1
|
Peeva E, Yamaguchi Y, Ye Z, King B, Picardo M, Sloan A, Ezzedine K, Del Duca E, Estrada Y, Hassan-Zahraee M, He W, Hyde C, Bar J, Facheris P, Guttman-Yassky E. Efficacy and safety of ritlecitinib in vitiligo patients across Fitzpatrick skin types with biomarker analyses. Exp Dermatol 2024; 33:e15177. [PMID: 39304339 DOI: 10.1111/exd.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Efficacy and safety of ritlecitinib (an oral JAK3/TEC family kinase inhibitor) were evaluated in patients with nonsegmental vitiligo (NSV) across Fitzpatrick skin types (FSTs). Patients with FST I-III ('light skin'; n = 247) and FST IV-VI ('dark skin'; n = 117) received once-daily ritlecitinib 50 mg (with/without 4-week loading dose), low-dose ritlecitinib or placebo for 24 weeks. At baseline, patients with light skin displayed higher CLM-1 and NCR1 serum levels than patients with dark skin (p < 0.05). At 24 weeks, ritlecitinib 50 mg improved the extent of depigmentation measured by percent change from baseline in facial-vitiligo area scoring index (placebo-adjusted mean difference [90% CI]) in patients with light (-15.2 [-24.7, -5.8]; p = 0.004) and dark (-37.4 [-50.3, -24.4]; p < 0.0001) skin, with continuous re-pigmentation through week 48. Treatment-emergent adverse events were similar across FSTs. At weeks 4 and 24, ritlecitinib 50 mg reduced CXCL11 serum levels (p < 0.001) in patients with light skin, whereas patients with dark skin had increased levels at week 4 (p = 0.05) and no significant change at week 24. Ritlecitinib 50 mg decreased IL-9 and IL-22 expression levels in dark skin compared with light skin (qPCR; p < 0.05). These differences in immune dysregulations may explain why NSV patients with dark skin respond to therapy earlier than patients with light skin.
Collapse
Affiliation(s)
- Elena Peeva
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Yuji Yamaguchi
- Inflammation and Immunology Research Unit, Pfizer, Collegeville, Pennsylvania, USA
| | - Zhan Ye
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Brett King
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mauro Picardo
- Istituto Dermopatico dell Immacolata, IDI, IRCCS, Rome, Italy
- Cutaneous Physiopathology Laboratory, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Abigail Sloan
- Clinical Statistics, Pfizer, Cambridge, Massachusetts, USA
| | - Khaled Ezzedine
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
| | - Yeriel Estrada
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
| | - Mina Hassan-Zahraee
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Wen He
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Craig Hyde
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Johnathan Bar
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paola Facheris
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Trejo-Moreno C, Alvarado-Ojeda ZA, Méndez-Martínez M, Cruz-Muñoz ME, Castro-Martínez G, Arrellín-Rosas G, Zamilpa A, Jimenez-Ferrer JE, Baez Reyes JC, Fragoso G, Salgado GR. Aqueous Fraction from Cucumis sativus Aerial Parts Attenuates Angiotensin II-Induced Endothelial Dysfunction In Vivo by Activating Akt. Nutrients 2023; 15:4680. [PMID: 37960332 PMCID: PMC10649625 DOI: 10.3390/nu15214680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Endothelial dysfunction (ED) is a marker of vascular damage and a precursor of cardiovascular diseases such as hypertension, which involve inflammation and organ damage. Nitric oxide (NO), produced by eNOS, which is induced by pAKT, plays a crucial role in the function of a healthy endothelium. METHODS A combination of subfractions SF1 and SF3 (C4) of the aqueous fraction from Cucumis sativus (Cs-Aq) was evaluated to control endothelial dysfunction in vivo and on HMEC-1 cells to assess the involvement of pAkt in vitro. C57BL/6J mice were injected daily with angiotensin II (Ang-II) for 10 weeks. Once hypertension was established, either Cs-AqC4 or losartan was orally administered along with Ang-II for a further 10 weeks. Blood pressure (BP) was measured at weeks 0, 5, 10, 15, and 20. In addition, serum creatinine, inflammatory status (in the kidney), tissue damage, and vascular remodeling (in the liver and aorta) were evaluated. Cs-AqC4 was also tested in vitro on HMEC-1 cells stimulated by Ang-II to assess the involvement of Akt phosphorylation. RESULTS Cs-AqC4 decreased systolic and diastolic BP, reversed vascular remodeling, decreased IL-1β and TGF-β, increased IL-10, and decreased kidney and liver damage. In HMEC-1 cells, AKT phosphorylation and NO production were increased. CONCLUSIONS Cs-AqC4 controlled inflammation and vascular remodeling, alleviating hypertension; it also improved tissue damage associated with ED, probably via Akt activation.
