1
|
Majid NN, Omar AR, Mariatulqabtiah AR. Negligible effect of chicken cytokine IL-12 integration into recombinant fowlpox viruses expressing avian influenza virus neuraminidase N1 on host cellular immune responses. J Gen Virol 2020; 101:772-777. [PMID: 32427095 PMCID: PMC7660237 DOI: 10.1099/jgv.0.001428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
In comparison to the extensive characterization of haemagglutinin antibodies of avian influenza virus (AIV), the role of neuraminidase (NA) as an immunogen is less well understood. This study describes the construction and cellular responses of recombinant fowlpox viruses (rFWPV) strain FP9, co-expressing NA N1 gene of AIV A/Chicken/Malaysia/5858/2004, and chicken IL-12 gene. Our data shows that the N1 and IL-12 proteins were successfully expressed from the recombinants with 48 kD and 70 kD molecular weights, respectively. Upon inoculation into specific-pathogen-free (SPF) chickens at 105 p.f.u. ml-1, levels of CD3+/CD4+ and CD3+/CD8+ populations were higher in the wild-type fowlpox virus FP9 strain, compared to those of rFWPV-N1 and rFWPV-N1-IL-12 at weeks 2 and 5 time points. Furthermore, rFWPV-N1-IL-12 showed a suppressive effect on chicken body weight within 4 weeks after inoculation. We suggest that co-expression of N1 with or without IL-12 offers undesirable quality as a potential AIV vaccine candidate.
Collapse
Affiliation(s)
- Nadzreeq Nor Majid
- Office of Deputy Vice Chancellor (Research and Innovation), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Razak Mariatulqabtiah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Crosby FL, Lundgren AM, Hoffman C, Pascual DW, Barbet AF. VirB10 vaccination for protection against Anaplasma phagocytophilum. BMC Microbiol 2018; 18:217. [PMID: 30563470 PMCID: PMC6299599 DOI: 10.1186/s12866-018-1346-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Background Human granulocytic anaplasmosis (HGA) is a tick-borne disease caused by the etiologic agent Anaplasma phagocytophilum. HGA was designated a nationally notifiable disease in the United States in 1998. Currently there are no vaccines available against HGA. Conserved membrane proteins that are subdominant in Anaplasma species, such as VirB9 and VirB10, may represent better vaccine targets than the variable immunodominant surface proteins. VirB9 and VirB10 are constituents of the Type 4 secretion system (T4SS) that is conserved amongst many intracellular bacteria and performs essential functions for invasion and survival in host cells. Results Immunogenicity and contribution to protection, provided after intramuscular vaccination of plasmid DNA encoding VirB9-1, VirB9-2, and VirB10 followed by inoculation of homologous recombinant proteins, in a prime-boost immunization strategy was evaluated in a murine model of HGA. Recombinant VirB9-1-, VirB9-2-, and VirB10-vaccinated mice developed antibody responses that specifically reacted with A. phagocytophilum organisms. However, only the mice vaccinated with VirB10 developed a significant increase in IFN-γ CD4+ T cells and partial protection against challenge with A. phagocytophilum. Conclusions This work provides evidence that A. phagocytophilum T4SS VirB10 is partially protective in a murine model against infection in an IFN-γ-dependent fashion and suggests that this protein may be a potential vaccine candidate against this and possibly other pathogenic bacteria with a T4SS.
Collapse
Affiliation(s)
- Francy L Crosby
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA.
| | - Anna M Lundgren
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - David W Pascual
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - Anthony F Barbet
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| |
Collapse
|
3
|
Yuan X, Lin H, Li B, He K, Fan H. Swinepox virus vector-based vaccines: attenuation and biosafety assessments following subcutaneous prick inoculation. Vet Res 2018; 49:14. [PMID: 29415767 PMCID: PMC5804073 DOI: 10.1186/s13567-018-0510-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/20/2017] [Indexed: 11/10/2022] Open
Abstract
Swinepox virus (SPV) has several advantages as a potential clinical vector for a live vector vaccine. In this study, to obtain a safer and more efficient SPV vector, three SPV mutants, Δ003, Δ010, and ΔTK were successfully constructed. A virus replication experiment showed that these SPV mutants had lower replication abilities compared to wtSPV in 10 different host-derived cell lines. Animal experiments with mouse and rabbit models demonstrate that these three mutants and wtSPV did not cause any clinical signs of dermatitis. No fatalities were observed during a peritoneal challenge assay with these mutants and wtSPV in a mouse model. Additionally, the three mutants and wtSPV were not infectious at 60 h after vaccination in rabbit models. Furthermore, we evaluated biosafety, immunogenicity and effectiveness of the three mutants in 65 1-month-old piglets. The results show that there were no clinical signs of dermatitis in the Δ003 and ΔTK vaccination groups. However, mild signs were observed in the Δ010 vaccination groups when virus titres were high, and apparent clinical signs were observed at the sites of inoculation. Samples from all experimental pig groups were assessed by qPCR, and no SPV genomic DNA was found in five organs, faeces or blood. This suggests that the infectious abilities of wtSPV and the SPV mutants were poor and limited. In summary, this study indicates that two mutants of SPV, Δ003 and ΔTK, may be promising candidates for an attenuated viral vector in veterinary medicine.
Collapse
Affiliation(s)
- Xiaomin Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Li
- Institute of Veterinary Research, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Research, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
4
|
Hollingdale MR, Sedegah M, Limbach K. Development of replication-deficient adenovirus malaria vaccines. Expert Rev Vaccines 2016; 16:261-271. [PMID: 27606709 DOI: 10.1080/14760584.2016.1228454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.
Collapse
Affiliation(s)
| | - Martha Sedegah
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| | - Keith Limbach
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| |
Collapse
|
5
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
Affiliation(s)
- A Volz
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - G Sutter
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
7
|
Abstract
The development of a highly effective malaria vaccine remains a key goal to aid in the control and eventual eradication of this devastating parasitic disease. The field has made huge strides in recent years, with the first-generation vaccine RTS,S showing modest efficacy in a Phase III clinical trial. The updated 2030 Malaria Vaccine Technology Roadmap calls for a second generation vaccine to achieve 75% efficacy over two years for both Plasmodium falciparum and Plasmodium vivax, and for a vaccine that can prevent malaria transmission. Whole-parasite immunisation approaches and combinations of pre-erythrocytic subunit vaccines are now reporting high-level efficacy, whilst exciting new approaches to the development of blood-stage and transmission-blocking vaccine subunit components are entering clinical development. The development of a highly effective multi-component multi-stage subunit vaccine now appears to be a realistic ambition. This review will cover these recent developments in malaria vaccinology.
Collapse
|
8
|
Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, Pessoa FAC, Oliveira GA, Campos KMM, Villegas LM, Rodrigues NB, Nacif-Pimenta R, Simões RC, Monteiro WM, Amino R, Traub-Cseko YM, Lima JBP, Barbosa MGV, Lacerda MVG, Tadei WP, Secundino NFC. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 2015; 110:23-47. [PMID: 25742262 PMCID: PMC4371216 DOI: 10.1590/0074-02760140266] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Collapse
Affiliation(s)
- Paulo FP Pimenta
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Ana C Bahia
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana PM Duarte
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | - Fabrício F Melo
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | | | - Keillen MM Campos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | | | | | - Rejane C Simões
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris,
France
| | | | - José BP Lima
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria GV Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil
| | | | | |
Collapse
|
9
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
10
|
Shivaramaiah C, Barta JR, Hernandez-Velasco X, Téllez G, Hargis BM. Coccidiosis: recent advancements in the immunobiology of Eimeria species, preventive measures, and the importance of vaccination as a control tool against these Apicomplexan parasites. VETERINARY MEDICINE-RESEARCH AND REPORTS 2014; 5:23-34. [PMID: 32670843 PMCID: PMC7337151 DOI: 10.2147/vmrr.s57839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 12/05/2022]
Abstract
Coccidiosis, caused by parasites of the genus Eimeria, is probably the most expensive parasitic disease of poultry. Species of Eimeria are ubiquitous where poultry are raised and are known to cause drastic reductions in performance and induce mortality, thereby affecting the overall health status of poultry. Chemotherapy has been the predominant form of disease control for many years, even though vaccination is steadily gaining importance as a feasible control method. The objective of this review is to highlight recent advancements in understanding the role of host immunity against coccidiosis. In addition, pros and cons associated with chemotherapy and the role of vaccination as an increasingly popular disease control method are discussed. Finally, the role played by recombinant vaccines as a potential vaccination tool is highlighted. With interest growing rapidly in understanding host–parasite biology, recent developments in designing recombinant vaccines and potential epitopes that have shown promise are mentioned.
