1
|
Lentiviral Vectors as a Vaccine Platform against Infectious Diseases. Pharmaceutics 2023; 15:pharmaceutics15030846. [PMID: 36986707 PMCID: PMC10053212 DOI: 10.3390/pharmaceutics15030846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Lentiviral vectors are among the most effective viral vectors for vaccination. In clear contrast to the reference adenoviral vectors, lentiviral vectors have a high potential for transducing dendritic cells in vivo. Within these cells, which are the most efficient at activating naive T cells, lentiviral vectors induce endogenous expression of transgenic antigens that directly access antigen presentation pathways without the need for external antigen capture or cross-presentation. Lentiviral vectors induce strong, robust, and long-lasting humoral, CD8+ T-cell immunity and effective protection against several infectious diseases. There is no pre-existing immunity to lentiviral vectors in the human population and the very low pro-inflammatory properties of these vectors pave the way for their use in mucosal vaccination. In this review, we have mainly summarized the immunological aspects of lentiviral vectors, their recent optimization to induce CD4+ T cells, and our recent data on lentiviral vector-based vaccination in preclinical models, including prophylaxis against flaviviruses, SARS-CoV-2, and Mycobacterium tuberculosis.
Collapse
|
2
|
Kulicke CA, De Zan E, Hein Z, Gonzalez-Lopez C, Ghanwat S, Veerapen N, Besra GS, Klenerman P, Christianson JC, Springer S, Nijman SM, Cerundolo V, Salio M. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J Biol Chem 2022; 298:101542. [PMID: 34968463 PMCID: PMC8808182 DOI: 10.1016/j.jbc.2021.101542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included β2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.
Collapse
Affiliation(s)
- Corinna A Kulicke
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Erica De Zan
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Claudia Gonzalez-Lopez
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Swapnil Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian M Nijman
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Abstract
INTRODUCTION Lentiviral vectors have emerged as powerful vectors for vaccination, due to their high efficiency to transduce dendritic cells and to induce long-lasting humoral immunity, CD8+ T cells, and effective protection in numerous preclinical animal models of infection and oncology. AREAS COVERED Here, we reviewed the literature, highlighting the relevance of lentiviral vectors in vaccinology. We recapitulated both their virological and immunological aspects of lentiviral vectors. We compared lentiviral vectors to the gold standard viral vaccine vectors, i.e. adenoviral vectors, and updated the latest results in lentiviral vector-based vaccination in preclinical models. EXPERT OPINION Lentiviral vectors are non-replicative, negligibly inflammatory, and not targets of preexisting immunity in human populations. These are major characteristics to consider in vaccine development. The potential of lentiviral vectors to transduce non-dividing cells, including dendritic cells, is determinant in their strong immunogenicity. Notably, lentiviral vectors can be engineered to target antigen expression to specific host cells. The very weak inflammatory properties of these vectors allow their use in mucosal vaccination, with particular interest in infectious diseases that affect the lungs or brain, including COVID-19. Recent results in various preclinical models have reinforced the interest of these vectors in prophylaxis against infectious diseases and in onco-immunotherapy.
Collapse
Affiliation(s)
- Min-Wen Ku
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Pierre Charneau
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| |
Collapse
|
4
|
Prota G, Gileadi U, Rei M, Lechuga-Vieco AV, Chen JL, Galiani S, Bedard M, Lau VWC, Fanchi LF, Artibani M, Hu Z, Gordon S, Rehwinkel J, Enríquez JA, Ahmed AA, Schumacher TN, Cerundolo V. Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells. Cancer Immunol Res 2020; 8:685-697. [PMID: 32205315 DOI: 10.1158/2326-6066.cir-19-0467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/05/2019] [Accepted: 03/12/2020] [Indexed: 11/16/2022]
Abstract
Epitopes derived from mutated cancer proteins elicit strong antitumor T-cell responses that correlate with clinical efficacy in a proportion of patients. However, it remains unclear whether the subcellular localization of mutated proteins influences the efficiency of T-cell priming. To address this question, we compared the immunogenicity of NY-ESO-1 and OVA localized either in the cytosol or in mitochondria. We showed that tumors expressing mitochondrial-localized NY-ESO-1 and OVA proteins elicit significantdly higher frequencies of antigen-specific CD8+ T cells in vivo. We also demonstrated that this stronger immune response is dependent on the mitochondrial location of the antigenic proteins, which contributes to their higher steady-state amount, compared with cytosolic localized proteins. Consistent with these findings, we showed that injection of mitochondria purified from B16 melanoma cells can protect mice from a challenge with B16 cells, but not with irrelevant tumors. Finally, we extended these findings to cancer patients by demonstrating the presence of T-cell responses specific for mutated mitochondrial-localized proteins. These findings highlight the utility of prioritizing epitopes derived from mitochondrial-localized mutated proteins as targets for cancer vaccination strategies.
Collapse
Affiliation(s)
- Gennaro Prota
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Margarida Rei
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Victoria Lechuga-Vieco
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ji-Li Chen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa Bedard
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vivian Wing Chong Lau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Lorenzo F Fanchi
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Chang Gung University, Graduate Institute of Biomedical Sciences, College of Medicine, Taoyuan City, Taiwan
| | - Jan Rehwinkel
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jose A Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Khanna M, Manocha N, Himanshi, Joshi G, Saxena L, Saini S. Role of retroviral vector-based interventions in combating virus infections. Future Virol 2019. [DOI: 10.2217/fvl-2018-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deployment of viruses as vaccine-vectors has witnessed recent developments owing to a better understanding of viral genomes and mechanism of interaction with the immune system. Vaccine delivery by viral vectors offers various advantages over traditional approaches. Viral vector vaccines are one of the best candidates for activating the cellular arm of the immune system, coupled with the induction of significant humoral responses. Hence, there is a broad scope for the development of effective vaccines against many diseases using viruses as vectors. Further studies are required before an ideal vaccine-vector is developed and licensed for use in humans. In this article, we have outlined the use of retroviral vectors in developing vaccines against various viral diseases.
Collapse
Affiliation(s)
- Madhu Khanna
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Nilanshu Manocha
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Himanshi
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Garima Joshi
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Latika Saxena
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Sanjesh Saini
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| |
Collapse
|
6
|
Neek M, Tucker JA, Kim TI, Molino NM, Nelson EL, Wang SW. Co-delivery of human cancer-testis antigens with adjuvant in protein nanoparticles induces higher cell-mediated immune responses. Biomaterials 2017; 156:194-203. [PMID: 29202325 DOI: 10.1016/j.biomaterials.2017.11.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/07/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022]
Abstract
Nanoparticles have attracted considerable interest as cancer vaccine delivery vehicles for inducing sufficient CD8+ T cell-mediated immune responses to overcome the low immunogenicity of the tumor microenvironment. Our studies described here are the first to examine the effects of clinically-tested human cancer-testis (CT) peptide epitopes within a synthetic nanoparticle. Specifically, we focused on two significant clinical CT targets, the HLA-A2 restricted epitopes of NY-ESO-1 and MAGE-A3, using a viral-mimetic packaging strategy. Our data shows that simultaneous delivery of a NY-ESO-1 epitope (SLLMWITQV) and CpG using the E2 subunit assembly of pyruvate dehydrogenase (E2 nanoparticle), resulted in a 25-fold increase in specific IFN-γ secretion in HLA-A2 transgenic mice. This translated to a 15-fold increase in lytic activity toward target cancer cells expressing the antigen. Immunization with a MAGE-A3 epitope (FLWGPRALV) delivered with CpG in E2 nanoparticles yielded an increase in specific IFN-γ secretion and cell lysis by 6-fold and 9-fold, respectively. Furthermore, combined delivery of NY-ESO-1 and MAGE-A3 antigens in E2 nanoparticles yielded an additive effect that increased lytic activity towards cells bearing NY-ESO-1+ and MAGE-A3+. Our investigations demonstrate that formulation of CT antigens within a nanoparticle can significantly enhance antigen-specific cell-mediated responses, and the combination of the two antigens in a vaccine can preserve the increased individual responses that are observed for each antigen alone.
