386969 DOI: 10.1371/journal.pone.0002343] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 04/23/2008] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase-19 (MMP19) affects cell proliferation, adhesion, and migration in vitro but its physiological role in vivo is poorly understood. To determine the function of MMP19, we generated mice deficient for MMP19 by disrupting the catalytic domain of mmp19 gene. Although MMP19-deficient mice do not show overt developmental and morphological abnormalities they display a distinct physiological phenotype. In a model of contact hypersensitivity (CHS) MMP19-deficient mice showed impaired T cell-mediated immune reaction that was characterized by limited influx of inflammatory cells, low proliferation of keratinocytes, and reduced number of activated CD8(+) T cells in draining lymph nodes. In the inflamed tissue, the low number of CD8(+) T cells in MMP19-deficient mice correlated with low amounts of proinflammatory cytokines, especially lymphotactin and interferon-inducible T cell alpha chemoattractant (I-TAC). Further analyses showed that T cell populations in the blood of immature, unsensitized mice were diminished and that this alteration originated from an altered maturation of thymocytes. In the thymus, thymocytes exhibited low proliferation rates and the number of CD4(+)CD8(+) double-positive cells was remarkably augmented. Based on the phenotype of MMP19-deficient mice we propose that MMP19 is an important factor in cutaneous immune responses and influences the development of T cells.
Collapse
Affiliation(s)
- Inken M. Beck
- Institute of Biotechnology, Prague, Czech Republic
- Institute of Molecular Genetics, Prague, Czech Republic
| | - René Rückert
- Research Center Borstel, Department of Immunology and Cell Biology, Borstel, Germany
| | - Katja Brandt
- Research Center Borstel, Department of Immunology and Cell Biology, Borstel, Germany
| | | | | | - Rena Brauer
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rolf Mentlein
- Department of Anatomy, University of Kiel, Kiel, Germany
| | - Radislav Sedlacek
- Institute of Molecular Genetics, Prague, Czech Republic
- Department of Biochemistry, University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
25
|
Gorfu G, Virtanen I, Hukkanen M, Lehto VP, Rousselle P, Kenne E, Lindbom L, Kramer R, Tryggvason K, Patarroyo M. Laminin isoforms of lymph nodes and predominant role of α5-laminin(s) in adhesion and migration of blood lymphocytes. J Leukoc Biol 2008; 84:701-12. [DOI: 10.1189/jlb.0108048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
26
|
Ocampo JSP, Brito JMD, Corrêa-de-Santana E, Borojevic R, Villa-Verde DMS, Savino W. Laminin-211 controls thymocyte—thymic epithelial cell interactions. Cell Immunol 2008; 254:1-9. [DOI: 10.1016/j.cellimm.2008.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
27
|
Samanna V, Ma T, Mak TW, Rogers M, Chellaiah MA. Actin polymerization modulates CD44 surface expression, MMP-9 activation, and osteoclast function. J Cell Physiol 2007; 213:710-20. [PMID: 17508356 DOI: 10.1002/jcp.21137] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD44 and MMP-9 are implicated in cell migration. In the current study, we tested the hypothesis that actin polymerization is critical for CD44 surface expression and MMP-9 activity on the cell surface. To understand the underlying molecular mechanisms involved in CD44 surface expression and MMP-9 activity on the cell surface, osteoclasts were treated with bisphosphonate (BP) alendronate, cytochalasin D (Cyt D), and a broad-spectrum MMP inhibitor (GM6001). BP has been reported to block the mevalonate pathway, thereby preventing prenylation of small GTPase signaling required for actin cytoskeleton modulation. We show in this study that osteoclasts secrete CD44 and MMP-9 into the resorption bay during migration and bone resorption. Results indicate that actin polymerization is critical for CD44 surface expression and osteoclast function. In particular, the surface expression of CD44 and the membrane activity of MMP-9 are reduced in osteoclasts treated with alendronate and Cyt D despite the membrane levels of MMP-9 being unaffected. Although GM6001 blocked MMP-9 activity, osteoclast migration, and bone resorption, the surface levels of CD44 were unaffected. We suggest that the surface expression of CD44 requires actin polymerization. Disruption of podosome and actin ring structures by Cyt D and alendronate not only resulted in reduced localization of MMP-9 in these structures but also in osteoclast migration and bone resorption. These results suggest that inhibition of actin polymerization by alendronate and Cyt D is effective in blocking CD44/MMP-9 complex formation on the cell surface, secretion of active form of MMP-9, and osteoclast migration. CD44/MMP-9 complex formation may signify a unique motility-enhancing signal in osteoclast function.