Collapse
Affiliation(s)
- Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
| | - Zimri Aziel Alvarado-Ojeda
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
| | - Marisol Méndez-Martínez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México 04960, Mexico;
| | - Mario Ernesto Cruz-Muñoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
| | - Gabriela Castro-Martínez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico;
| | - Gerardo Arrellín-Rosas
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
- Facultad de Ciencias de la Salud, Universidad Panamericana, Ciudad de México 03920, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Morelos, Mexico; (A.Z.); (J.E.J.-F.)
| | - Jesús Enrique Jimenez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Morelos, Mexico; (A.Z.); (J.E.J.-F.)
| | - Juan Carlos Baez Reyes
- Escuela Nacional Preparatoria No. 1, Universidad Nacional Autónoma de México, Ciudad de México 16030, Mexico;
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Gabriela Rosas Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Morelos, Mexico; (C.T.-M.); (Z.A.A.-O.); (M.E.C.-M.); (G.A.-R.)
| |
Collapse
|
3
|
Lü L, Yakoumatos L, Ren J, Duan X, Zhou H, Gu Z, Mohammed M, Uriarte SM, Liang S, Scott DA, Lamont RJ, Wang H. JAK3 restrains inflammatory responses and protects against periodontal disease through Wnt3a signaling. FASEB J 2020; 34:9120-9140. [PMID: 32433819 DOI: 10.1096/fj.201902697rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Homeostasis between pro- and anti- inflammatory responses induced by bacteria is critical for the maintenance of health. In the oral cavity, pro-inflammatory mechanisms induced by pathogenic bacteria are well-established; however, the anti-inflammatory responses that act to restrain innate responses remain poorly characterized. Here, we demonstrate that infection with the periodontal pathogen Porphyromonas gingivalis enhances the activity of Janus kinase 3 (JAK3) in innate immune cells, and subsequently phospho-inactivates Nedd4-2, an ubiquitin E3 ligase. In turn, Wingless-INT (Wnt) 3 (Wnt3) ubiquitination is decreased, while total protein levels are enhanced, leading to a reduction in pro-inflammatory cytokine levels. In contrast, JAK3 or Wnt3a inhibition robustly enhances nuclear factor kappa-light-chain-enhancer of activated B cells activity and the production of pro-inflammatory cytokines in P. gingivalis-stimulated innate immune cells. Moreover, using gain- and loss-of-function approaches, we demonstrate that downstream molecules of Wnt3a signaling, including Dvl3 and β-catenin, are responsible for the negative regulatory role of Wnt3a. In addition, using an in vivo P. gingivalis-mediated periodontal disease model, we show that JAK3 inhibition enhances infiltration of inflammatory cells, reduces expression of Wnt3a and Dvl3 in P. gingivalis-infected gingival tissues, and increases disease severity. Together, our results reveal a new anti-inflammatory role for JAK3 in innate immune cells and show that the underlying signaling pathway involves Nedd4-2-mediated Wnt3a ubiquitination.