Collapse
Affiliation(s)
- Medea Neek
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Jo Anne Tucker
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Tae Il Kim
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Nicholas M Molino
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Edward L Nelson
- Department of Medicine, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Szu-Wen Wang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
7
|
Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X, Merchan JR. Molecular Effects of Stromal-Selective Targeting by uPAR-Retargeted Oncolytic Virus in Breast Cancer. Mol Cancer Res 2017; 15:1410-1420. [PMID: 28679779 DOI: 10.1158/1541-7786.mcr-17-0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022]
Abstract
The tumor microenvironment (TME) is a relevant target for novel biological therapies. MV-m-uPA and MV-h-uPA are fully retargeted, species-specific, oncolytic measles viruses (MV) directed against murine or human urokinase receptor (PLAUR/uPAR), expressed in tumor and stromal cells. The effects of stromal-selective targeting by uPAR-retargeted MVs were investigated. In vitro infection, virus-induced GFP expression, and cytotoxicity by MV-h-uPA and MV-m-uPA were demonstrated in human and murine cancer cells and cancer-associated fibroblasts in a species-specific manner. In a murine fibroblast/human breast cancer 3D coculture model, selective fibroblast targeting by MV-m-uPA inhibited breast cancer cell growth. Systemic administration of murine-specific MV-m-uPA in mice bearing human MDA-MB-231 xenografts was associated with a significant delay in tumor progression and improved survival compared with controls. Experiments comparing tumor (MV-h-uPA) versus stromal (MV-m-uPA) versus combined virus targeting showed that tumor and stromal targeting was associated with improved tumor control over the other groups. Correlative studies confirmed in vivo viral targeting of tumor stroma by MV-m-uPA, increased apoptosis, and virus-induced differential regulation of murine stromal genes associated with inflammatory, angiogenesis, and survival pathways, as well as indirect regulation of human cancer pathways, indicating viral-induced modulation of tumor-stroma interactions. These data demonstrate the feasibility of stromal-selective targeting by an oncolytic MV, virus-induced modulation of tumor-stroma pathways, and subsequent tumor growth delay. These findings further validate the critical role of stromal uPAR in cancer progression and the potential of oncolytic viruses as antistromal agents.Implications: The current report demonstrates for the first time the biological, in vitro, and in vivo antitumor and molecular effects of stromal selective targeting by an oncolytic virus. Mol Cancer Res; 15(10); 1410-20. ©2017 AACR.
Collapse
Affiliation(s)
- Yuqi Jing
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Valery Chavez
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Nicolas Acquavella
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Doraya El-Ashry
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Alexey Pronin
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Xi Chen
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jaime R Merchan
- Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
8
|
Lentiviral Protein Transfer Vectors Are an Efficient Vaccine Platform and Induce a Strong Antigen-Specific Cytotoxic T Cell Response. J Virol 2015; 89:9044-60. [PMID: 26085166 DOI: 10.1128/jvi.00844-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/14/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8(+) T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8(+) T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8(+) T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of cytotoxic immune responses. Since cytotoxic CD8(+) T lymphocytes are a mainstay of antitumoral immune responses, PTVs could be engineered for the transfer of specific tumor antigens provoking tailored antitumoral immunity. Therefore, PTVs can be used as safe and efficient alternatives to gene transfer vectors or live attenuated replicating vector platforms, avoiding genotoxicity or general toxicity in highly immunocompromised patients, respectively. Thereby, the potential for easy envelope exchange allows the circumventing of neutralizing antibodies, e.g., during repeated boost immunizations.
Collapse
|
9
|
Yamanouchi K, Ohta T, Liu Z, Oji Y, Sugiyama H, Shridhar V, Matsumura S, Takahashi T, Takahashi K, Kurachi H. The Wilms' Tumor Gene WT1 - 17AA/- KTS Splice Variant Increases Tumorigenic Activity Through Up-Regulation of Vascular Endothelial Growth Factor in an In Vivo Ovarian Cancer Model. Transl Oncol 2014; 7:580-9. [PMID: 25389453 PMCID: PMC4225694 DOI: 10.1016/j.tranon.2014.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 11/17/2022] Open
Abstract
The Wilms' tumor 1 gene WT1 encodes a zinc transcription factor involved in a variety of cancer-related processes. In this study, we sought to investigate the effects of WT1 splice variants on tumorigenic activity and survival in an in vivo ovarian cancer model. To this end, we established stable ovarian cancer cell lines transduced with lentiviral constructs containing each of the four WT1 splice variants (− 17AA/− KTS, + 17AA/− KTS, − 17AA/+ KTS, and + 17AA/+ KTS). In mice inoculated intraperitoneally with SKOV3ip1 cells expressing WT1 − 17AA/− KTS, disseminated tumor weights and production of ascites were significantly increased compared with those in mice inoculated with cells expressing the control vector. The overall survival in mice inoulated with WT1 − 17AA/− KTS-expressing cells was significantly shorter than that in mice inoculated with control cells (P = .0115). Immunoblot analysis revealed that WT1 − 17AA/− KTS significantly increased the expression of vascular endothelial growth factor (VEGF) compared with the control. Greater numbers of CD31-immunopositive vessels were observed in tumors from mice injected with cells expressing WT1 − 17AA/− KTS than in tumors from control mice. Finally, WT1 − 17AA/− KTS significantly increased tumor microvessel density compared with that in the control (P < .05). Treatment with anti-VEGF antibody (bevacizumab) inhibited tumor growth, dissemination, and ascites production in mice injected with cells expressing WT1 − 17AA/− KTS. The overexpression of WT1 − 17AA/− KTS induced a more aggressive phenotype in ovarian cancer cells through VEGF up-regulation in an in vivo ovarian cancer model. Our findings indicated that WT1 − 17AA/− KTS enhanced tumorigenic activity and could decreased patient survival through up-regulation of VEGF expression in ovarian cancers.
Collapse
Affiliation(s)
- Keiko Yamanouchi
- Department of Obstetrics and Gynecology, Yamagata University, School of Medicine, Yamagata, Japan
| | - Tsuyoshi Ohta
- Department of Obstetrics and Gynecology, Yamagata University, School of Medicine, Yamagata, Japan
- Address all correspondence to: Dr. Tsuyoshi Ohta, Department of Obstetrics and Gynecology, Yamagata University, School of Medicine, 2-2-2 Iidanishi, Yamagata 990–9585, Japan.
| | - Zhiyang Liu
- Department of Obstetrics and Gynecology, Yamagata University, School of Medicine, Yamagata, Japan
| | - Yusuke Oji
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Viji Shridhar
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Sohei Matsumura
- Department of Obstetrics and Gynecology, Yamagata University, School of Medicine, Yamagata, Japan
| | - Toshifumi Takahashi
- Department of Obstetrics and Gynecology, Yamagata University, School of Medicine, Yamagata, Japan
| | - Kazuhiro Takahashi
- Department of Obstetrics and Gynecology, Yamagata University, School of Medicine, Yamagata, Japan
| | - Hirohisa Kurachi
- Department of Obstetrics and Gynecology, Yamagata University, School of Medicine, Yamagata, Japan
| |
Collapse
|
10
|
Tareen SU, Nicolai CJ, Campbell DJ, Flynn PA, Slough MM, Vin CD, Kelley-Clarke B, Odegard JM, Robbins SH. A Rev-Independent gag/pol Eliminates Detectable psi-gag Recombination in Lentiviral Vectors. Biores Open Access 2013; 2:421-30. [PMID: 24380052 PMCID: PMC3869434 DOI: 10.1089/biores.2013.0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lentiviral vectors (LVs) are being developed for clinical use in humans for applications including gene therapy and immunotherapy. A safety concern for use of LVs in humans is the generation of replication-competent lentivirus (RCL), which may arise due to recombination between the split genomes of third-generation LVs. Although no RCL has been detected to date, design optimizations that minimize recombination events between split genome vectors would provide an added safety benefit that may further reduce the risk of RCL formation. Here we describe design elements introduced to the gag/pol plasmid with the intention of eliminating psi-gag recombination between the vector genome and gag/pol. These design changes, consisting of codon optimization of the gag/pol sequence and the deletion of the Rev-responsive element, abrogate the requirement for Rev in expression of Gag protein, thus the resulting gag/pol construct being Rev independent (RI gag/pol). We show that generating vector using the RI gag/pol construct has no effect on particle production or transduction titers. The RI and wild-type gag/pol vectors function equivalently as antigen-specific immunotherapy, potently inducing antigen-specific CD8 T cells that protect against challenge with vaccinia virus. Most importantly, the designed RI gag/pol eliminated detectable psi-gag recombination. Interestingly, we detected recombination between the vector genome and gag/pol from regions without sequence homology. Our findings imply that although unpredictable recombination events may still occur, the RI gag/pol design is sufficient to prevent psi-gag recombination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Scott H Robbins
- Immune Design Corporation , Seattle, Washington. ; TRIA Bioscience Corporation , Seattle, Washington
| |
Collapse
|
11
|
Xiao H, Peng Y, Hong Y, Huang L, Guo ZS, Bartlett DL, Fu N, Munn DH, Mellor A, He Y. Local administration of TLR ligands rescues the function of tumor-infiltrating CD8 T cells and enhances the antitumor effect of lentivector immunization. THE JOURNAL OF IMMUNOLOGY 2013; 190:5866-73. [PMID: 23610140 DOI: 10.4049/jimmunol.1203470] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancer vaccines, to date, have shown limited effect to control the growth of established tumors due largely to effector failure of the antitumor immune responses. Tumor lesion is characterized as chronic indolent inflammation in which the effector function of tumor-infiltrating lymphocytes (TILs) is severely impaired. In this study, we investigated whether the effector function of CD8 TILs could be rescued by converting the chronic inflammation milieu to acute inflammation within tumors. We found that injection of TLR3/9 ligands (polyI:C/CpG) into a tumor during the effector phase of lentivector (lv) immunization effectively rescued the function of lv-activated CD8 TILs and decreased the percentage of T regulatory within the tumor, resulting in a marked improvement in the antitumor efficacy of lv immunization. Mechanistically, rescue of the effector function of CD8 TILs by TLR3/9 ligands is most likely dependent on production, within a tumor, of type-1 IFN that can mature and activate tumor-infiltrating dendritic cells. The effector function of CD8 TILs could not be rescued in mice lacking intact type I IFN signaling. These findings have important implications for tumor immunotherapy, suggesting that type I IFN-mediated activation of tumor-infiltrating dendritic cells within a tumor will most likely restore/enhance the effector function of CD8 TILs and thus improve the antitumor efficacy of current cancer vaccines.