Collapse
Affiliation(s)
- V Samanna
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
28
|
Paessens LC, García-Vallejo JJ, Fernandes RJ, van Kooyk Y. The glycosylation of thymic microenvironments. Immunol Lett 2007; 110:65-73. [PMID: 17467811 DOI: 10.1016/j.imlet.2007.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/15/2007] [Accepted: 03/18/2007] [Indexed: 01/29/2023]
Abstract
The thymus is the principal organ for development of T-cells. Thymocyte precursors from bone marrow-derived progenitor cells enter the thymus where they differentiate involving several differentiation stages into mature T-cells that can leave the thymus to the periphery. Migration of thymocytes through the thymus and their development are tightly controlled by the interaction of thymocytes with components of the thymic microenvironments. Several studies have demonstrated the pivotal importance of glycosylation in cell-cell interactions or interactions of cells with extracellular matrix components (ECM) in various physiologic processes in the body. The knowledge on glycosylation of thymic microenvironments is however limited although the presence of C-type lectin receptors such as DC-SIGN, mannose receptor and DEC-205, which are specifically recognizing distinct carbohydrate moieties emphasize the importance of glycosylation in the thymus. In order to outline the distribution of glycoconjugates in microenvironments of the human thymus we studied the glycosylation of the human thymic microarchitecture by using plant lectins in situ. Eleven plant lectin-biotin conjugates with distinct specificity were used and analyzed by fluorescence microscopy. Mannose glycoconjugates, specifically detected by the lectins GNA and NPA, were abundant in the cortex but not in the medulla. Dendritic cells present in the thymic cortex were specifically co-stained with the galactose-specific lectins DSA and PNA. Several lectins bound to the thymic vasculature. The alpha2-fucose-specific lectin UEA stained thymic blood vessels in the interlobular space and medulla and capillaries in the cortex. In addition to UEA, thymic blood vessels and capillaries also reacted with the lectins DSA, PNA and the alpha-GalNac-specific lectin HPA. In contrast, lymph vessels present in the interlobular space do not interact with UEA, DSA and PNA, but only with HPA, revealing a disparate glycosylation pattern of lymph and blood vessels that may be important to determine the direction of thymocytes entering or leaving the thymus. In conclusion, the restricted expression patterns of carbohydrates defined microenvironments in the human thymus highlight the importance of glycosylation in various steps of T-cell development.
Collapse
Affiliation(s)
- Lutz C Paessens
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
29
|
Yan HHN, Mruk DD, Lee WM, Cheng CY. Ectoplasmic specialization: a friend or a foe of spermatogenesis? Bioessays 2007; 29:36-48. [PMID: 17187371 PMCID: PMC2804921 DOI: 10.1002/bies.20513] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ectoplasmic specialization (ES) is a testis-specific, actin-based hybrid anchoring and tight junction. It is confined to the interface between Sertoli cells at the blood-testis barrier, known as the basal ES, as well as between Sertoli cells and developing spermatids designated the apical ES. The ES shares features of adherens junctions, tight junctions and focal contacts. By adopting the best features of each junction type, this hybrid nature of ES facilitates the extensive junction-restructuring events in the seminiferous epithelium during spermatogenesis. For instance, the alpha6beta1-integrin-laminin 333 complex, which is usually limited to the cell-matrix interface in other epithelia to facilitate cell movement, is a putative apical ES constituent. Furthermore, JAM-C and CAR, two tight junction integral membrane proteins, are also components of apical ES involving in spermatid orientation. We discuss herein the mechanisms that maintain the cross-talk between ES and blood-testis barrier to facilitate cell movement and orientation in the seminiferous epithelium.