Collapse
Affiliation(s)
| | - John R Barta
- Department of Pathobiology, University of Guelph, ON, Canada
| | | | - Guillermo Téllez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
11
|
Villarino N, Schmidt NW. CD8 + T Cell Responses to Plasmodium and Intracellular Parasites. ACTA ACUST UNITED AC 2014; 9:169-178. [PMID: 24741372 PMCID: PMC3983867 DOI: 10.2174/1573395509666131126232327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Parasitic protozoa are major threats to human health affecting millions of people around the world. Control of these infections by the host immune system relies on a myriad of immunological mechanisms that includes both humoral and cellular immunity. CD8+ T cells contribute to the control of these parasitic infections in both animals and humans. Here, we will focus on the CD8+ T cell response against a subset of these protozoa: Plasmodium, Toxoplasma gondii, Leishmania and Trypanosoma cruzi, with an emphasis on experimental rodent systems. It is evident a complex interaction occurs between CD8+ T cells and the invading protozoa. A detailed understanding of how CD8+ T cells mediate protection should provide the basis for the development of effective vaccines that prevent and control infections by these parasites.
Collapse
Affiliation(s)
- Nicolas Villarino
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nathan W Schmidt
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
12
|
Skinner MA, Laidlaw SM, Eldaghayes I, Kaiser P, Cottingham MG. Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccines 2014; 4:63-76. [PMID: 15757474 DOI: 10.1586/14760584.4.1.63] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live vaccines against fowlpox virus, which causes moderate pathology in poultry and is the type species of the Avipoxvirus genus, were developed in the 1920s. Development of recombinant fowlpox virus vector vaccines began in the 1980s, for use not only in poultry, but also in mammals including humans. In common with other avipoxviruses, such as canarypox virus, fowlpox virus enters mammalian cells and expresses proteins, but replicates abortively. The use of fowlpox virus as a safe vehicle for expression of foreign antigens and host immunomodulators, is being evaluated in numerous clinical trials of vaccines against cancer, malaria, tuberculosis and AIDS, notably in heterologous prime-boost regimens. In this article, technical approaches to, and issues surrounding, the use of fowlpox virus as a recombinant vaccine vector in poultry and mammals are reviewed.
Collapse
Affiliation(s)
- Michael A Skinner
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK.
| | | | | | | | | |
Collapse
|
13
|
Moore AC, Hutchings CL. Combination vaccines: synergistic simultaneous induction of antibody and T-cell immunity. Expert Rev Vaccines 2014; 6:111-21. [PMID: 17280483 DOI: 10.1586/14760584.6.1.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccines have traditionally been designed to induce antibody responses and have been licensed on their capacity to induce high titers of circulating antibody to the pathogen. With our increased knowledge of host-pathogen interactions, it became apparent that induction of the cellular arm of the immune response is crucial to the efficacy of vaccines against intracellular pathogens and for providing appropriate help for antibody induction. Diverging strategies emerged that concentrate on developing candidate vaccines that solely induce either cellular or humoral responses. As most microbes reside at some point in the infectious cycle in the extracellular as well as intracellular space, and there is interplay between antibody and T cells, it is now apparent that both arms of immunity are essential to effectively control and eliminate the infection. It is, therefore, necessary to develop vaccines that can effectively induce a broad adaptive immune response. For vaccines targeted at diseases of the developing world, such as HIV, tuberculosis and malaria, it is imperative that these vaccines are simple to deliver and cost effective, that is,that optimum T-cell and antibody immunity is achieved with the minimum number of vaccinations. Combination vaccines, where an antibody-inducing subunit protein vaccine is coadministered with a T-cell-inducing poxvirus-based vaccine fulfill these requirements and induce sterile immunity to pathogen challenge.
Collapse
Affiliation(s)
- Anne C Moore
- Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford OX2 7BN, UK.
| | | |
Collapse
|
14
|
Salvador A, Hernández RM, Pedraz JL, Igartua M. Plasmodium falciparummalaria vaccines: current status, pitfalls and future directions. Expert Rev Vaccines 2014; 11:1071-86. [DOI: 10.1586/erv.12.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Abstract
Poxvirus expression vectors were described in 1982 and quickly became widely used for vaccine development as well as research in numerous fields. Advantages of the vectors include simple construction, ability to accommodate large amounts of foreign DNA and high expression levels. Numerous poxvirus-based veterinary vaccines are currently in use and many others are in human clinical trials. The early reports of poxvirus vectors paved the way for and stimulated the development of other viral vectors and recombinant DNA vaccines.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Clinical development of Modified Vaccinia virus Ankara vaccines. Vaccine 2013; 31:4241-6. [PMID: 23523410 DOI: 10.1016/j.vaccine.2013.03.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
The smallpox vaccine Vaccinia was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one or two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is a replication-deficient and attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. Many clinical trials of these new vaccines have been conducted, and the findings of these trials are reviewed here. The safety of MVA is now well documented, immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate.
Collapse
|
17
|
Tartz S, Deschermeier C, Retzlaff S, Heussler V, Sebo P, Fleischer B, Jacobs T. Plasmodium berghei sporozoite challenge of vaccinated BALB/c mice leads to the induction of humoral immunity and improved function of CD8(+) memory T cells. Eur J Immunol 2013; 43:693-704. [PMID: 23229763 DOI: 10.1002/eji.201142262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 11/06/2022]
Abstract
Protection against malaria can be achieved by induction of a strong CD8(+) T-cell response against the Plasmodium circumsporozoite protein (CSP), but most subunit vaccines suffer from insufficient memory responses. In the present study, we analyzed the impact of postimmunization sporozoite challenge on the development of long-lasting immunity. BALB/c mice were immunized by a heterologous prime/boost regimen against Plasmodium berghei CSP that induces a strong CD8(+) T-cell response and sterile protection, which is short-lived. Here, we show that protective immunity is prolonged by a sporozoite challenge after immunization. Repeated challenges induced sporozoite-specific antibodies that showed protective capacity. The numbers of CSP-specific CD8(+) T cells were not substantially enhanced by sporozoite infections; however, CSP-specific memory CD8(+) T cells of challenged mice displayed a higher cytotoxic activity than memory T cells of immunized-only mice. CD4(+) T cells contributed to protection as well; but CD8(+) memory T cells were found to be the central mediator of sterile protection. Based on these data, we suggest that prolonged protective immunity observed after immunization and infection is composed of different antiparasitic mechanisms including CD8(+) effector-memory T cells with increased cytotoxic activity as well as CD4(+) memory T cells and neutralizing antibodies.