Collapse
Affiliation(s)
- Haiyan Xiao
- Immunology/Immunotherapy Program, Georgia Regents University Cancer Center, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Campos-Perez J, Rice J, Escors D, Collins M, Paterson A, Savelyeva N, Stevenson FK. DNA fusion vaccine designs to induce tumor-lytic CD8+ T-cell attack via the immunodominant cysteine-containing epitope of NY-ESO 1. Int J Cancer 2013; 133:1400-7. [PMID: 23494538 DOI: 10.1002/ijc.28156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/01/2013] [Indexed: 12/31/2022]
Abstract
The cancer/testis antigen NY-ESO-1 contains an immunodominant HLA-A2-binding peptide (SLLMWITQC), designated S9C, an attractive target for vaccination against several human cancers. As cysteine contains a reactive -SH, the oxidation status of exogenous synthetic peptide is uncertain. We have designed tolerance-breaking DNA fusion vaccines incorporating a domain of tetanus toxin fused to tumor-derived peptide sequences (p.DOM-peptide), placed at the C-terminus for optimal immunogenicity. In a "humanized" HLA-A2 preclinical model, p.DOM-S9C primed S9C-specific CD8+ T cells more effectively than adjuvanted synthetic peptide. A DNA vaccine encoding the full NY-ESO-1 sequence alone induced only weak S9C-specific responses, amplified by addition of DOM sequence. The analog peptide (SLLMWITQL) also primed peptide-specific CD8+ T cells, again increased by DNA delivery. Importantly, T cells induced by S9C-encoding DNA vaccines killed tumor cells expressing endogenous NY-ESO-1. Only a fraction of T cells induced by the S9L-encoding DNA vaccines was able to recognize S9C and kill tumor cells. These data indicate that DNA vaccines mimic posttranslational modifications of -SH-containing peptides expressed by tumor cells. Instability of synthetic peptides and the potential dangers of analog peptides contrast with the ability of DNA vaccines to induce high levels of tumor-lytic peptide-specific CD8+ T cells. These findings encourage clinical exploration of this vaccine strategy to target NY-ESO-1.
Collapse
Affiliation(s)
- Juan Campos-Perez
- Genetic Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Dufait I, Liechtenstein T, Lanna A, Bricogne C, Laranga R, Padella A, Breckpot K, Escors D. Retroviral and lentiviral vectors for the induction of immunological tolerance. SCIENTIFICA 2012; 2012:694137. [PMID: 23526794 PMCID: PMC3605697 DOI: 10.6064/2012/694137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Retroviral and lentiviral vectors have proven to be particularly efficient systems to deliver genes of interest into target cells, either in vivo or in cell cultures. They have been used for some time for gene therapy and the development of gene vaccines. Recently retroviral and lentiviral vectors have been used to generate tolerogenic dendritic cells, key professional antigen presenting cells that regulate immune responses. Thus, three main approaches have been undertaken to induce immunological tolerance; delivery of potent immunosuppressive cytokines and other molecules, modification of intracellular signalling pathways in dendritic cells, and de-targeting transgene expression from dendritic cells using microRNA technology. In this review we briefly describe retroviral and lentiviral vector biology, and their application to induce immunological tolerance.
Collapse
Affiliation(s)
- Inès Dufait
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
- Department of Physiology and Immunology, Medical School, Free University of Brussels, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Therese Liechtenstein
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Alessio Lanna
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Christopher Bricogne
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Roberta Laranga
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Antonella Padella
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Karine Breckpot
- Department of Physiology and Immunology, Medical School, Free University of Brussels, Laarbeeklaan 103, 1090 Jette, Belgium
| | - David Escors
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
- *David Escors:
| |
Collapse
|
14
|
Abstract
More than two decades have passed since genetically modified HIV was used for gene delivery. Through continuous improvements these early marker gene-carrying HIVs have evolved into safer and more effective lentiviral vectors. Lentiviral vectors offer several attractive properties as gene-delivery vehicles, including: (i) sustained gene delivery through stable vector integration into host genome; (ii) the capability of infecting both dividing and non-dividing cells; (iii) broad tissue tropisms, including important gene- and cell-therapy-target cell types; (iv) no expression of viral proteins after vector transduction; (v) the ability to deliver complex genetic elements, such as polycistronic or intron-containing sequences; (vi) potentially safer integration site profile; and (vii) a relatively easy system for vector manipulation and production. Accordingly, lentivector technologies now have widespread use in basic biology and translational studies for stable transgene overexpression, persistent gene silencing, immunization, in vivo imaging, generating transgenic animals, induction of pluripotent cells, stem cell modification and lineage tracking, or site-directed gene editing. Moreover, in the present high-throughput '-omics' era, the commercial availability of premade lentiviral vectors, which are engineered to express or silence genome-wide genes, accelerates the rapid expansion of this vector technology. In the present review, we assess the advances in lentiviral vector technology, including basic lentivirology, vector designs for improved efficiency and biosafety, protocols for vector production and infection, targeted gene delivery, advanced lentiviral applications and issues associated with the vector system.
Collapse
|
15
|
Alpizar YA, Karwacz K, Arce F, Yglesias Rivera A, Fernández LE, Collins MK, Sánchez Ramírez B. Lentiviral vector followed by protein immunisation breaks tolerance against the self-antigen Her1 and results in lung cancer immunotherapy. J Gene Med 2012; 14:151-7. [PMID: 22262303 DOI: 10.1002/jgm.2606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer mortality, and so the aim of the present study was to develop a therapeutic vaccine protocol. METHODS We constructed a lentiviral vector (LV) expressing the extracellular domain (ECD) of murine Her1, an antigen associated with poor prognosis in lung cancer. RESULTS A single LV injection, followed by two Her1 protein boosts, was effective in reducing the metastatic burden of Lewis lung carcinoma in mice. The Her1 LV immunisation generated CD8+ T cells that recognised Her1 ECD presented by dendritic cells, and that also homed to Her1-expressing tumours. Protein boosting further increased the CD8+ T cell response and generated anti-Her1 antibodies; in the antibody response, Her1 LV priming increased Th1-dependent immunoglobulin G2c production. CONCLUSIONS The ability of this vaccine protocol to break both T cell and B cell tolerance to a self-antigen likely explains its effectiveness.
Collapse
|
16
|
Escors D, Kochan G, Stephenson H, Breckpot K. Cell and Tissue Gene Targeting with Lentiviral Vectors. SPRINGERBRIEFS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012. [PMCID: PMC7122860 DOI: 10.1007/978-3-0348-0402-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the main advantages of using lentivectors is their capacity to transduce a wide range of cell types, independently from the cell cycle stage. However, transgene expression in certain cell types is sometimes not desirable, either because of toxicity, cell transformation, or induction of transgene-specific immune responses. In other cases, specific targeting of only cancerous cells within a tumor is sought after for the delivery of suicide genes. Consequently, great effort has been invested in developing strategies to control transgene delivery/expression in a cell/tissue-specific manner. These strategies can broadly be divided in three; particle pseudotyping (surface targeting), which entails modification of the envelope glycoprotein (ENV); transcriptional targeting, which utilizes cell-specific promoters and/or inducible promoters; and posttranscriptional targeting, recently applied in lentivectors by introducing sequence targets for cell-specific microRNAs. In this chapter we describe each of these strategies providing some illustrative examples.
Collapse
Affiliation(s)
- David Escors
- University College London, Rayne Building, 5 University Street, London, WC1E 6JF UK
| | - Grazyna Kochan
- Oxford Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Headington, Oxford, OX3 7DQ UK
| | - Holly Stephenson
- Institute of Child Health, University College London, Great Ormond Street, London, WC1N 3JH UK
| | | |
Collapse
|
17
|
Arce F, Breckpot K, Collins M, Escors D. Targeting lentiviral vectors for cancer immunotherapy. CURRENT CANCER THERAPY REVIEWS 2011; 7:248-260. [PMID: 22983382 DOI: 10.2174/157339411797642605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Delivery of tumour-associated antigens (TAA) in a way that induces effective, specific immunity is a challenge in anti-cancer vaccine design. Circumventing tumour-induced tolerogenic mechanisms in vivo is also critical for effective immunotherapy. Effective immune responses are induced by professional antigen presenting cells, in particular dendritic cells (DC). This requires presentation of the antigen to both CD4(+) and CD8(+) T cells in the context of strong co-stimulatory signals. Lentiviral vectors have been tested as vehicles, for both ex vivo and in vivo delivery of TAA and/or activation signals to DC, and have been demonstrated to induce potent T cell mediated immune responses that can control tumour growth. This review will focus on the use of lentiviral vectors for in vivo gene delivery to DC, introducing strategies to target DC, either targeting cell entry or gene expression to improve safety of the lentiviral vaccine or targeting dendritic cell activation pathways to enhance performance of the lentiviral vaccine. In conclusion, this review highlights the potential of lentiviral vectors as a generally applicable 'off-the-shelf' anti-cancer immunotherapeutic.