Collapse
Affiliation(s)
- Helen H N Yan
- Center for Biomedical Research, Population Council, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
30
|
Haidl ID, Falk I, Nerz G, Eichmann K. Metalloproteinase-dependent control of thymocyte differentiation and proliferation. Scand J Immunol 2006; 64:280-6. [PMID: 16918697 DOI: 10.1111/j.1365-3083.2006.01820.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of T cells in the thymus is dependent on interactions between thymocytes and thymic stromal cells, on stimulation by growth factors, and on the binding to and migration along extracellular matrix (ECM) components. As metalloproteinases (MP) are involved in processes such as growth factor release and ECM modelling, we assessed the effect of MP inhibitors on T-cell development using fetal thymic organ culture systems. MP inhibitors significantly reduced the numbers of CD4/CD8 double-positive (DP) and mature single-positive thymocytes generated, correlated with a reduced number of cell cycles between the double-negative (DN)3 and DP stages. The progression of early thymocyte progenitors through the DN1-4 stages of development was also severely affected, including incomplete upregulation of CD25, decreased DN3 cell numbers, reduced rearrangement of the T-cell receptor (TCR)-beta locus and expression of intracellular TCR-beta by fewer DN3 cells. When purified DN1 cells were utilized as donor cells in reaggregate thymic organ cultures, essentially no DP thymocytes were produced in the presence of MP inhibitors. The results suggest that MP inhibitors affect the differentiation of developing thymocytes before, and reduce proliferation after, pre-TCR-mediated selection.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Gene Rearrangement
- Genes, T-Cell Receptor beta
- Metalloproteases/antagonists & inhibitors
- Metalloproteases/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/physiology
- Thymus Gland/cytology
- Thymus Gland/embryology
- Thymus Gland/physiology
Collapse
Affiliation(s)
- I D Haidl
- Max-Planck-Institute of Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | | | |
Collapse
|
31
|
Drumea-Mirancea M, Wessels JT, Müller CA, Essl M, Eble JA, Tolosa E, Koch M, Reinhardt DP, Sixt M, Sorokin L, Stierhof YD, Schwarz H, Klein G. Characterization of a conduit system containing laminin-5 in the human thymus: a potential transport system for small molecules. J Cell Sci 2006; 119:1396-405. [PMID: 16537647 DOI: 10.1242/jcs.02840] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
T cells develop in the thymus in a highly specialized cellular and extracellular microenvironment. The basement membrane molecule, laminin-5 (LN-5), is predominantly found in the medulla of the human thymic lobules. Using high-resolution light microscopy, we show here that LN-5 is localized in a bi-membranous conduit-like structure, together with other typical basement membrane components including collagen type IV, nidogen and perlecan. Other interstitial matrix components, such as fibrillin-1 or -2, tenascin-C or fibrillar collagen types, were also associated with these structures. Three-dimensional (3D) confocal microscopy suggested a tubular structure, whereas immunoelectron and transmission electron microscopy showed that the core of these tubes contained fibrillar collagens enwrapped by the LN-5-containing membrane. These medullary conduits are surrounded by thymic epithelial cells, which in vitro were found to bind LN-5, but also fibrillin and tenascin-C. Dendritic cells were also detected in close vicinity to the conduits. Both of these stromal cell types express major histocompatibility complex (MHC) class II molecules capable of antigen presentation. The conduits are connected to blood vessels but, with an average diameter of 2 mum, they are too small to transport cells. However, evidence is provided that smaller molecules such as a 10 kDa dextran, but not large molecules (>500 kDa), can be transported in the conduits. These results clearly demonstrate that a conduit system, which is also known from secondary lymphatic organs such as lymph nodes and spleen, is present in the medulla of the human thymus, and that it might serve to transport small blood-borne molecules or chemokines to defined locations within the medulla.