Collapse
Affiliation(s)
- Susanne Tartz
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Richie TL. Malaria vaccines for travelers. Travel Med Infect Dis 2012; 2:193-210. [PMID: 17291981 DOI: 10.1016/j.tmaid.2004.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 07/07/2004] [Indexed: 11/21/2022]
Affiliation(s)
- Thomas L Richie
- Naval Medical Research Center Malaria Program, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| |
Collapse
|
19
|
Arama C, Assefaw-Redda Y, Rodriguez A, Fernández C, Corradin G, Kaufmann SH, Reece ST, Troye-Blomberg M. Heterologous prime-boost regimen adenovector 35-circumsporozoite protein vaccine/recombinant Bacillus Calmette-Guérin expressing the Plasmodium falciparum circumsporozoite induces enhanced long-term memory immunity in BALB/c mice. Vaccine 2012; 30:4040-5. [DOI: 10.1016/j.vaccine.2012.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/30/2012] [Accepted: 04/07/2012] [Indexed: 10/28/2022]
|
20
|
Mixed vector immunization with recombinant adenovirus and MVA can improve vaccine efficacy while decreasing antivector immunity. Mol Ther 2012; 20:1633-47. [PMID: 22354374 PMCID: PMC3412496 DOI: 10.1038/mt.2012.25] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Substantial protection can be provided against the pre-erythrocytic stages of malaria by vaccination first with an adenoviral and then with an modified vaccinia virus Ankara (MVA) poxviral vector encoding the same ME.TRAP transgene. We investigated whether the two vaccine components adenovirus (Ad) and MVA could be coinjected as a mixture to enhance protection against malaria. A single-shot mixture at specific ratios of Ad and MVA (Ad+MVA) enhanced CD8+ T cell-dependant protection of mice against challenge with Plasmodium berghei. Moreover, the degree of protection could be enhanced after homologous boosting with the same Ad+MVA mixture to levels comparable with classic heterologous Ad prime-MVA boost regimes. The mixture increased transgene-specific responses while decreasing the CD8+ T cell antivector immunity compared to each vector used alone, particularly against the MVA backbone. Mixed vector immunization led to increased early circulating interferon-γ (IFN-γ) response levels and altered transcriptional microarray profiles. Furthermore, we found that sequential immunizations with the Ad+MVA mixture led to consistent boosting of the transgene-specific CD8+ response for up to three mixture immunizations, whereas each vector used alone elicited progressively lower responses. Our findings offer the possibility of simplifying the deployment of viral vectors as a single mixture product rather than in heterologous prime-boost regimens.
Collapse
|
21
|
Abstract
In the twentieth century vaccine development has moved from the use of attenuated or killed micro-organisms to protein sub-unit vaccines, with vaccine immunogenicity assessed by measuring antibodies induced by vaccination. However, for many infectious diseases T cells are an important part of naturally acquired protective immune responses, and inducing these by vaccination has been the aim of much research. The progress that has been made in developing effective T-cell-inducing vaccines against viral and parasitic diseases such as HIV and malaria is discussed, along with recent developments in therapeutic vaccine development for chronic viral infections and cancer. Although many ways of inducing T cells by vaccination have been assessed, the majority result in low level, non-protective responses. Sufficient clinical research has now been conducted to establish that replication-deficient viral vectored vaccines lead the field in inducing strong and broad responses, and efficacy studies of T-cell-inducing vaccines against a number of diseases are finally demonstrating that this is a valid approach to filling the gaps in our defence against not only infectious disease, but some forms of cancer.
Collapse
|
22
|
Hamid MMA, Remarque EJ, El Hassan IM, Hussain AA, Narum DL, Thomas AW, Kocken CHM, Weiss WR, Faber BW. Malaria infection by sporozoite challenge induces high functional antibody titres against blood stage antigens after a DNA prime, poxvirus boost vaccination strategy in Rhesus macaques. Malar J 2011; 10:29. [PMID: 21303498 PMCID: PMC3046915 DOI: 10.1186/1475-2875-10-29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/08/2011] [Indexed: 11/22/2022] Open
Abstract
Background A DNA prime, poxvirus (COPAK) boost vaccination regime with four antigens, i.e. a combination of two Plasmodium knowlesi sporozoite (csp/ssp2) and two blood stage (ama1/msp142) genes, leads to self-limited parasitaemia in 60% of rhesus monkeys and survival from an otherwise lethal infection with P. knowlesi. In the present study, the role of the blood stage antigens in protection was studied in depth, focusing on antibody formation against the blood stage antigens and the functionality thereof. Methods Rhesus macaques were immunized with the four-component vaccine and subsequently challenged i.v. with 100 P. knowlesi sporozoites. During immunization and challenge, antibody titres against the two blood stage antigens were determined, as well as the in vitro growth inhibition capacity of those antibodies. Antigen reversal experiments were performed to determine the relative contribution of antibodies against each of the two blood stage antigens to the inhibition. Results After vaccination, PkAMA1 and PkMSP119 antibody titres in vaccinated animals were low, which was reflected in low levels of inhibition by these antibodies as determined by in vitro inhibition assays. Interestingly, after sporozoite challenge antibody titres against blood stage antigens were boosted over 30-fold in both protected and not protected animals. The in vitro inhibition levels increased to high levels (median inhibitions of 59% and 56% at 6 mg/mL total IgG, respectively). As growth inhibition levels were not significantly different between protected and not protected animals, the ability to control infection appeared cannot be explained by GIA levels. Judged by in vitro antigen reversal growth inhibition assays, over 85% of the inhibitory activity of these antibodies was directed against PkAMA1. Conclusions This is the first report that demonstrates that a DNA prime/poxvirus boost vaccination regimen induces low levels of malaria parasite growth inhibitory antibodies, which are boosted to high levels upon challenge. No association could, however, be established between the levels of inhibitory capacity in vitro and protection, either after vaccination or after challenge.
Collapse
|
23
|
Shiratsuchi T, Rai U, Krause A, Worgall S, Tsuji M. Replacing adenoviral vector HVR1 with a malaria B cell epitope improves immunogenicity and circumvents preexisting immunity to adenovirus in mice. J Clin Invest 2010; 120:3688-701. [PMID: 20811151 DOI: 10.1172/jci39812] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022] Open
Abstract
Although adenovirus (Ad) has been regarded as an excellent vaccine vector, there are 2 major drawbacks to using this platform: (a) Ad-based vaccines induce a relatively weak humoral response against encoded transgenes, and (b) preexisting immunity to Ad is highly prevalent among the general population. To overcome these obstacles, we constructed an Ad-based malaria vaccine by inserting a B cell epitope derived from a Plasmodium yoelii circumsporozoite (CS) protein (referred to as the PyCS-B epitope) into the capsid proteins of WT/CS-GFP, a recombinant Ad expressing P. yoelii CS protein and GFP as its transgene. Multiple vaccinations with the capsid-modified Ad induced a substantially increased level of protection against subsequent malaria challenge in mice when compared with that of unmodified WT/CS-GFP. Increased protection correlated with augmented antibody responses against the PyCS-B epitope expressed in the capsid. Furthermore, replacement of hypervariable region 1 (HVR1) of the Ad capsid proteins with the PyCS-B epitope circumvented neutralization of the modified Ad by preexisting Ad-specific antibody, both in vivo and in vitro. Importantly, the immunogenicity of the Ad-containing PyCS-B epitope in the HVR1 and a P. yoelii CS transgene was maintained. Overall, this study demonstrates that the HVR1-modifed Ad vastly improves upon Ad as a promising malaria vaccine platform candidate.
Collapse
Affiliation(s)
- Takayuki Shiratsuchi
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
24
|
Prime‐boost vaccinations using recombinant flavivirus replicon and vaccinia virus vaccines: an ELISPOT analysis. Immunol Cell Biol 2010; 89:426-36. [DOI: 10.1038/icb.2010.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Immediate-early expression of a recombinant antigen by modified vaccinia virus ankara breaks the immunodominance of strong vector-specific B8R antigen in acute and memory CD8 T-cell responses. J Virol 2010; 84:8743-52. [PMID: 20538860 DOI: 10.1128/jvi.00604-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Efficient T-cell responses against recombinant antigens expressed by vaccinia virus vectors require expression of these antigens in the early phase of the virus replication cycle. The kinetics of recombinant gene expression in poxviruses are largely determined by the promoter chosen. We used the highly attenuated modified vaccinia virus Ankara (MVA) to determine the role of promoters in the induction of CD8 T-cell responses. We constructed MVA recombinants expressing either enhanced green fluorescent protein (EGFP) or chicken ovalbumin (OVA), each under the control of a hybrid early-late promoter (pHyb) containing five copies of a strong early element or the well-known early-late p7.5 or pS promoter for comparison. In primary or cultured cells, EGFP expression under the control of pHyb was detected within 30 min, as an immediate-early protein, and remained higher over the first 6 h of infection than p7.5- or pS-driven EGFP expression. Repeated immunizations of mice with recombinant MVA expressing OVA under the control of the pHyb promoter led to superior acute and memory CD8 T-cell responses compared to those to p7.5- and pS-driven OVA. Moreover, OVA expressed under the control of pHyb replaced the MVA-derived B8R protein as the immunodominant CD8 T-cell antigen after three or more immunizations. This is the first demonstration of an immediate-early neoantigen expressed by a poxviral vector resulting in superior induction of neoantigen-specific CD8 T-cell responses.