Collapse
Affiliation(s)
- Frederick Arce
- Division of Infection and Immunity, Medical School of the Royal Free and University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | | | | | | |
Collapse
|
18
|
Hu B, Tai A, Wang P. Immunization delivered by lentiviral vectors for cancer and infectious diseases. Immunol Rev 2011; 239:45-61. [PMID: 21198664 DOI: 10.1111/j.1600-065x.2010.00967.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The increasing level of understanding of the lentivirus biology has been instrumental in shaping the design strategy of creating therapeutic lentiviral delivery vectors. As a result, lentiviral vectors have become one of the most powerful gene transfer vehicles. They are widely used for therapeutic purposes as well as in studies of basic biology, due to their unique characteristics. Lentiviral vectors have been successfully employed to mediate durable and efficient antigen expression and presentation in dendritic cells both in vitro and in vivo, leading to the activation of cellular immunity and humoral responses. This capability makes the lentiviral vector an ideal choice for immunizations that target a wide range of cancers and infectious diseases. Further advances into optimizing the vector system and understanding the relationship between the immune system and diseases pathogenesis will only augment the potential benefits and utility of lentiviral vaccines for human health.
Collapse
Affiliation(s)
- Biliang Hu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
19
|
Xiao H, Peng Y, Hong Y, Liu Y, Guo ZS, Bartlett DL, Fu N, He Y. Lentivector prime and vaccinia virus vector boost generate high-quality CD8 memory T cells and prevent autochthonous mouse melanoma. THE JOURNAL OF IMMUNOLOGY 2011; 187:1788-96. [PMID: 21746967 DOI: 10.4049/jimmunol.1101138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most cancer vaccines, to date, fail to control established tumors. However, their application in preventing tumors is another question that is understudied. In the current study, we investigated the CD8 memory T cell responses of lentivector (lv) immunization and its potential to prevent melanoma using both transplantable B16 tumor and autochthonous melanoma models. We found that lv-expressing xenogenic human gp100 could induce potent CD8 responses that cross-react with mouse gp100. Importantly, the lv-primed CD8 response consisted of a high number of memory precursors and could be further increased by recombinant vaccinia virus vector (vv) boost, resulting in enhanced CD8 memory response. These long-lasting CD8 memory T cells played a critical role in immune surveillance and could rapidly respond and expand after sensing B16 tumor cells to prevent tumor establishment. Although CD8 response plays a dominant role after lv immunization, both CD4 and CD8 T cells are responsible for the immune prevention. In addition, we surprisingly found that CD4 help was not only critical for generating primary CD8 responses, but also important for secondary CD8 responses of vv boost. CD4 depletion prior to lv prime or prior to vv boost substantially reduced the magnitude of secondary CD8 effector and memory responses, and severely compromised the effect of cancer immune prevention. More importantly, the CD8 memory response from lv-vv prime-boost immunization could effectively prevent autochthonous melanoma in tumor-prone transgenic mice, providing a strong evidence that lv-vv prime-boost strategy is an effective approach for cancer immune prevention.
Collapse
Affiliation(s)
- Haiyan Xiao
- Immunology/Immunotherapy Program, Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Virus-receptor mediated transduction of dendritic cells by lentiviruses enveloped with glycoproteins derived from Semliki Forest virus. PLoS One 2011; 6:e21491. [PMID: 21738680 PMCID: PMC3124512 DOI: 10.1371/journal.pone.0021491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/30/2011] [Indexed: 11/14/2022] Open
Abstract
Lentiviruses have recently attracted considerable interest for their potential as a genetic modification tool for dendritic cells (DCs). In this study, we explore the ability of lentiviruses enveloped with alphaviral envelope glycoproteins derived from Semliki Forest virus (SFV) to mediate transduction of DCs. We found that SFV glycoprotein (SFV-G)-pseudotyped lentiviruses use C-type lectins (DC-SIGN and L-SIGN) as attachment factors for transduction of DCs. Importantly, SFV-G pseudotypes appear to have enhanced transduction towards C-type lectin-expressing cells when produced under conditions limiting glycosylation to simple high-mannose, N-linked glycans. These results, in addition to the natural DC tropism of SFV-G, offer evidence to support the use of SFV-G-bearing lentiviruses to genetically modify DCs for the study of DC biology and DC-based immunotherapy.
Collapse
|
21
|
Lopes L, Dewannieux M, Takeuchi Y, Collins MK. A lentiviral vector pseudotype suitable for vaccine development. J Gene Med 2011; 13:181-7. [DOI: 10.1002/jgm.1553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Ageichik A, Buchholz CJ, Collins MK. Lentiviral vectors targeted to MHC II are effective in immunization. Hum Gene Ther 2011; 22:1249-54. [PMID: 21247346 DOI: 10.1089/hum.2010.184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract vectors (LVs) that are targeted to APC using a chimeric measles virus (MV) hemagglutinin (H). The MV H protein is mutated to prevent binding to MV receptors and incorporates a single-chain antibody that recognizes murine major histocompatibility complex class II (MHC II). This targeted LV is highly efficient in transduction of freshly isolated mouse B cells and dendritic cells. MHC II-positive cells in spleen are transduced after intravenous injection, and a robust immune response to an antigen transgene is generated.
Collapse
Affiliation(s)
- Alexander Ageichik
- MRC Medical Molecular Virology Centre, Division of Infection and Immunity, University College London, United Kingdom
| | | | | |
Collapse
|
23
|
Dendritic cell-directed lentivector vaccine induces antigen-specific immune responses against murine melanoma. Cancer Gene Ther 2011; 18:370-80. [PMID: 21372855 DOI: 10.1038/cgt.2011.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lentivectors are potential vaccine delivery vehicles because they can efficiently transduce a variety of non-dividing cells, including antigen-presenting cells, and do not cause expression of extra viral proteins. To improve safety while retaining efficiency, a dendritic cell (DC)-specific lentivector was constructed by pseudotyping the vector with an engineered viral glycoprotein derived from Sindbis virus. We assessed the level of anti-tumor immunity conferred by this engineered lentivector encoding the melanoma antigen gp100 in a mouse model. Footpad injection of the engineered lentivectors results in the best antigen-specific immune response as compared with subcutaneous and intraperitoneal injections. A single prime vaccination of the engineered lentivectors can elicit a high frequency (up to 10%) of gp100-specific CD8(+) T cells in peripheral blood 3 weeks after the vaccination and this response will be maintained at around 5% for up to 8 weeks. We found that these engineered lentivectors elicited relatively low levels of anti-vector neutralizing antibody responses. Importantly, direct injection of this engineered lentivector inhibited the growth of aggressive B16 murine melanoma. These data suggest that DC-specific lentivectors can be a novel and alternative vaccine carrier with the potential to deliver effective anti-tumor immunity for cancer immunotherapy.
Collapse
|
24
|
Tai A, Froelich S, Joo KI, Wang P. Production of lentiviral vectors with enhanced efficiency to target dendritic cells by attenuating mannosidase activity of mammalian cells. J Biol Eng 2011; 5:1. [PMID: 21276219 PMCID: PMC3039557 DOI: 10.1186/1754-1611-5-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/28/2011] [Indexed: 01/07/2023] Open
Abstract
Background Dendritic cells (DCs) are antigen-presenting immune cells that interact with T cells and have been widely studied for vaccine applications. To achieve this, DCs can be manipulated by lentiviral vectors (LVs) to express antigens to stimulate the desired antigen-specific T cell response, which gives this approach great potential to fight diseases such as cancers, HIV, and autoimmune diseases. Previously we showed that LVs enveloped with an engineered Sindbis virus glycoprotein (SVGmu) could target DCs through a specific interaction with DC-SIGN, a surface molecule predominantly expressed by DCs. We hypothesized that SVGmu interacts with DC-SIGN in a mannose-dependent manner, and that an increase in high-mannose structures on the glycoprotein surface could result in higher targeting efficiencies of LVs towards DCs. It is known that 1-deoxymannojirimycin (DMJ) can inhibit mannosidase, which is an enzyme that removes high-mannose structures during the glycosylation process. Thus, we investigated the possibility of generating LVs with enhanced capability to modify DCs by supplying DMJ during vector production. Results Through western blot analysis and binding tests, we were able to infer that binding of SVGmu to DC-SIGN is directly related to amount of high-mannose structures on SVGmu. We also found that the titer for the LV (FUGW/SVGmu) produced with DMJ against 293T.DCSIGN, a human cell line expressing the human DC-SIGN atnibody, was over four times higher than that of vector produced without DMJ. In addition, transduction of a human DC cell line, MUTZ-3, yielded a higher transduction efficiency for the LV produced with DMJ. Conclusion We conclude that LVs produced under conditions with inhibited mannosidase activity can effectively modify cells displaying the DC-specific marker DC-SIGN. This study offers evidence to support the utilization of DMJ in producing LVs that are enhanced carriers for the development of DC-directed vaccines.