Collapse
Affiliation(s)
- Lanhai Lü
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Junling Ren
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaoxian Duan
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Huaxin Zhou
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhen Gu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Muddasir Mohammed
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Quero L, Tiaden AN, Hanser E, Roux J, Laski A, Hall J, Kyburz D. miR-221-3p Drives the Shift of M2-Macrophages to a Pro-Inflammatory Function by Suppressing JAK3/STAT3 Activation. Front Immunol 2020; 10:3087. [PMID: 32047494 PMCID: PMC6996464 DOI: 10.3389/fimmu.2019.03087] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: Macrophages are conventionally classified as pro-inflammatory (M1) and anti-inflammatory (M2) functional types. There is evidence for a predominance of macrophages with an inflammatory phenotype (M1) in the rheumatoid arthritis (RA) synovium. MicroRNAs (miRs) play a pivotal role in regulating the inflammatory response in innate immune cells and are found at dysregulated levels in RA patients. Here we explored miRs that tune the inflammatory function of M2-macrophages. Methods: Expression profiles of miR-221-3p and miR-155-5p were analyzed in clinical samples from RA, other inflammatory arthritis (OIA), osteoarthritis (OA), and healthy donors (HD) by qPCR. In vitro generated macrophages were transfected with miR-mimics and inhibitors. Transcriptome profiling through RNA-sequencing was performed on M2-macrophages overexpressing miR-221-3p mimic with or without LPS treatment. Secretion of IL-6, IL-10, IL-12, IL-8, and CXCL13 was measured in M1- and M2-macrophages upon TLR2/TLR3/TLR4-stimulation using ELISA. Inflammatory pathways including NF-κB, IRF3, MAPKs, and JAK3/STAT3 were evaluated by immunoblotting. Direct target interaction of miR-221-3p and predicted target sites in 3'UTR of JAK3 were examined by luciferase reporter gene assay. Results: miR-221-3p in synovial tissue and fluid was increased in RA vs. OA or OIA. Endogenous expression levels of miR-221-3p and miR-155-5p were higher in M1- than M2-macrophages derived from RA patients or HD. TLR4-stimulation of M1- and M2-macrophages resulted in downregulation of miR-221-3p, but upregulation of miR-155-5p. M2-macrophages transfected with miR-221-3p mimics secreted less IL-10 and CXCL13 but more IL-6 and IL-8, exhibited downregulation of JAK3 protein and decreased pSTAT3 activation. JAK3 was identified as new direct target of miR-221-3p in macrophages. Co-transfection of miR-221-3p/miR-155-5p mimics in M2-macrophages increased M1-specific IL-12 secretion. Conclusions: miR-221-3p acts as a regulator of TLR4-induced inflammatory M2-macrophage function by directly targeting JAK3. Dysregulated miR-221-3p expression, as seen in synovium of RA patients, leads to a diminished anti-inflammatory response and drives M2-macrophages to exhibit a M1-cytokine profile.
Collapse
Affiliation(s)
- Lilian Quero
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - André N Tiaden
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Edveena Hanser
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Basel, Switzerland.,Bioinformatic Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Diego Kyburz
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
|
6
|
Abstract
BACKGROUND Melioidosis, caused by the gram-negative bacterium Burkholderia pseudomallei, is a common cause of community-acquired sepsis in Southeast Asia and Northern Australia. The NLRP3 inflammasome and its downstream product interleukin-1 beta (IL-1β) have been proposed to play crucial roles in melioidosis. In this study, we characterized the role of IL-1β more closely and we assessed its therapeutic potential. METHODS mRNA expression of inflammasome components was determined in isolated leukocytes of 32 healthy controls and 34 patients with sepsis caused by B pseudomallei.Wild-type (WT), NLRP3-deficient (Nlrp3), and Asc mice were infected with B pseudomallei. In additional experiments, infected WT mice were treated with an anti-IL-1β antibody. After 24, 48, and 72 hours (h) mice were sacrificed and organs were harvested. Furthermore, survival studies were performed. RESULTS Patients with melioidosis exhibited lower mRNA levels of caspase-1, NLRP3, and ASC. Bacterial dissemination and organ damage were increased in B pseudomallei-infected Nlrp3 and Asc mice, together with a reduced pulmonary cell influx. Anti-IL-1β treatment of B pseudomallei challenged mice resulted in strongly reduced bacterial counts, organ damage, and pulmonary granulocyte influx together with reduced mortality. Postponement of anti-IL-1β treatment for 24 h postinfection still protected mice during melioidosis. CONCLUSION Expression of caspase-1, NLRP3, and ASC is altered in melioidosis patients. In mice, both NLRP3 and ASC contribute to the host defense against melioidosis. Anti-IL-1β treatment protects mice against B pseudomallei infection and might be a novel treatment strategy in melioidosis.