Collapse
|
26
|
Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infect Immun 2009; 78:145-53. [PMID: 19858306 DOI: 10.1128/iai.00740-09] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protection against liver-stage malaria relies on the induction of high frequencies of antigen-specific CD8+ T cells. We have previously reported high protective levels against mouse malaria, albeit short-lived, by a single vaccination with adenoviral vectors coding for a liver-stage antigen (ME.TRAP). Here, we report that prime-boost regimens using modified vaccinia virus Ankara (MVA) and adenoviral vectors encoding ME.TRAP can enhance both short- and long-term sterile protection against malaria. Protection persisted for at least 6 months when simian adenoviruses AdCh63 and AdC9 were used as priming vectors. Kinetic analysis showed that the MVA boost made the adenoviral-primed T cells markedly more polyfunctional, with the number of gamma interferon (INF-gamma), tumor necrosis factor alpha (TNF-alpha), and interleukin-2 (IL-2) triple-positive and INF-gamma and TNF-alpha double-positive cells increasing over time, while INF-gamma single-positive cells declined with time. However, IFN-gamma production prevailed as the main immune correlate of protection, while neither an increase of polyfunctionality nor a high integrated mean fluorescence intensity (iMFI) correlated with protection. These data highlight the ability of optimized viral vector prime-boost regimens to generate more protective and sustained CD8+ T-cell responses, and our results encourage a more nuanced assessment of the importance of inducing polyfunctional CD8(+) T cells by vaccination.
Collapse
|
27
|
Abstract
Traditional vaccine technologies have resulted in an impressive array of efficacious vaccines against a variety of infectious agents. However, several potentially deadly pathogens, including retroviruses and parasites, have proven less amenable to the application of traditional vaccine platforms, indicating the need for new approaches. Viral vectors represent an attractive way to deliver and present vaccine antigens that may offer advantages over traditional platforms. Due to their ability to induce strong cell-mediated immunity (CMI) in addition to antibodies, viral vectors may be suitable for infectious agents, such as malaria parasites, where potent CMI is required for protection. Poxvirus-vectored malaria vaccines have been the most extensively studied in the clinic, achieving significant reductions in liver-stage parasite burden. More recently, adenovirus-vectored malaria vaccines have entered clinical testing. The most promising approach - heterologous prime-boost regimens, in which different viral vectors are sequentially paired with each other or with DNA or recombinant protein vaccines - is now being explored, and could provide high-grade protection, if findings in animal models are translatable to humans. Significant barriers remain, however, such as pre-existing immunity to the vector particle and an unexplained safety signal observed in one trial suggesting an increased risk of HIV acquisition in volunteers with pre-existing immunity to the vector.
Collapse
Affiliation(s)
- K J Limbach
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA.
| | | |
Collapse
|
28
|
CD8 T cell immunity to Plasmodium permits generation of protective antibodies after repeated sporozoite challenge. Vaccine 2009; 27:6103-6. [PMID: 19712771 DOI: 10.1016/j.vaccine.2009.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 07/29/2009] [Accepted: 08/06/2009] [Indexed: 01/02/2023]
Abstract
Individuals living in malaria endemic areas are subject to repeated infections yet fail to develop sterilizing immunity, however, immunization of mice with attenuated sporozoites or subunit vaccines has shown the ability to protect mice against a sporozoite challenge. We recently reported that mice primed with dendritic cells coated with the dominant circumsporozoite CD8 T cell epitope from Plasmodium berghei followed by a boost with recombinant Listeria monocytogenes expressing the same epitope exhibited sterile immunity against a sporozoite challenge for more than one year. In this report we show those mice do not contain protective antibodies and that depletion of CD4 T cells in the immunized mice did not affect sterile immunity. In contrast, CD8 T cell depletion eliminated protection. Thus, protective immunity generated by this immunization approach is entirely memory CD8 T cell-dependent. We also show here that mice initially protected by circumsporozoite-specific memory CD8 T cells develop sterilizing sporozoite-specific antibodies after repeated asymptomatic challenges with physiologic numbers of viable sporozoites. Therefore, initial protection by a CD8 T cell-targeted liver stage subunit vaccine allows the generation of enhanced sterilizing immune responses from repeated exposure to Plasmodium parasites.
Collapse
|
29
|
Nikolovski S, Lloyd ML, Harvey N, Hardy CM, Shellam GR, Redwood AJ. Overcoming innate host resistance to vaccination: employing a genetically distinct strain of murine cytomegalovirus avoids vector-mediated resistance to virally vectored immunocontraception. Vaccine 2009; 27:5226-32. [PMID: 19591797 DOI: 10.1016/j.vaccine.2009.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 01/07/2023]
Abstract
The laboratory strain of murine cytomegalovirus (MCMV), K181, has been successfully engineered as a vaccine expressing murine zona pellucida 3 (mZP3) for viral vectored immunocontraception (VVIC) in mice. However, certain laboratory strains of mice are resistant to infection with K181 and therefore demonstrate resistance to VVIC. Cmv1 is the best characterised innate resistance mechanism to MCMV and was first described in C57BL/6 mice. Resistance in C57BL/6 mice is due to early and strong activation of natural killer (NK) cells by an MCMV gene product, m157, that binds directly to the NK cell activating receptor Ly49H. In this study a wild strain of MCMV, G4, which expresses a variant m157 incapable of activating Ly49H, was engineered to express murine zona pellucida 3 (mZP3) and assessed for its ability to sterilise female C57BL/6 mice. When infected with K181-mZP3 female C57BL/6 mice remained fully fertile. In contrast, female C57BL/6 mice were sterilised by a single intraperitoneal inoculation of G4-mZP3. Infertility was induced by G4-mZP3 in three strains of mice that express Ly49H, on two different histocompatibility-2 (H-2) backgrounds. Finally, enhanced immunocontraception was observed in mice expressing H-2(k) mediated resistance to MCMV when infected with G4-mZP3 compared to K181-mZP3. These data indicate that when using viral vaccine vectors, variant vector strains may be used to circumvent powerful innate immune responses against the vector and promote effective vaccination. This study highlights the importance of vaccine vector genetics in vaccination strategies.
Collapse
Affiliation(s)
- Sonia Nikolovski
- Discipline of Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, M502, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Carulei O, Douglass N, Williamson AL. Phylogenetic analysis of three genes of Penguinpox virus corresponding to Vaccinia virus G8R (VLTF-1), A3L (P4b) and H3L reveals that it is most closely related to Turkeypox virus, Ostrichpox virus and Pigeonpox virus. Virol J 2009; 6:52. [PMID: 19426497 PMCID: PMC2688499 DOI: 10.1186/1743-422x-6-52] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/08/2009] [Indexed: 12/14/2022] Open
Abstract
Phylogenetic analysis of three genes of Penguinpox virus, a novel Avipoxvirus isolated from African penguins, reveals its relationship to other poxviruses. The genes corresponding to Vaccinia virus G8R (VLTF-1), A3L (P4b) and H3L were sequenced and phylogenetic trees (Neighbour-Joining and UPGMA) constructed from MUSCLE nucleotide and amino acid alignments of the equivalent sequences from several different poxviruses. Based on this analysis, PEPV was confirmed to belong to the genus Avipoxvirus, specifically, clade A, subclade A2 and to be most closely related to Turkeypox virus (TKPV), Ostrichpox virus (OSPV)and Pigeonpox virus (PGPV).