Collapse
Affiliation(s)
- April Tai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
25
|
Zhou Q, Xiao H, Liu Y, Peng Y, Hong Y, Yagita H, Chandler P, Munn DH, Mellor A, Fu N, He Y. Blockade of programmed death-1 pathway rescues the effector function of tumor-infiltrating T cells and enhances the antitumor efficacy of lentivector immunization. THE JOURNAL OF IMMUNOLOGY 2010; 185:5082-92. [PMID: 20926790 DOI: 10.4049/jimmunol.1001821] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite intensive effort, the antitumor efficacy of tumor vaccines remains limited in treating established tumors regardless of the potent systemic tumor-specific immune response and the increases of tumor infiltration of T effector cells. In the current study, we demonstrated that although lentivector (lv) immunization markedly increased Ag-dependent tumor infiltration of CD8 and CD4 T cells and generated Ag-specific antitumor effect, it simultaneously increased the absolute number of myeloid-derived suppressor cells and regulatory T cells in the tumor lesions. In addition, lv immunization induced expression of programmed death-ligand 1 in the tumor lesions. Furthermore, the tumor-infiltrating CD8 T cells expressed high levels of programmed death-1 and were partially dysfunctional, producing lower amounts of effector cytokines and possessing a reduced cytotoxicity. Together, these immune-suppression mechanisms in the tumor microenvironment pose a major obstacle to effective tumor immunotherapy and may explain the limited antitumor efficacy of lv immunization. The loss of effector function in the tumor microenvironment is reversible, and the effector function of CD8 T cells in the tumor could be partially rescued by blocking programmed death-1 and programmed death-ligand 1 pathway in vitro and in vivo, resulting in enhanced antitumor efficacy of lv immunization. These data suggest that immunization alone may exacerbate immune suppression in the tumor lesions and that methods to improve the tumor microenvironment and to rescue the effector functions of tumor-infiltrating T cells should be incorporated into immunization strategies to achieve enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Qifeng Zhou
- Immunology/Immunotherapy Program, Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang H, Zhang L, Kung SKP. Emerging applications of lentiviral vectors in dendritic cell-based immunotherapy. Immunotherapy 2010; 2:685-95. [DOI: 10.2217/imt.10.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells are professional antigen-presenting cells that initiate, regulate and shape the induction of specific immune responses. The ability to use dendritic cells in the induction of antigen-specific tolerance, antigen-specific immunity or specific differentiation of T-helper subsets holds great promise in dendritic cell-based immunotherapy of various diseases such as cancer, viral infections, allergy, as well as autoimmunity. Replication-incompetent HIV-1-based lentiviral vector is now emerging as a promising delivery system to genetically modify dendritic cells through antigen recognition, costimulatory molecules and/or polarization signals for the manipulation of antigen-specific immunity in vivo. This article discusses some of the recent advances in the uses of lentiviral vectors in dendritic cell-based immunotherapy.
Collapse
Affiliation(s)
- Huiming Wang
- University of Manitoba, Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Liang Zhang
- University of Manitoba, Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada
| | | |
Collapse
|
27
|
Rusakiewicz S, Dosset M, Mollier K, Souque P, Charneau P, Wain-Hobson S, Langlade-Demoyen P, Adotévi O. Immunogenicity of a recombinant lentiviral vector carrying human telomerase tumor antigen in HLA-B*0702 transgenic mice. Vaccine 2010; 28:6374-81. [PMID: 20654669 DOI: 10.1016/j.vaccine.2010.06.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/08/2010] [Accepted: 06/22/2010] [Indexed: 12/14/2022]
Abstract
Over expression of telomerase represents a hallmark of cancer cells and the induction of T cell immunity against this universal tumor antigen have gained promising interest for anticancer immunotherapy. In this study we evaluated a recombinant lentiviral vector expressing the human telomerase reverse transcriptase (lv-hTERT) vaccination in the humanized HLA-B*0702 transgenic (HLA-B7 Tg) mice. A single lv-hTERT vector immunization induces potent and broad HLA-B7-restricted CTL responses against hTERT. Unlike conventional hTERT peptide or DNA immunization, the lv-hTERT vector triggers high and sustained IFN-gamma producing CD8(+) T cell responses in HLA-B7 Tg mice. The avidity and in vivo cytotoxicity of CD8(+) T cells were stronger in lv-hTERT vector-immunized mice than in hTERT peptide or DNA vaccinated groups. The study also showed that the use of prime-boost vaccination drastically improved the magnitude and strength of lentivector-primed CD8(+) T cells. Our data indicated that lentiviral delivery of hTERT is suitable for enhancing cellular immunity against hTERT and offers a promising alternative for telomerase-based cancer vaccine.
Collapse
|
28
|
Breckpot K, Escors D. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. Endocr Metab Immune Disord Drug Targets 2010; 9:328-43. [PMID: 19857199 DOI: 10.2174/187153009789839156] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/13/2009] [Indexed: 12/17/2022]
Abstract
Tumour immunotherapy has become a treatment modality for cancer, harnessing the immune system to recognize and eradicate tumour cells specifically. It is based on the expression of tumour associated antigens (TAA) by the tumour cells and aims at the induction of TAA-specific effector T cell responses, whilst overruling various mechanisms that can hamper the anti-tumour immune response, e.g. regulatory T cells (Treg). (Re-) activation of effector T cells requires the completion of a carefully orchestrated series of specific steps. Particularly important is the provision of TAA presentation and strong stimulatory signals, delivered by co-stimulatory surface molecules and cytokines. These can only be delivered by professional antigen-presenting cells, in particular dendritic cells (DC). Therefore, DC need to be loaded with TAA and appropriately activated. It is not surprising that an extensive part of DC research has focused on the delivery of both TAA and activation signals to DC, developing a one step approach to obtain potent stimulatory DC. The simultaneous delivery of TAA and activation signals is therefore the topic of this review, emphasizing the role of DC in mediating T cell activation and how we can manipulate DC for the pill-pose of enhancing tumour immunotherapy. As we gain a better understanding of the molecular and cellular mechanisms that mediate induction of TAA-specific T cells, rational approaches for the activation of T cell responses can be developed for the treatment of cancer.
Collapse
Affiliation(s)
- Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103 building E, 1090 Jette, Belgium.
| | | |
Collapse
|
29
|
Pincha M, Sundarasetty BS, Stripecke R. Lentiviral vectors for immunization: an inflammatory field. Expert Rev Vaccines 2010; 9:309-21. [PMID: 20218859 DOI: 10.1586/erv.10.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lentiviruses are retroviruses that are able to transduce both dividing and nondividing cells. Dendritic cells are key players in the innate and adaptive immune responses, and are natural targets for lentiviruses. Lentiviral vectors (LVs) have recently reached the clinical gene therapy arena, prompting their use as clinical vaccines. In recent years, LVs have emerged as a robust and practical experimental platform for gene delivery and rational genetic reprogramming of dendritic cells. Here, we present the status quo of the LV system for protective or therapeutic vaccine development. This vector system has been extensively evaluated for ex vivo and in vivo (immuno)gene delivery. Improvements of the LV design in order to further grant a higher biosafety profile for vaccine development are presented.
Collapse
Affiliation(s)
- Mudita Pincha
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
30
|
Oral vaccination with attenuated Salmonella enterica strains encoding T-cell epitopes from tumor antigen NY-ESO-1 induces specific cytotoxic T-lymphocyte responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:889-94. [PMID: 20375244 DOI: 10.1128/cvi.00044-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial fimbriae can accept foreign peptides and display them on the cell surface. A highly efficient gene replacement method was used to generate peptide vaccines based on Salmonella enterica serovar Typhimurium SL3261. The T-cell epitopes (NY-ESO-1 p157-165 and p157-167) from NY-ESO-1, which is a promising target antigen in patients for the specific immune recognition of cancer, were incorporated into the gene encoding AgfA (the major subunit protein of thin aggregative fimbriae of Salmonella) by replacing an equal length of the DNA segment. To improve cytotoxic T-lymphocyte recognition, both termini of the peptide were flanked by double alanine (AA) residues. Immunofluorescence microscopy with AgfA-specific antiserum verified the expression of chimeric AgfA, which was also proved by a Congo red binding assay. Oral immunizations of HLA-A*0201 transgenic mice with recombinant SL3261 strains encoding NY-ESO-1 p157-165 or p157-167 induced NY-ESO-1 p157-165-specific CD8(+) T cells, detected by an HLA-A*0201 pentamer, and induced a T-cell response detected by an enzyme-linked immunospot assay. The Salmonella fimbrial display system was efficient at the induction of an antitumor cellular immune response in vivo, providing a new strategy for the development of efficient cancer vaccinations.