Collapse
|
7
|
Kuuliala K, Kuuliala A, Koivuniemi R, Kautiainen H, Repo H, Leirisalo-Repo M. Baseline JAK phosphorylation profile of peripheral blood leukocytes, studied by whole blood phosphospecific flow cytometry, is associated with 1-year treatment response in early rheumatoid arthritis. Arthritis Res Ther 2017; 19:75. [PMID: 28399940 PMCID: PMC5387378 DOI: 10.1186/s13075-017-1278-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Background We found recently that baseline signal transducer and activator of transcription 3 phosphorylation in peripheral blood CD4+ T cells of patients with early rheumatoid arthritis (RA) is associated with treatment response to synthetic disease-modifying antirheumatic drugs (DMARDs). This prompted us to study the baseline phosphorylation profiles of Janus kinases (JAKs) in blood leukocytes with respect to treatment response in early RA. Methods Thirty-five DMARD-naïve patients with early RA provided blood samples for whole blood flow cytometric determination of phosphorylation of JAKs in CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes. Treatment response was determined after 1 year of treatment with synthetic DMARDs, with remission defined as absence of tender and swollen joints and normal erythrocyte sedimentation rate. Exact logistic regression was used to investigate the association of baseline variables with treatment response. Ninety-five percent CIs of means were estimated by bias-corrected bootstrapping. Results High JAK3 phosphorylation in CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes and low JAK2 phosphorylation in CD14+ monocytes were significantly associated with remission following treatment with synthetic DMARDs. Conclusions Baseline JAK phosphorylation profile in peripheral blood leukocytes may provide a means to predict treatment response achieved by synthetic DMARDs among patients with early RA.
Collapse
Affiliation(s)
- Krista Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Antti Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Riitta Koivuniemi
- Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hannu Kautiainen
- Primary Health Care, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,General Practice, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Unit of Primary Health Care, Kuopio University Hospital, Kuopio, Finland
| | - Heikki Repo
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
8
|
Abraham C, Dulai PS, Vermeire S, Sandborn WJ. Lessons Learned From Trials Targeting Cytokine Pathways in Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:374-388.e4. [PMID: 27780712 PMCID: PMC5287922 DOI: 10.1053/j.gastro.2016.10.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 02/08/2023]
Abstract
Insights into the pathogenesis of inflammatory bowel diseases (IBDs) have provided important information for the development of therapeutics. Levels of interleukin 23 (IL23) and T-helper (Th) 17 cell pathway molecules are increased in inflamed intestinal tissues of patients with IBD. Loss-of-function variants of the IL23-receptor gene (IL23R) protect against IBD, and, in animals, blocking IL23 reduces the severity of colitis. These findings indicated that the IL23 and Th17 cell pathways might be promising targets for the treatment of IBD. Clinical trials have investigated the effects of agents designed to target distinct levels of the IL23 and Th17 cell pathways, and the results are providing insights into IBD pathogenesis and additional strategies for modulating these pathways. Strategies to reduce levels of proinflammatory cytokines more broadly and increase anti-inflammatory mechanisms also are emerging for the treatment of IBD. The results from trials targeting these immune system pathways have provided important lessons for future trials. Findings indicate the importance of improving approaches to integrate patient features and biomarkers of response with selection of therapeutics.