Collapse
Affiliation(s)
- Olivia Carulei
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|
31
|
|
32
|
Greenough TC, Cunningham CK, Muresan P, McManus M, Persaud D, Fenton T, Barker P, Gaur A, Panicali D, Sullivan JL, Luzuriaga K. Safety and immunogenicity of recombinant poxvirus HIV-1 vaccines in young adults on highly active antiretroviral therapy. Vaccine 2008; 26:6883-93. [PMID: 18940219 PMCID: PMC2845914 DOI: 10.1016/j.vaccine.2008.09.084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/17/2008] [Accepted: 09/25/2008] [Indexed: 02/05/2023]
Abstract
A trial to evaluate the safety and immunogenicity of recombinant modified vaccinia Ankara (MVA) and fowlpox (FP) vectors expressing multiple HIV-1 proteins was conducted in twenty HIV-1 infected youth with suppressed viral replication on HAART. The MVA and FP-based multigene HIV-1 vaccines were safe and well tolerated. Increased frequencies of HIV-1 specific CD4+ proliferative responses and cytokine secreting cells were detected following immunization. Increased frequencies and breadth of HIV-1 specific CD8 T-cell responses were also detected. Plasma HIV-1-specific antibody levels and neutralizing activity were unchanged following vaccination. Poxvirus-based vaccines may merit further study in therapeutic vaccine protocols.
Collapse
Affiliation(s)
- Thomas C Greenough
- Pediatrics and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tartz S, Rüssmann H, Kamanova J, Sebo P, Sturm A, Heussler V, Fleischer B, Jacobs T. Complete protection against P. berghei malaria upon heterologous prime/boost immunization against circumsporozoite protein employing Salmonella type III secretion system and Bordetella adenylate cyclase toxoid. Vaccine 2008; 26:5935-43. [PMID: 18804138 DOI: 10.1016/j.vaccine.2008.08.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 08/12/2008] [Accepted: 08/31/2008] [Indexed: 01/13/2023]
Abstract
Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.
Collapse
Affiliation(s)
- Susanne Tartz
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc Natl Acad Sci U S A 2008; 105:14017-22. [PMID: 18780790 DOI: 10.1073/pnas.0805452105] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection of mice with sporozoites of Plasmodium berghei or Plasmodium yoelii has been used extensively to evaluate liver-stage protection by candidate preerythrocytic malaria vaccines. Unfortunately, repeated success of such vaccines in mice has not translated readily to effective malaria vaccines in humans. Thus, mice may be used better as models to dissect basic parameters required for immunity to Plasmodium-infection than as preclinical vaccine models. In turn, this basic information may aid in the rational design of malaria vaccines. Here, we describe a model of circumsporozoite-specific memory CD8 T cell generation that protects mice against multiple P. berghei sporozoite challenges for at least 19 months. Using this model we defined a threshold frequency of memory CD8 T cells in the blood that predicts long-term sterilizing immunity against liver-stage infection. Importantly, the number of Plasmodium-specific memory CD8 T cells required for immunity greatly exceeds the number required for resistance to other pathogens. In addition, this model allowed us to identify readily individual immunized mice that exceed or fall below the protective threshold before infection, information that should greatly facilitate studies to dissect basic mechanisms of protective CD8 T cell memory against liver-stage Plasmodium infection. Furthermore, the extremely large threshold in memory CD8 T cell frequencies required for long-term protection in mice may have important implications for development of effective malaria vaccines.
Collapse
|
35
|
Dondji B, Deak E, Goldsmith-Pestana K, Perez-Jimenez E, Esteban M, Miyake S, Yamamura T, McMahon-Pratt D. Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against Leishmania. Eur J Immunol 2008; 38:706-19. [PMID: 18286565 DOI: 10.1002/eji.200737660] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterologous prime-boost vaccination employing DNA-vaccinia virus (VACV) modality using the Leishmania homologue of receptors for activated C kinase (LACK) (p36) antigen has been shown to elicit protective immunity against both murine cutaneous and visceral leishmaniasis. However, DNA priming is known to have limited efficacy; therefore in the current study the effect of NKT cell activation using alpha-galactosyl-ceramide (alphaGalCer) during intradermal DNAp36 priming was examined. Vaccinated mice receiving alphaGalCer + DNAp36 followed by a boost with VVp36 appeared to be resolving their lesions and had at ten- to 20-fold higher reductions in parasite burdens. NKT cell activation during alphaGalCer + DNAp36 priming resulted in higher numbers of antigen-reactive effector CD4(+) and CD8(+) T cells producing granzyme and IFN-gamma, with lower levels of IL-10. Although immunodepletion studies indicate that both CD4 and CD8 T cells provide protection in the vaccinated mice, the contribution of CD4(+) T cells was significantly increased in mice primed with DNAp36 together with alphaGalCer. Notably 5 months after boosting, mice vaccinated with DNAp36 + alphaGalCer continued to show sustained and heightened T cell immune responses. Thus, heterologous prime-boost vaccination using alphaGalCer during priming is highly protective against murine cutaneous leishmaniasis, resulting in the heightened activation and development of CD4 and CD8 T cells (effector and memory T cells).
Collapse
Affiliation(s)
- Blaise Dondji
- Department of Epidemiology & Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li W, Li S, Hu Y, Tang B, Cui L, He W. Efficient augmentation of a long-lasting immune responses in HIV-1 gag DNA vaccination by IL-15 plasmid boosting. Vaccine 2008; 26:3282-90. [PMID: 18472194 DOI: 10.1016/j.vaccine.2008.03.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 11/17/2022]
Abstract
Cytokines are major regulators of the immune response, and have been used as adjuvants to improve vaccine potency. In this study, we investigated the adjuvant effects of interleukin (IL)-15 on improving the immunogenicity of human immunodeficiency virus (HIV)-1 gag DNA vaccine in Balb/c mice. During a 370-day follow-up, cellular and humoral immune responses in three separate cohorts of mice were monitored. These results were exemplified through: lymphocyte proliferation, induction of antigen-specific CD8(+) T lymphocytes, long-term production of specific antibodies, and proportion of differentiated memory CD8(+) T cells. These data revealed that just boost of IL-15 at day 8 after co-immunization induced more homeostatic cell proliferation, augmented proliferation frequency of IFN-gamma-secreting antigen-specific CD8(+) T lymphocytes, maintained the long-lasting humoral immune response and promoted the turnover of memory T cell precursors into central memory T cells. Taken together, our data demonstrated that a single IL-15 boosting can enhance both the humoral and cellular immune responses of the HIV-1 gag DNA vaccination. This novel boosting strategy may facilitate the application of IL-15 as an adjuvant for HIV vaccination.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
37
|
Cottingham MG, Andersen RF, Spencer AJ, Saurya S, Furze J, Hill AVS, Gilbert SC. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA). PLoS One 2008; 3:e1638. [PMID: 18286194 PMCID: PMC2242847 DOI: 10.1371/journal.pone.0001638] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/25/2008] [Indexed: 12/29/2022] Open
Abstract
The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC) in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415–20). The genomic BAC clone was ‘rescued’ back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA), now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering) of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins), in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997–2006). In addition, we found a higher frequency of triple-positive IFN-γ, TNF-α and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant vaccines based on a clinically deployable viral vector.
Collapse
Affiliation(s)
- Matthew G Cottingham
- Wellcome Trust Centre for Human Genetics and The Jenner Institute, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
38
|
Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol 2008; 82:3822-33. [PMID: 18256155 DOI: 10.1128/jvi.02568-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus serotype 5 (AdH5) vector vaccines elicit strong immune responses to the encoded antigen and have been used in various disease models. We designed AdH5 vectors expressing antigen under the control of a human cytomegalovirus (HCMV) immediate-early promoter containing its intron A sequence. The transcriptional levels of antigen and immune responses to antigen for vectors with the HCMV promoter with the intron A sequence (LP) were greater than those for AdH5 vectors using the HCMV promoter sequence without intron A (SP). We compared an E1E3-deleted AdH5 adenoviral vector, which affords more space for insertion of foreign sequences, and showed it to be as immunogenic as an E1-deleted AdH5 vector. Neutralizing antibodies to AdH5 limit the efficacy of vaccines based on the AdH5 serotype, and simian adenoviral vectors offer an attractive option to overcome this problem. We constructed E1E3-deleted human and simian adenoviral vectors encoding the pre-erythrocytic-stage malarial antigen Plasmodium berghei circumsporozoite protein. We compared the immunogenicity and efficacy of AdC6, a recombinant simian adenovirus serotype 6 vector, in a murine malaria model to those of AdH5 and the poxviral vectors MVA and FP9. AdC6 induced sterile protection from a single dose in 90% of mice, in contrast to AdH5 (25%) and poxviral vectors MVA and FP9 (0%). Adenoviral vectors maintained potent CD8(+) T-cell responses for a longer period after immunization than did poxviral vectors and mainly induced an effector memory phenotype of cells. Significantly, AdC6 was able to maintain protection in the presence of preexisting immunity to AdH5.