Collapse
|
31
|
Furmanov K, Elnekave M, Lehmann D, Clausen BE, Kotton DN, Hovav AH. The role of skin-derived dendritic cells in CD8+ T cell priming following immunization with lentivectors. THE JOURNAL OF IMMUNOLOGY 2010; 184:4889-97. [PMID: 20357252 DOI: 10.4049/jimmunol.0903062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although skin dendritic cells (DCs) have been shown to directly present Ag to CD8(+) T cells after intradermal immunization with lentivectors, the contribution of the different skin DC subsets to this process remains unclear. Using langerin-diphtheria toxin receptor transgenic mice we demonstrated that ablation of langerhans cells and langerin-expressing positive dermal DCs (Ln(+)dDCs) did not interfere with the generation of CD8(+) T cells by lentiviral vectors. Consistent with these findings, the absence of langerhans cells and Ln(+)dDCs did not hamper the presentation level of lentiviral-derived Ag by skin DCs in vitro. We further demonstrated that only dDCs and Ln(+)dDCs were capable of presenting Ag, however, the number of dDCs migrating to the draining lymph nodes was 6-fold higher than that of Ln(+)dDCs. To study how the duration of DC migration influences CD8(+) T cell responses, we analyzed the kinetics of Ag expression at the injection site and manipulated DC migration by excising the injected skin at various times after immunization. A low level of Ag expression was seen 1 wk after the immunization; peaked during week 2, and was considerably cleared by week 3 via a perforin-dependent fas-independent mechanism. Removing the injection site 3 or 5 d, but not 10 d, after the immunization, resulted in a reduced CD8(+) T cell response. These findings suggest that dDCs are the main APCs active after intradermal lentiviral-mediated immunization, and migration of dDCs in the initial 10-d period postimmunization is required for optimal CD8(+) T cell induction.
Collapse
Affiliation(s)
- Karina Furmanov
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
32
|
HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J Virol 2010; 84:5627-36. [PMID: 20237085 DOI: 10.1128/jvi.00014-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lentiviral vectors are promising vaccine vector candidates that have been tested extensively in preclinical models of infectious disease and cancer immunotherapy. They are also used in gene therapy clinical trials both for the ex vivo modification of cells and for direct in vivo injection. It is therefore critical to understand the mechanism(s) by which such vectors might stimulate the immune system. We evaluated the effect of lentiviral vectors on myeloid dendritic cells (DC), the main target of lentiviral transduction following subcutaneous immunization. The activation of DC cultures was independent of the lentiviral pseudotype but dependent on cell entry and reverse transcription. In vivo-transduced DC also displayed a mature phenotype, produced tumor necrosis factor alpha (TNF-alpha), and stimulated naive CD8(+) T cells. The lentiviral activation of DC was Toll-like receptor (TLR) dependent, as it was inhibited in TRIF/MyD88 knockout (TRIF/MyD88(-/-)) DC. TLR3(-/-) or TLR7(-/-) DC were less activated, and reverse transcription was important for the activation of TLR7(-/-) DC. Moreover, lentivirally transduced DC lacking TLR3 or TLR7 had an impaired capacity to induce antigen-specific CD8(+) T-cell responses. In conclusion, we demonstrated TLR-dependent DC activation by lentiviral vectors, explaining their immunogenicity. These data allow the rational development of strategies to manipulate the host's immune response to the transgene.
Collapse
|
33
|
Targeting human telomerase reverse transcriptase with recombinant lentivector is highly effective to stimulate antitumor CD8 T-cell immunity in vivo. Blood 2010; 115:3025-32. [PMID: 20130242 DOI: 10.1182/blood-2009-11-253641] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The success of active immunotherapy is based on the vaccine's ability to overcome immune tolerance through recalibrating the immune system so that it is able to recognize tumor antigens as foreign rather than self. In this study, we used a lentiviral vector system to target human telomerase reverse transcriptase (lv-hTERT), a widely expressed tumor antigen. Immunization of HLA-A*0201 transgenic HHD mice with recombinant lv-hTERT vector induces potent and diversified cytotoxic T lymphocyte responses that recognize in vitro murine tumor cells, which overexpress telomerase. Compared with peptide-based vaccinations, the lv-hTERT vector triggers better and more sustained CD8(+) T-cell response against self/TERT epitope in vivo. The study found that the additional use of a heterologous boosted vaccination drastically improves self/TERT-specific CD8 responses in lv-hTERT primed mice. Both primary and long-lasting self/TERT-specific CD8(+) T-cell responses induced with Iv-hTERT vector required the presence of CD4 T cells in vivo. This lv-hTERT-based active immunotherapy efficiently inhibits the growth of telomerase expressing tumors (B16/HLA-A2.1 murine melanoma) in HHD mice. These data show that targeting hTERT with lentivector is highly effective in stimulating a broad range of CD8 T-cell immunity that can be exploited for cancer immunotherapy.
Collapse
|
34
|
|
35
|
Hu B, Yang H, Dai B, Tai A, Wang P. Nonintegrating lentiviral vectors can effectively deliver ovalbumin antigen for induction of antitumor immunity. Hum Gene Ther 2010; 20:1652-64. [PMID: 19663564 DOI: 10.1089/hum.2009.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that nonintegrating lentiviral vectors (NILVs) are efficient in maintaining transgene expression in vitro and in vivo. Gene delivery by NILVs can significantly reduce nonspecific vector integration, which has been shown to cause malignant transformation in patients receiving gene therapy for X-linked severe combined immunodeficiency. Strong and sustained immune responses were observed after a single immunization with NILVs carrying viral antigens. However, there is no report to date that evaluates the efficacy of NILVs in inducing antigen-specific antitumor immunity. Using a well-characterized tumor model, we tested in vivo immunization with a self-inactivating lentiviral vector harboring a defective integrase. A high frequency of ovalbumin peptide (OVAp1)-specific CD8(+) T cells and a substantial antibody response were detected in naive mice immunized with an NILV encoding an OVA transgene. Furthermore, this immunization method completely protected the mice against the growth of E.G7 tumor cells expressing the OVA antigen. Thus, this study provides evidence that immunization using NILVs can be a safe and promising approach for exploring cancer immunotherapy.
Collapse
Affiliation(s)
- Biliang Hu
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
36
|
Jirmo AC, Koya RC, Sundarasetty BS, Pincha M, Yu GY, Lai M, Bakshi R, Schlaphoff V, Grabowski J, Behrens G, Wedemeyer H, Stripecke R. Monocytes transduced with lentiviral vectors expressing hepatitis C virus non-structural proteins and differentiated into dendritic cells stimulate multi-antigenic CD8(+) T cell responses. Vaccine 2010; 28:922-33. [PMID: 19931383 DOI: 10.1016/j.vaccine.2009.10.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/01/2009] [Accepted: 10/30/2009] [Indexed: 01/17/2023]
Abstract
Halting the spread of hepatitis C virus (HCV) and also eradicating HCV in subjects with chronic infection are major goals for global health. To this end, several years of research on HCV vaccine development have led to the conclusion that multi-antigenic and multi-functional vaccine types are necessary for effectiveness against HCV infection. In this study, we evaluated lentiviral vectors (LV) expressing clusters of HCV structural (LV-HCV-S) and non-structural (LV-HCV-NS) genes for future vaccine development. Batches of high titer LV were used to transduce differentiated dendritic cells (DC) and monocytes. We report successful delivery of HCV gene clusters, particularly into monocytes, leading to >80% LV-HCV-NS and >70% LV-HCV-S and transduced cells, respectively. Intracellular expression of HCV proteins in monocyte-derived DC resulted in immunophenotypic changes, such as downregulation of CD83 and CD86. Monocytes expressing NS proteins and differentiated into DC stimulated allogeneic and autologous CD8(+) and CD4(+) T cells in vitro and resulted in antigen-specific CD8(+) T cell responses against NS3, NS4a and NS5b. Hence, lentiviral-mediated expression of the multi-antigenic HCV-NS cluster in monocytes subsequently differentiated into DC is a novel potential anti-HCV vaccine modality.