Collapse
Affiliation(s)
- Clara Abraham
- Section of Digestive Diseases, Yale University, New Haven, Connecticut.
| | - Parambir S Dulai
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| | - Séverine Vermeire
- Department of Gastroenterology, University Hospital Leuven, Leuven, Belgium
| | - William J Sandborn
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Arbore G, Kemper C. A novel "complement-metabolism-inflammasome axis" as a key regulator of immune cell effector function. Eur J Immunol 2016; 46:1563-73. [PMID: 27184294 PMCID: PMC5025719 DOI: 10.1002/eji.201546131] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/27/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
Abstract
The inflammasomes are intracellular multiprotein complexes that induce and regulate the generation of the key pro‐inflammatory cytokines IL‐1β and IL‐18 in response to infectious microbes and cellular stress. The activation of inflammasomes involves several upstream signals including classic pattern or danger recognition systems such as the TLRs. Recently, however, the activation of complement receptors, such as the anaphylatoxin C3a and C5a receptors and the complement regulator CD46, in conjunction with the sensing of cell metabolic changes, for instance increased amino acid influx and glycolysis (via mTORC1), have emerged as additional critical activators of the inflammasome. This review summarizes recent advances in our knowledge about complement‐mediated inflammasome activation, with a specific focus on a novel “complement – metabolism – NLRP3 inflammasome axis.”
Collapse
Affiliation(s)
- Giuseppina Arbore
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London, UK
| | - Claudia Kemper
- MRC Centre for Transplantation, Division of Transplant Immunology and Mucosal Biology, King's College London, London, UK.,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
10
|
Mitra S, Wewers MD, Sarkar A. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury. PLoS One 2015; 10:e0145607. [PMID: 26710067 PMCID: PMC4692444 DOI: 10.1371/journal.pone.0145607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.
Collapse
Affiliation(s)
- Srabani Mitra
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
11
|
Exline MC, Justiniano S, Hollyfield JL, Berhe F, Besecker BY, Das S, Wewers MD, Sarkar A. Microvesicular caspase-1 mediates lymphocyte apoptosis in sepsis. PLoS One 2014; 9:e90968. [PMID: 24643116 PMCID: PMC3958341 DOI: 10.1371/journal.pone.0090968] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
Objective Immune dysregulation during sepsis is poorly understood, however, lymphocyte apoptosis has been shown to correlate with poor outcomes in septic patients. The inflammasome, a molecular complex which includes caspase-1, is essential to the innate immune response to infection and also important in sepsis induced apoptosis. Our group has recently demonstrated that endotoxin-stimulated monocytes release microvesicles (MVs) containing caspase-1 that are capable of inducing apoptosis. We sought to determine if MVs containing caspase-1 are being released into the blood during human sepsis and induce apoptosis.. Design Single-center cohort study Measurements 50 critically ill patients were screened within 24 hours of admission to the intensive care unit and classified as either a septic or a critically ill control. Circulatory MVs were isolated and analyzed for the presence of caspase-1 and the ability to induce lymphocyte apoptosis. Patients remaining in the ICU for 48 hours had repeated measurement of caspase-1 activity on ICU day 3. Main Results Septic patients had higher microvesicular caspase-1 activity 0.05 (0.04, 0.07) AFU versus 0.0 AFU (0, 0.02) (p<0.001) on day 1 and this persisted on day 3, 0.12 (0.1, 0.2) versus 0.02 (0, 0.1) (p<0.001). MVs isolated from septic patients on day 1 were able to induce apoptosis in healthy donor lymphocytes compared with critically ill control patients (17.8±9.2% versus 4.3±2.6% apoptotic cells, p<0.001) and depletion of MVs greatly diminished this apoptotic signal. Inhibition of caspase-1 or the disruption of MV integrity abolished the ability to induce apoptosis. Conclusion These findings suggest that microvesicular caspase-1 is important in the host response to sepsis, at least in part, via its ability to induce lymphocyte apoptosis. The ability of microvesicles to induce apoptosis requires active caspase-1 and intact microvesicles.