Collapse
|
39
|
Sedegah M, Weiss WW, Hoffman SL. Cross-protection between attenuated Plasmodium berghei and P. yoelii sporozoites. Parasite Immunol 2008; 29:559-65. [PMID: 17944745 PMCID: PMC2955969 DOI: 10.1111/j.1365-3024.2007.00976.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An attenuatedPlasmodium falciparum sporozoite (PfSPZ) vaccine is under development, in part, based on studies in mice withP. berghei. We usedP. berghei andP. yoelii to study vaccine-induced protection against challenge with a species of parasite different from the immunizing parasite in BALB/c mice. One-hundred percent of mice were protected against homologous challenge. Seventy-nine percent immunized with attenuatedP. berghei sporozoite (PbSPZ)(six experiments) were protected against challenge withP. yoelii sporozoite (PySPZ), and 63% immunized with attenuatedPySPZ(three experiments) were protected against challenge withPbSPZ. Antibodies in sera of immunized mice only recognized homologous sporozoites and could not have mediated protection against heterologous challenge. Immunization with attenuatedPySPZ orPbSPZ induced CD8+ T cell-dependent protection against heterologous challenge. Immunization with attenuatedPySPZ induced CD8+ T cell-dependent protection against homologous challenge. However, homologous protection induced by attenuatedPbSPZ was not dependent on CD8+ or CD4+ T cells, and depletion of both populations only reduced protection by 36%. Immunization of C57BL/10 mice withPbSPZ induced CD8+ T cell-dependent protection againstP. berghei, but no protection againstP. yoelii. The cross-protection data in BALB/c mice support testing a human vaccine based on attenuatedPfSPZ for its efficacy againstP. vivax.
Collapse
Affiliation(s)
- M Sedegah
- Malaria Program, Naval Medical Research Center, Silver Spring, MD, USA
| | | | | |
Collapse
|
40
|
Rollman E, Smith MZ, Brooks AG, Purcell DFJ, Zuber B, Ramshaw IA, Kent SJ. Killing kinetics of simian immunodeficiency virus-specific CD8+ T cells: implications for HIV vaccine strategies. THE JOURNAL OF IMMUNOLOGY 2007; 179:4571-9. [PMID: 17878354 DOI: 10.4049/jimmunol.179.7.4571] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both the magnitude and function of vaccine-induced HIV-specific CD8+ CTLs are likely to be important in the outcome of infection. We hypothesized that rapid cytolysis by CTLs may facilitate control of viral challenge. Release kinetics of the cytolytic effector molecules granzyme B and perforin, as well as the expression of the degranulation marker CD107a and IFN-gamma were simultaneously studied in SIV Gag(164-172) KP9-specific CD8+ T cells from Mane-A*10+ pigtail macaques. Macaques were vaccinated with either prime-boost poxvirus vector vaccines or live-attenuated SIV vaccines. Prime-boost vaccination induced Gag-specific CTLs capable of only slow (after 3 h) production of IFN-gamma and with limited (<5%) degranulation and granzyme B release. Vaccination with live-attenuated SIV resulted in a rapid cytolytic profile of SIV-specific CTLs with rapid (<0.5 h) and robust (>50% of tetramer-positive CD8+ T cells) degranulation and granzyme B release. The cytolytic phenotype following live-attenuated SIV vaccinations were similar to that associated with the partial resolution of viremia following SIV(mac251) challenge of prime-boost-vaccinated macaques, albeit with less IFN-gamma expression. High proportions of KP9-specific T cells expressed the costimulatory molecule CD28 when they exhibited a rapid cytolytic phenotype. The delayed cytolytic phenotype exhibited by standard vector-based vaccine-induced CTLs may limit the ability of T cell-based HIV vaccines to rapidly control acute infection following a pathogenic lentiviral exposure.
Collapse
Affiliation(s)
- Erik Rollman
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Weiss WR, Kumar A, Jiang G, Williams J, Bostick A, Conteh S, Fryauff D, Aguiar J, Singh M, O'Hagan DT, Ulmer JB, Richie TL. Protection of rhesus monkeys by a DNA prime/poxvirus boost malaria vaccine depends on optimal DNA priming and inclusion of blood stage antigens. PLoS One 2007; 2:e1063. [PMID: 17957247 PMCID: PMC2031826 DOI: 10.1371/journal.pone.0001063] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/11/2007] [Indexed: 11/21/2022] Open
Abstract
Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher interferon-γ ELIspot responses to the PkCSP antigen correlated with earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect.
Collapse
Affiliation(s)
- Walter R Weiss
- Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hutchings CL, Birkett AJ, Moore AC, Hill AVS. Combination of protein and viral vaccines induces potent cellular and humoral immune responses and enhanced protection from murine malaria challenge. Infect Immun 2007; 75:5819-26. [PMID: 17908809 PMCID: PMC2168343 DOI: 10.1128/iai.00828-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The search for an efficacious vaccine against malaria is ongoing, and it is now widely believed that to confer protection a vaccine must induce very strong cellular and humoral immunity concurrently. We studied the immune response in mice immunized with the recombinant viral vaccines fowlpox strain FP9 and modified virus Ankara (MVA), a protein vaccine (CV-1866), or a combination of the two; all vaccines express parts of the same preerythrocytic malaria antigen, the Plasmodium berghei circumsporozoite protein (CSP). Mice were then challenged with P. berghei sporozoites to determine the protective efficacies of different vaccine regimens. Two immunizations with the protein vaccine CV-1866, based on the hepatitis B core antigen particle, induced strong humoral immunity to the repeat region of CSP that was weakly protective against sporozoite challenge. Prime-boost with the viral vector vaccines, FP9 followed by MVA, induced strong T-cell immunity to the CD8+ epitope Pb9 and partially protected animals from challenge. Physically mixing CV-1866 with FP9 or MVA and then immunizing with the resultant combinations in a prime-boost regimen induced both cellular and humoral immunity and afforded substantially higher levels of protection (combination, 90%) than either vaccine alone (CV-1866, 12%; FP9/MVA, 37%). For diseases such as malaria in which different potent immune responses are required to protect against different stages, using combinations of partially effective vaccines may offer a more rapid route to achieving deployable levels of efficacy than individual vaccine strategies.
Collapse
MESH Headings
- Animals
- Anopheles/parasitology
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/immunology
- Antibody Affinity/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Epitopes, B-Lymphocyte/immunology
- Female
- Hepatitis B Core Antigens/genetics
- Hepatitis B Core Antigens/immunology
- Malaria/immunology
- Malaria/parasitology
- Malaria/prevention & control
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/pharmacology
- Mice
- Mice, Inbred BALB C
- Plasmodium berghei/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Sporozoites/immunology
- Th1 Cells/immunology
- Vaccines, Combined/genetics
- Vaccines, Combined/immunology
- Vaccines, Combined/pharmacology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- Claire L Hutchings
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom.
| | | | | | | |
Collapse
|
43
|
Zhang L, Jin N, Song Y, Wang H, Ma H, Li Z, Jiang W. Construction and characterization of a recombinant fowlpox virus containing HIV-1 multi-epitope-p24 chimeric gene in mice. ACTA ACUST UNITED AC 2007; 50:212-20. [PMID: 17447028 DOI: 10.1007/s11427-007-0017-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A recombinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the downstream of the promoter (ATI-P7.5x20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous recombination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by genome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowlpox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation. Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were assayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4(+) T, CD8(+) T) were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cytokines (IFN-gamma and IL-2) of spleen lymphocytes stimulated by H-2(d)-restricted CTL peptide were observed in immunized mice. We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.