Collapse
Affiliation(s)
- Adan C Jirmo
- Lymphatic Cell Therapy Laboratory, Clinic of Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
HIV-1 Gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proc Natl Acad Sci U S A 2009; 106:20382-7. [PMID: 19918062 DOI: 10.1073/pnas.0911742106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lentivectors (LVs) have attracted considerable interest for their potential as a vaccine delivery vehicle. In this study, we evaluate in mice a dendritic cell (DC)-directed LV system encoding the Gag protein of human immunodeficiency virus (HIV) (LV-Gag) as a potential vaccine for inducing an anti-HIV immune response. The DC-directed specificity is achieved through pseudotyping the vector with an engineered Sindbis virus glycoprotein capable of selectively binding to the DC-SIGN protein. A single immunization by this vector induces a durable HIV Gag-specific immune response. We investigated the antigen-specific immunity and T-cell memory generated by a prime/boost vaccine regimen delivered by either successive LV-Gag injections or a DNA prime/LV-Gag boost protocol. We found that both prime/boost regimens significantly enhance cellular and humoral immune responses. Importantly, a heterologous DNA prime/LV-Gag boost regimen results in superior Gag-specific T-cell responses as compared with a DNA prime/adenovector boost immunization. It induces not only a higher magnitude response, as measured by Gag-specific tetramer analysis and intracellular IFN-gamma staining, but also a better quality of response evidenced by a wider mix of cytokines produced by the Gag-specific CD8(+) and CD4(+) T cells. A boosting immunization with LV-Gag also generates T cells reactive to a broader range of Gag-derived epitopes. These results demonstrate that this DC-directed LV immunization is a potent modality for eliciting anti-HIV immune responses.
Collapse
|
38
|
Activation of transgene-specific T cells following lentivirus-mediated gene delivery to mouse lung. Mol Ther 2009; 18:143-50. [PMID: 19724265 PMCID: PMC2839217 DOI: 10.1038/mt.2009.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Integrating lentiviral vectors based on the human immunodeficiency virus type-1 (HIV-1) can transduce quiescent cells, which in lung account for almost 95% of the epithelial cell population. Pseudotyping lentiviral vectors with the envelope glycoprotein from the Ebola Zaire virus, the lymphocytic choriomeningitis virus (LCMV), the Mokola virus, and the vesicular stomatitis virus (VSV-G) resulted in transduction of mouse alveolar epithelium, but gene expression in the lung of C57BL/6 and BALB/c mice waned within 90 days of vector injection. Intratracheal delivery of the four pseudotyped lentiviral vectors resulted in transgene-specific T-cell activation in both mouse strains, albeit lower than that achieved by intramuscular injection of the vectors. We performed an adoptive transfer of luciferase-specific T cells, isolated from spleen or lung of donor mice injected with VSV-G-pseudotyped lentivirus vector expressing luciferase into the muscle or lung, respectively, into recipient recombination-activating gene (RAG)–deficient mice transduced in lung with adenovirus expressing firefly luciferase (ffluc2). Gene expression declined within 7 days of adoptive transfer approaching background levels by day 36. Taken together, our results suggest that the loss of transduced cells in lung is due to VSV-G.HIV vector–mediated activation of transgene-specific T cells rather than as result of normal turnover of airway cells.
Collapse
|
39
|
Gennari F, Lopes L, Verhoeyen E, Marasco W, Collins MK. Single-chain antibodies that target lentiviral vectors to MHC class II on antigen-presenting cells. Hum Gene Ther 2009; 20:554-62. [PMID: 19260768 DOI: 10.1089/hum.2008.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lentiviral vectors are promising vaccines because they can transduce and express antigens in dendritic cells in vivo, leading to potent immunization. To improve the safety and efficacy of lentivector vaccination, we sought to target vector transduction to antigen-presenting cells by modifying the viral envelope. To do this we screened a nonimmunized human single-chain antibody phage display library for phage that bound mouse bone marrow-derived dendritic cells (BMDCs) and isolated three single-chain antibodies (scFvs) that bound to more than 20% of cells in the BMDC culture. The three scFvs also bound to dendritic cells, macrophages, monocytes, and B cells from mouse spleen, but not to neutrophils, eosinophils, or T cells. Immunoblotting demonstrated that two unique scFvs, C2 and C7, recognized MHC class II. We constructed chimeric envelope proteins, by fusing these two scFvs to the amino terminus of the amphotropic murine leukemia virus envelope (MLV-A). These chimeric envelopes were expressed on the surface of lentiviral vector particles and enhanced infection (5- to 10-fold) of BMDC cultures, compared with lentiviral vectors with unmodified MLV-A envelope. Similarly, the chimeric envelopes enhanced (10- to 20-fold) the infection of primary lymph node class II-positive cells. One of the envelopes, C2, gave increased interferon-gamma production from splenocytes of vaccinated mice compared with MLV-A, achieving a level similar to that obtained with vesicular stomatitis virus glycoprotein G, when used to deliver an ovalbumin model antigen gene. These results demonstrate that surface-targeting lentiviral vector transduction of antigen-presenting cells gives efficient and potentially safer immunization.
Collapse
Affiliation(s)
- Francesca Gennari
- Infection and Immunity, University College London , London W1T4JF, UK
| | | | | | | | | |
Collapse
|
40
|
Lévy F, Colombetti S. Promises and Limitations of Murine Models in the Development of Anticancer T-Cell Vaccines. Int Rev Immunol 2009; 25:269-95. [PMID: 17169777 DOI: 10.1080/08830180600992407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Murine models have been instrumental in defining the basic mechanisms of antitumor immunity. Most of these mechanisms have since been shown to operate in humans as well. Based on these similarities, active vaccination strategies aimed at eliciting antitumor T-cell responses have been elaborated and successfully implemented in various mouse models. However, the results of human antitumor vaccination trials have been rather disappointing thus far. This review summarizes the different experimental approaches used in mice to induce antitumor T-cell responses and identifies some critical parameters that should be considered when evaluating results from murine models.
Collapse
Affiliation(s)
- Frédéric Lévy
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland.
| | | |
Collapse
|
41
|
Lentiviral vectors transduce proliferating dendritic cell precursors leading to persistent antigen presentation and immunization. Mol Ther 2009; 17:1643-50. [PMID: 19584812 DOI: 10.1038/mt.2009.149] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lentiviral vectors (LVs) are tools for in vivo gene delivery, to correct genetic defects or to deliver antigens for vaccination. It was reported that systemic injection of LVs in mice transduced cells in liver and spleen. Here we describe the reasons for, and consequences of, persistent gene expression in spleen. After 5 days of intravenous injection, a green fluorescence protein (GFP)-expressing LV was detected in lymphocytes, macrophages and all subsets of dendritic cells (DCs) in spleen. In the case of macrophages and DCs, the percentage of transduced cells increased between 5 and 30 days after injection. We used bromodeoxyuridine (BrdU) incorporation to show that the macrophages were largely nondividing, whereas the transduced DCs arose from dividing precursor cells and could be detected in spleen 2 months after injection. Expression of ovalbumin (OVA) in the LV reduced the number of transduced DCs in spleen after 30 days. However, the remaining transduced cells stimulated proliferation and activation of OVA-specific CD8(+) T cells transferred 2 months after LV injection. The mice also maintained cytolytic activity against OVA-pulsed targets. These results show that LVs transduce DC precursors, which maintain transduced DCs in spleen for at least 2 months, leading to prolonged antigen presentation and effective T-cell memory.
Collapse
|
42
|
Liu Y, Peng Y, Mi M, Guevara-Patino J, Munn DH, Fu N, He Y. Lentivector immunization stimulates potent CD8 T cell responses against melanoma self-antigen tyrosinase-related protein 1 and generates antitumor immunity in mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:5960-9. [PMID: 19414747 DOI: 10.4049/jimmunol.0900008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant lentivector immunization has been demonstrated to induce potent CD8 T cell responses in vivo. In this study, we investigated whether lentivector delivering a self/tumor Ag, tyrosinase related protein 1 (TRP1), could stimulate effective antitumor T cell responses. We found that immunization with lentivector expressing mutated TRP1 Ag elicited potent CD8 T cell responses against multiple TRP1 epitopes. Importantly, the activated CD8 T cells effectively recognize wild-type TRP1 epitopes. At peak times, as many as 10% of CD8 T cells were effector cells against TRP1 Ag. These cells killed wild-type TRP1 peptide-pulsed target cells in vivo and produced IFN-gamma after ex vivo stimulation. The CD8 T cell responses were long-lasting (3-4 wk). Immunized mice were protected from B16 tumor cell challenge. In a therapeutic setting, lentivector immunization induced potent CD8 T cell responses in tumor bearing mice. The number of infiltrating T cells and the ratio of CD8/CD4 were dramatically increased in the tumors of immunized mice. The tumor-infiltrating CD8 T cells were functional and produced IFN-gamma. The potent CD8 T cell responses stimulated by lentivector immunization eliminated small 3-day s.c. B16 tumors and strongly inhibited the growth of more established 5-day tumors. These studies demonstrate that genetic immunization with lentivector expressing mutated self/tumor Ag can generate potent CD8 T cell immune responses and antitumor immunity that prevent and inhibit B16 tumor growth, suggesting that lentivector immunization has the potential for tumor immunotherapy and immune prevention.