Collapse
Affiliation(s)
- Mihaela Drumea-Mirancea
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University of Tübingen, 72072 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Leukocyte trafficking between the blood and the tissues is pivotal for normal immune responses. Cell-adhesion molecules (such as selectins and leukocyte integrins) and chemoattractants (such as chemokines) have well-established roles in supporting leukocyte exit from the blood. Emerging data now show that, for both leukocytes and endothelial cells, enzymatic reactions that are catalysed by cell-surface-expressed enzymes with catalytic domains outside the plasma membrane (known as ectoenzymes) also make crucial contributions to this process. Ectoenzymes can function physically as adhesion receptors and can regulate the recruitment of cells through their catalytic activities. Here, we provide new insights into how ectoenzymes--including nucleotidases, cyclases, ADP-ribosyltransferases, peptidases, proteases and oxidases--guide leukocyte traffic.
Collapse
Affiliation(s)
- Marko Salmi
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520 Turku, Finland.
| | | |
Collapse
|
33
|
Vainionpää N, Kikkawa Y, Lounatmaa K, Miner JH, Rousselle P, Virtanen I. Laminin-10 and Lutheran blood group glycoproteins in adhesion of human endothelial cells. Am J Physiol Cell Physiol 2005; 290:C764-75. [PMID: 16236823 DOI: 10.1152/ajpcell.00285.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Laminin alpha5-chain, a constituent of laminins-10 and -11, is expressed in endothelial basement membranes. In this study we evaluated the roles of alpha5 laminins and Lutheran blood group glycoproteins (Lu), recently identified receptors of the laminin alpha5-chain, in the adhesion of human dermal microvascular and pulmonary artery endothelial cells. Field emission scanning electron microscopy and immunohistochemistry showed that the endothelial cells spread on laminin-10 and formed fibronectin-positive fibrillar adhesion structures. Immunoprecipitation results suggested that the cells produced fibronectin, which they could use as adhesion substratum, during the adhesion process. When the protein synthesis during the adhesion was inhibited with cycloheximide, the formation of fibrillar adhesions on laminin-10 was abolished, suggesting that laminin-10 does not stimulate the formation of any adhesion structures. Northern and Western blot analyses showed that the cells expressed M(r) 78,000 and 85,000 isoforms of Lu. Quantitative cell adhesion assays showed that in the endothelial cell adhesion to laminin-10, Lu acted in concert with integrins beta(1) and alpha(v)beta(3), whereas in the adhesion to laminin-10/11, Lu and integrin beta(1) were involved. In the cells adhering to the alpha5 laminins, Lu and the integrins showed uniform cell surface distribution. These findings indicate that alpha5 laminins stimulate endothelial cell adhesion but not the formation of fibrillar or focal adhesions. Lu mediates the adhesion of human endothelial cells to alpha5 laminins in collaboration with integrins beta(1) and alpha(v)beta(3).
Collapse
Affiliation(s)
- Noora Vainionpää
- Institute of Biomedicine/Anatomy, PO Box 63, Haartmaninkatu 8, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
34
|
Suenaga N, Mori H, Itoh Y, Seiki M. CD44 binding through the hemopexin-like domain is critical for its shedding by membrane-type 1 matrix metalloproteinase. Oncogene 2004; 24:859-68. [PMID: 15558018 DOI: 10.1038/sj.onc.1208258] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a potent modulator of pericellular environment through its proteolytic activity and promotes migration, invasion, and proliferation of tumor cells. During cell migration, MT1-MMP binds to CD44H, a major hyaluronan receptor, through the hemopexin-like (HPX) domain and localizes at the migration front. MT1-MMP is also responsible for shedding CD44H, which supports CD44H-mediated cell migration. In this study, we asked whether the binding of MT1-MMP to CD44H is a prerequisite step for the successive shedding. Deletion of the HPX domain deprived MT1-MMP of its shedding activity. Furthermore, disruption of the CD44H/MT1-MMP complex by overexpressing the HPX fragments resulted in inhibition of the shedding. Thus, the CD44H in the complex appears to be the direct substrate of MT1-MMP for shedding. Interestingly, other members of the MT-MMP family showed varied extents of CD44H shedding. Domain swapping between MT1-MMP and other MT-MMPs revealed that the ability of the HPX domains to bind CD44H is conserved among them. However, the shedding activity was different depending on the catalytic domains. The conserved binding ability of the HPX domains suggests that CD44H may act as a core molecule assembling multiple MT-MMPs on the cell surface.
Collapse
Affiliation(s)
- Naoko Suenaga
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|