Collapse
Affiliation(s)
- LiShu Zhang
- The 11th Institute, Academy of Military Medical Sciences, Changchun 130062, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Barbey C, Pradervand E, Barbier N, Spertini F. Ex vivo monitoring of antigen-specific CD4+ T cells after recall immunization with tetanus toxoid. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1108-16. [PMID: 17634505 PMCID: PMC2043311 DOI: 10.1128/cvi.00004-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To monitor antigen-specific CD4+ T cells during a recall immune response to tetanus toxoid (TT), a sequential analysis including ex vivo phenotyping and cytokine flow cytometry, followed by cloning and T-cell-receptor (TCR) spectratyping of cytokine-positive CD4+ T cells, was performed. Grossly, twice as many TT-specific CD4+ T-cell clones, ex vivo derived from the CCR7+/- CD69+ interleukin-2-positive (IL-2+) CD4+ subsets, belonged to the central memory (T(CM); CD62L+ CD27+ CCR7+) compared to the effector memory population (T(EM); CD62L- CD27- CCR7-). After the boost, a predominant expansion of the T(CM) population was observed with more limited variations of the T(EM) population. TCR beta-chain-variable region (BV) spectratyping and sequencing confirmed a large concordance between most frequently expressed BV TCR-CDR3 from ex vivo-sorted CCR7+/- CD69+ IL-2+ CD4+ subsets and BV usage of in vitro-derived TT-specific CD4+ T-cell clones, further demonstrating the highly polyclonal but stable character of the specific recall response to TT. Taken together, ex vivo flow cytometry analysis focused on the CCR7+/- CD69+ IL-2+ CD4+ subsets appears to target the bulk of antigen-specific T cells and to reach an analytical power sufficient to adequately delineate in field trials the profile of the antigen-specific response to vaccine.
Collapse
Affiliation(s)
- Catherine Barbey
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
45
|
Abstract
Vaccines that comprise attenuated viral vectors encoding antigens from target pathogens generate potent T-cell responses. One such pathogen is malaria, and in particular the liver stage of its life cycle. Immunogenicity and efficacy studies in animals and humans have revealed the generation of memory T cells of both the central and effector phenotypes, depending on the viral vectors used in the malaria vaccination regime (viral species and serotype, combination and sequence for prime-boost) and suggest a divergence in their protective role. Being able to influence the memory T-cell make-up in a rational manner may allow us to develop more efficacious vaccines.
Collapse
|
46
|
Ranasinghe C, Turner SJ, McArthur C, Sutherland DB, Kim JH, Doherty PC, Ramshaw IA. Mucosal HIV-1 Pox Virus Prime-Boost Immunization Induces High-Avidity CD8+ T Cells with Regime-Dependent Cytokine/Granzyme B Profiles. THE JOURNAL OF IMMUNOLOGY 2007; 178:2370-9. [PMID: 17277143 DOI: 10.4049/jimmunol.178.4.2370] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The quality of virus-specific CD8(+) CTL immune responses generated by mucosal and systemic poxvirus prime-boost vaccines were evaluated in terms of T cell avidity and single-cell analysis of effector gene expression. Intranasal (I.N.) immunization regimes generated higher avidity CTL responses specific for HIV K(d)Gag(197-205) (amino acid sequence AMQMLKETI; H-2K(d) binding) compared with i.m. immunization regime. Single-cell RT-PCR of K(d)Gag(197-205)-specific mucosal and systemic CTL revealed that the cytokine and granzyme B expression profiles were dependent on both the route and time after immunization. The I.N./i.m.-immunized group elicited elevated number of CTL-expressing granzyme B mRNA from the genitomucosal sites compared with the i.m./i.m. regime. Interestingly, CTL generated after both I.N. or i.m. immunization demonstrated expression of Th2 cytokine IL-4 mRNA that was constitutively expressed over time, although lower numbers were observed after I.N./I.N. immunization. Results suggest that after immunization, Ag-specific CTL expression of IL-4 may be an inherent property of the highly evolved poxvirus vectors. Current observations indicate that the quality of CTL immunity generated after immunization can be influenced by the inherent property of vaccine vectors and route of vaccine delivery. A greater understanding of these factors will be crucial for the development of effective vaccines in the future.
Collapse
Affiliation(s)
- Charani Ranasinghe
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Poxviruses identified in skin lesions of domestic, pet or wild birds are assigned largely by default to the Avipoxvirus genus within the subfamily Chordopoxvirinae of the family Poxviridae. Avipoxviruses have been identified as the causative agent of disease in at least 232 species in 23 orders of birds. Vaccines based upon attenuated avipoxvirus strains provide good disease control in production poultry, although with the large and intensive production systems there are suggestions and real risks of emergence of strains against which current vaccines might be ineffective. Sequence analysis of the whole genome has revealed overall genome structure and function resemblance to the Chordopoxvirinae; however, avipoxvirus genomes exhibit large-scale genomic rearrangements with more extensive gene families and novel host range gene in comparison with the other Chordopoxvirinae. Phylogenetic analysis places the avipoxviruses externally to the Chorodopoxvirinae to such an extent that in the future it might be appropriate to consider the Avipoxviruses as a separate subfamily within the Poxviridae. A unique relationship exists between Fowlpox virus (FWPV) and reticuloendothelosis viruses. All FWPV strains carry a remnant long terminal repeat, while field strains carry a near full-length provirus integrated at the same location in the FWPV genome. With the development of techniques to construct poxviruses expressing foreign vaccine antigens, the avipoxviruses have gone from neglected obscurity to important vaccine vectors in the past 20 years. The seminal observation of their utility for delivery of vaccine antigens to non-avian species has driven much of the interest in this group of viruses. In the veterinary area, several recombinant avipoxviruses are commercially licensed vaccines. The most successful have been those expressing glycoprotein antigens of enveloped viruses, e.g. avian influenza, Newcastle diseases and West Nile viruses. Several recombinants have undergone extensive human clinical trials as experimental vaccines against HIV/AIDS and malaria or as treatment regimens in cancer patients. The safety profile of avipoxvirus recombinants for use as veterinary and human vaccines or therapeutics is now well established.
Collapse
Affiliation(s)
- Andrew A. Mercer
- Department of Microbiology, University of Otago, 56, 700 Cumberland Street, Dunedin, New Zealand
| | - Axel Schmidt
- Faculty of Medicine, University Witten/Herdecke, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
| | - Olaf Weber
- BAYER HEALTHCARE AG, Product-related Research, 42096 Wuppertal, Germany
| |
Collapse
|
48
|
Beukema EL, Brown MP, Hayball JD. The potential role of fowlpox virus in rational vaccine design. Expert Rev Vaccines 2006; 5:565-77. [PMID: 16989636 DOI: 10.1586/14760584.5.4.565] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The design of optimal vaccines requires detailed knowledge of how protective immune responses are generated in vivo under normal circumstances. This approach to vaccine development, where the immune correlates of protection are defined and vaccines are designed to elicit the same response, is called rational vaccine design. Poxviruses are attractive candidates for inclusion in such design strategies owing to their large genome, which allows for the inclusion of multiple heterologous genes, including those encoding antigens, co-stimulatory molecules and cytokines. Fowlpox virus, the prototypical member of the Avipoxvirus genus, is particularly suitable, as it is also incapable of replicating in mammalian cells. The potential of recombinant fowlpox virus as a safe vaccine vector is being evaluated currently in a number of clinical trials for diseases, including HIV, malaria and various types of cancer. Despite their promise, intricate details regarding how fowlpox virus interacts with the host immune system have not been resolved. In this review, the issues surrounding the use of fowlpox virus as a vaccine vector and possible strategies for enhancing its efficacy are discussed.