Collapse
Affiliation(s)
- Yanjun Liu
- Immunology/Immunotherapy Program, Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy. J Virol 2009; 83:3094-103. [PMID: 19176629 DOI: 10.1128/jvi.02519-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviral vectors (lentivectors) are effective for stimulation of cell-mediated and humoral immunity following subcutaneous and intramuscular immunization. However, lentivector genome integration carries a risk of perturbation of host gene expression. Here, we demonstrate that lentivectors with multiple mutations that prevent integration are also effective immunogens. First, systemic CD8(+) T-cell responses to the model antigen ovalbumin were detected following subcutaneous injection of nonintegrating lentivectors. Transfer of transgenic OT1 T cells demonstrated that antigen presentation persisted for at least 30 days. Furthermore, an enhanced CD8(+) T-cell response, peaking at 7 days, was stimulated by coexpression of p38 MAP kinase or an NF-kappaB activator from the same vector. Second, we demonstrated systemic CD8(+) T-cell and antibody responses to the secreted hepatitis B virus (HBV) surface antigen expressed from a nonintegrating lentivector injected intramuscularly. The induction, specificity, and kinetics of antibody production closely mimicked those of natural HBV infection. In this case, both the vector genome and the immune response were maintained for at least 2 months. Together, our data indicate that nonintegrating lentivectors can be employed to generate effective vaccines.
Collapse
|
44
|
Abstract
The thymus provides a specialized environment allowing the differentiation of T lymphocytes from bone marrow-derived progenitor cells. We and others have demonstrated that gene transfer into distinct thymocyte populations can be obtained, both in vivo and ex vivo, using lentiviral vectors. Here, we describe techniques for intrathymic lentiviral transduction in mice, using a surgical approach wherein the thoracic cavity is exposed as well as a significantly less invasive strategy wherein virions are directly injected through the skin. Moreover, thymocyte differentiation from murine and human progenitors is now feasible in vitro, under conditions wherein the Notch and IL-7 signaling pathways are activated. We describe methods allowing transduction of murine and human progenitors and their subsequent differentiation into more mature thymocytes. Conditions for lentiviral gene transfer into more differentiated human thymocyte subsets are also presented. Optimization of technologies for HIV-based gene transfer into murine and human thymocyte progenitors will advance strategies aimed at modulating T-cell differentiation and function in-vivo; approaches potentially targeting patients with genetic and acquired immunodeficiencies as well as immune-sensitive tumors. Furthermore, this technology will foster the progression of basic research aimed at elucidating molecular aspects of T-cell differentiation in mice and humans.
Collapse
|
45
|
Expression of vFLIP in a lentiviral vaccine vector activates NF-{kappa}B, matures dendritic cells, and increases CD8+ T-cell responses. J Virol 2008; 83:1555-62. [PMID: 19036811 PMCID: PMC2643792 DOI: 10.1128/jvi.00709-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviral vectors deliver antigens to dendritic cells (DCs) in vivo, but they do not trigger DC maturation. We therefore expressed a viral protein that constitutively activates NF-kappaB, vFLIP from Kaposi's sarcoma-associated herpesvirus (KSHV), in a lentivector to mature DCs. vFLIP activated NF-kappaB in mouse bone marrow-derived DCs in vitro and matured these DCs to a similar extent as lipopolysaccharide; costimulatory markers CD80, CD86, CD40, and ICAM-1 were upregulated and tumor necrosis factor alpha and interleukin-12 secreted. The vFLIP-expressing lentivector also matured DCs in vivo. When we coexpressed vFLIP in a lentivector with ovalbumin (Ova), we found an increased immune response to Ova; up to 10 times more Ova-specific CD8(+) T cells secreting gamma interferon were detected in the spleens of vFLIP_Ova-immunized mice than in the spleens of mice immunized with GFP_Ova. Furthermore, this increased CD8(+) T-cell response correlated with improved tumor-free survival in a tumor therapy model. A single immunization with vFLIP_Ova also reduced the parasite load when mice were challenged with OVA-Leishmania donovani. In conclusion, vFLIP from KSHV is a DC activator, maturing DCs in vitro and in vivo. This demonstrates that NF-kappaB activation is sufficient to induce many aspects of DC maturation and that expression of a constitutive NF-kappaB activator can improve the efficacy of a vaccine vector.
Collapse
|
46
|
|
47
|
Wingard JB, Anderson B, Weissman D. Induction of HIV-specific T and B cell responses with a replicating and conditionally infectious lentiviral vaccine. Eur J Immunol 2008; 38:1310-20. [PMID: 18412164 DOI: 10.1002/eji.200738069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of an HIV vaccine that induces broad and potent immunity is critically needed. Viruses, including lentiviruses, have been used as vectors for ex vivo transduction of antigens into dendritic cells (DC). We hypothesized that DC transduced with a vector that allows selective infection of DC could induce potent immunity by continually priming DC. A lentiviral vector encoding HIV gag-pol without env would form viral cores in transduced DC, but would release non-infectious particles by budding into endosomes and releasing apoptotic bodies or exosomes containing viral cores. DC function by endocytosing DC-derived apoptotic bodies, and they are specialized in their ability to move endocytic contents into the cytoplasm. We postulated that endocytosis of vector cores could lead to transduction of a second round of DC. In this report, we demonstrate accumulation of viral cores inside transduced DC and show second-round transduction of immature DC that endocytose transduced DC in vitro. The effectiveness of immunization of mice with transduced DC to induce specific lymphocyte activation was assessed. Mice developed antigen-specific T cell responses and specific antibodies after immunization. Transduction of DC with a replication-competent but conditionally infectious lentivirus could be a novel vaccine strategy for HIV.
Collapse
|
48
|
Garcia Casado J, Janda J, Wei J, Chapatte L, Colombetti S, Alves P, Ritter G, Ayyoub M, Valmori D, Chen W, Lévy F. Lentivector immunization induces tumor antigen‐specific B and T cell responsesin vivo. Eur J Immunol 2008; 38:1867-76. [DOI: 10.1002/eji.200737923] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
He Y, Munn D, Falo LD. Recombinant lentivector as a genetic immunization vehicle for antitumor immunity. Expert Rev Vaccines 2008; 6:913-24. [PMID: 18377355 DOI: 10.1586/14760584.6.6.913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Encouraged by remarkable successes in preventing infectious diseases and by the well-established potential of the immune system for controlling tumor growth, active therapeutic immunization approaches hold great promise for treating malignant tumors. In recent years, engineered recombinant viral vectors have been carefully examined as genetic-immunization vehicles and have been demonstrated to induce potent T-cell-mediated immune responses that can control tumor growth. Very recent efforts suggest that lentivectors possess important advantages over other candidate recombinant viral vectors for genetic immunization. Here, we review the development of recombinant lentivectors and the characteristics of T-cell immune responses elicited by lentivector immunization, including the mechanism of T-cell priming with a focus on the role of skin dendritic cells and potential applications for tumor immunotherapy.
Collapse
Affiliation(s)
- Yukai He
- Medical College of Georgia, Immunology/Immunotherapy Program, MCG Cancer Center, CN-4150, 1120 15th Street, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
50
|
Denkberg G, Stronge VS, Zahavi E, Pittoni P, Oren R, Shepherd D, Salio M, McCarthy C, Illarionov PA, van der Merwe A, Besra GS, Dellabona P, Casorati G, Cerundolo V, Reiter Y. Phage display-derived recombinant antibodies with TCR-like specificity against alpha-galactosylceramide and its analogues in complex with human CD1d molecules. Eur J Immunol 2008; 38:829-40. [PMID: 18253930 DOI: 10.1002/eji.200737518] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The glycolipid alpha-galactosylceramide (alpha-GalCer) is a potent activator of invariant natural killer T (iNKT) cells and has been shown to be an effective agent against cancer, infections and autoimmune diseases. The effectiveness of alpha-GalCer and its alkyl chain analogues depends on efficient loading and presentation by the antigen-presenting molecule CD1d. To monitor the ability of CD1d to present the glycolipids, we have used a phage display strategy to generate recombinant antibodies with T cell receptor-like (TCRL) specificity against the human CD1d (hCD1d)-alpha-GalCer complex. These Fab fragments were able to detect specifically hCD1d-alpha-GalCer complexes in cell-free systems such as surface plasmon resonance and ELISA, as well as on the surface of hCD1d(+) antigen-presenting cells (APC) by flow cytometry and immunofluorescence microscopy, the latter of which could also detect intracellular complexes. We show that our TCRL antibodies can stain dendritic cells from CD11c-hCD1d-transgenic mice administered in vivo with alpha-GalCer and its analogues. Furthermore, the antibody was also able to detect the presentation by hCD1d molecules of analogues of alpha-GalCer with the same polar head structure. Using this reagent, we were able to confirm directly that the alpha-GalCer analogue C20:2 preferentially loads onto cell surface CD1d rapidly without the need for internalization, while the loading of alpha-GalCer is improved with longer incubation times on professional APC. This reagent will be essential for assessing the loading and presenting capabilities of hCD1d of alpha-GalCer and its analogues.
Collapse
Affiliation(s)
- Galit Denkberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|