Collapse
Affiliation(s)
- Emma L Beukema
- Experimental Therapeutics Laboratory, Hanson Institute, Level 4, Hanson Institute Building, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | |
Collapse
|
49
|
Bejon P, Mwacharo J, Kai O, Mwangi T, Milligan P, Todryk S, Keating S, Lang T, Lowe B, Gikonyo C, Molyneux C, Fegan G, Gilbert SC, Peshu N, Marsh K, Hill AVS. A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLOS CLINICAL TRIALS 2006; 1:e29. [PMID: 17053830 PMCID: PMC1617125 DOI: 10.1371/journal.pctr.0010029] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/01/2006] [Indexed: 11/30/2022]
Abstract
Objective: The objective was to measure the efficacy of the vaccination regimen FFM ME-TRAP in preventing episodes of clinical malaria among children in a malaria endemic area. FFM ME-TRAP is sequential immunisation with two attenuated poxvirus vectors (FP9 and modified vaccinia virus Ankara), which both deliver the pre-erythrocytic malaria antigen construct multiple epitope–thrombospondin-related adhesion protein (ME-TRAP). Design: The trial was randomised and double-blinded. Setting: The setting was a rural, malaria-endemic area of coastal Kenya. Participants: We vaccinated 405 healthy 1- to 6-year-old children. Interventions: Participants were randomised to vaccination with either FFM ME-TRAP or control (rabies vaccine). Outcome Measures: Following antimalarial drug treatment children were seen weekly and whenever they were unwell during nine months of monitoring. The axillary temperature was measured, and blood films taken when febrile. The primary analysis was time to a parasitaemia of over 2,500 parasites/μl. Results: The regime was moderately immunogenic, but the magnitude of T cell responses was lower than in previous studies. In intention to treat (ITT) analysis, time to first episode was shorter in the FFM ME-TRAP group. The cumulative incidence of febrile malaria was 52/190 (27%) for FFM ME-TRAP and 40/197 (20%) among controls (hazard ratio = 1.52). This was not statistically significant (95% confidence interval [CI] 1.0–2.3; p = 0.14 by log-rank). A group of 346 children were vaccinated according to protocol (ATP). Among these children, the hazard ratio was 1.3 (95% CI 0.8–2.1; p = 0.55 by log-rank). When multiple malaria episodes were included in the analyses, the incidence rate ratios were 1.6 (95% CI 1.1–2.3); p = 0.017 for ITT, and 1.4 (95% CI 0.9–2.1); p = 0.16 for ATP. Haemoglobin and parasitaemia in cross-sectional surveys at 3 and 9 mo did not differ by treatment group. Among children vaccinated with FFM ME-TRAP, there was no correlation between immunogenicity and malaria incidence. Conclusions: No protection was induced against febrile malaria by this vaccine regimen. Future field studies will require vaccinations with stronger immunogenicity in children living in malarious areas. Background: Malaria kills over a million people a year worldwide, and young children in sub-Saharan are particularly at risk. Cheap, safe, and effective vaccines are needed. One strategy involves a double-vaccination process. This approach (termed “prime-boost”) uses two different delivery methods to transmit the same antigen (part of a protein from the malaria parasite that can trigger an immune response). The two-step vaccination is designed to achieve a greater immune response than with just one vaccination. One research group, based in Oxford in the UK, is using an antigen called “ME-TRAP,” which is delivered using first a strain of modified fowlpox virus (called FP9), then a weakened vaccinia virus (called MVA). Previous studies done in adult UK volunteers have been promising, achieving an immune response and some protection against malaria when volunteers were deliberately infected. However, this approach has not been tested in the group most in need of a vaccine—young African children. Therefore a field trial was conducted among 405 healthy children aged 1–6 years, in a region of Kenya with year-round malaria transmission. Children were randomized to receive either the sequence of vaccines delivering ME-TRAP or to receive a rabies vaccine (as control, but which still gives the children some benefit for taking part in the trial). The children were followed up for nine months, and the primary aim of the trial was to compare the occurrence of clinical malaria (fever combined with malaria parasites in the blood) in the two groups. What this trial shows: In the 387 children receiving vaccine and having at least one follow-up visit the vaccine did produce an immune response; however, this immune response did not seem to be protective, as the occurrence of malaria was slightly higher in the group receiving the candidate vaccine—although this difference was not statistically significant. Safety data were also collected; the number and severity of adverse events were similar between volunteers receiving the rabies vaccine and those receiving the candidate malaria vaccine, and any serious events were not judged to be linked to the vaccines by the trial's data safety monitoring board. Strengths and limitations: The methods used in the trial were robust, using appropriate randomization procedures and blinding of participants and researchers. Outcome measures (clinical malaria, defined as fever together with parasites in the blood over 2,500/microliter) were clinically relevant. In order to detect cases of malaria in vaccinated children, health workers visited children weekly, and children with a temperature over 37.5 °C were tested for parasites in the blood. (In between the weekly visits, self-report and referral for assessment also allowed detection of cases.) This process of active detection of malaria cases (as opposed to obtaining data on clinical malaria only from self-report or referral) enables a smaller sample size to be used in the trial, but it is not clear whether this approach is more or less specific at picking up malaria cases than are passive methods. The researchers aimed to ensure that their case detection methods were specific; for children with normal temperature, but reported by their parents as feverish, parasite tests were done only if subsequent temperature readings were high. Contribution to the evidence: Previous studies of ME-TRAP using the FP9 and MVA vectors have shown the candidate vaccine is safe and induces a strong immune response. The safety result was also supported by the findings of the current trial, conducted in young Kenyan children, but a 5-fold lower immune response was found compared to previous studies. The trial showed that this weak immune response was not effective at preventing clinical cases of malaria in this group of children, although it is not clear why the immune response was lower than expected.
Collapse
Affiliation(s)
- Philip Bejon
- Kenya Medical Research Institute, Centre for Geographical Medicine Research (Coast), Kilifi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
De Rose R, Batten CJ, Smith MZ, Fernandez CS, Peut V, Thomson S, Ramshaw IA, Coupar BEH, Boyle DB, Venturi V, Davenport MP, Kent SJ. Comparative efficacy of subtype AE simian-human immunodeficiency virus priming and boosting vaccines in pigtail macaques. J Virol 2006; 81:292-300. [PMID: 17050602 PMCID: PMC1797265 DOI: 10.1128/jvi.01727-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination against AIDS is hampered by great diversity between human immunodeficiency virus (HIV) strains. Heterologous B-subtype-based simian-human immunodeficiency virus (SHIV) DNA prime and poxvirus boost vaccine regimens can induce partial, T-cell-mediated, protective immunity in macaques. We analyzed a set of DNA, recombinant fowlpox viruses (FPV), and vaccinia viruses (VV) expressing subtype AE HIV type 1 (HIV-1) Tat, Rev, and Env proteins and SIV Gag/Pol in 30 pigtail macaques. SIV Gag-specific CD4 and CD8 T-cell responses were induced by sequential DNA/FPV vaccination, although lower FPV doses, VV/FPV vaccination, and DNA vaccines alone were not as consistently immunogenic. The SHIV AE DNA prime, FPV boost regimens were significantly less immunogenic than comparable B-subtype SHIV vaccination. Peak viral load was modestly (0.4 log10 copies/ml) lower among the AE subtype SHIV-immunized animals compared to controls following the virulent B subtype SHIV challenge. Protection from persistent high levels of viremia and CD4 T-cell depletion was less in AE subtype compared to B subtype SHIV-vaccinated macaques. Gag was highly immunodominant over the other AE subtype SHIV vaccine proteins after vaccination, and this immunodominance was exacerbated after challenge. Interestingly, the lower level of priming of immune responses did not blunt postchallenge Gag-specific recall responses, despite more modest protection. These studies suggest priming of T-cell immunity to prevent AIDS in humans is possible, but differences in the immunogenicity of various subtype vaccines and broad cross-subtype protection are substantial hurdles.
Collapse
Affiliation(s)
- Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|