Collapse
Affiliation(s)
- Matthew C. Exline
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Steven Justiniano
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Jennifer L. Hollyfield
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Freweine Berhe
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Beth Y. Besecker
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Srabani Das
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
Wang H, Brown J, Gao S, Liang S, Jotwani R, Zhou H, Suttles J, Scott DA, Lamont RJ. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1164-74. [PMID: 23797672 DOI: 10.4049/jimmunol.1203084] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.
Collapse
Affiliation(s)
- Huizhi Wang
- Oral Health and Systemic Disease Research Group, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Benoit ME, Clarke EV, Morgado P, Fraser DA, Tenner AJ. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5682-93. [PMID: 22523386 DOI: 10.4049/jimmunol.1103760] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Deficiency in C1q, the recognition component of the classical complement cascade and a pattern recognition receptor involved in apoptotic cell clearance, leads to lupus-like autoimmune diseases characterized by auto-antibodies to self proteins and aberrant innate immune cell activation likely due to impaired clearance of apoptotic cells. In this study, we developed an autologous system using primary human lymphocytes and human monocyte-derived macrophages (HMDMs) to characterize the effect of C1q on macrophage gene expression profiles during the uptake of apoptotic cells. C1q bound to autologous apoptotic lymphocytes modulated expression of genes associated with JAK/STAT signaling, chemotaxis, immunoregulation, and NLRP3 inflammasome activation in LPS-stimulated HMDMs. Specifically, C1q sequentially induced type I IFNs, IL-27, and IL-10 in LPS-stimulated HMDMs and IL-27 in HMDMs when incubated with apoptotic lymphocyte conditioned media. Coincubation with C1q tails prevented the induction of type I IFNs and IL-27 in a dose-dependent manner, and neutralization of type I IFNs partially prevented IL-27 induction by C1q. Finally, C1q decreased procaspase-1 cleavage and caspase-1-dependent cleavage of IL-1β suggesting a potent inhibitory effect of C1q on inflammasome activation. These results identify specific molecular pathways induced by C1q to suppress macrophage inflammation and provide potential therapeutic targets to control macrophage polarization and thus inflammation and autoimmunity.
Collapse
Affiliation(s)
- Marie E Benoit
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
14
|
Bian ZM, Elner SG, Khanna H, Murga-Zamalloa CA, Patil S, Elner VM. Expression and functional roles of caspase-5 in inflammatory responses of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2011; 52:8646-56. [PMID: 21969293 DOI: 10.1167/iovs.11-7570] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To investigate the expression, activation, and functional involvement of caspase-5 in human retinal pigment epithelial (hRPE) cells. METHODS Expression and activation of caspase-5 in primary cultured hRPE cells, telomerase-immortalized hTERT-RPE1 cells (hTERT-RPE1), or both, were measured after stimulation with proinflammatory agents IL-1β, TNF-α, lipopolysaccharide (LPS), interferon-γ, monocyte coculture, adenosine triphosphate (ATP), or endoplasmic reticulum (ER) stress inducers. Immunomodulating agents dexamethasone (Dex), IL-10, and triamcinolone acetonide (TA) were used to antagonize proinflammatory stimulation. Cell death ELISA and TUNEL staining assays were used to assess apoptosis. RESULTS Caspase-5 mRNA expression and protein activation were induced by LPS and monocyte-hRPE coculture. Caspase-5 activation appeared as early as 2 hours after challenge by LPS and consistently increased to 24 hours. Meanwhile, caspase-1 expression and protein activation were induced by LPS. Activation of caspase-5 was blocked or reduced by Dex, IL-10, and TA. Activation of caspase-5 and -1 was also enhanced by ATP and ER stress inducers. Expression and activation of caspase-5 were inhibited by a caspase-1-specific inhibitor. Caspase-5 knockdown reduced caspase-1 protein expression and activation and inhibited TNF-α-induced IL-8 and MCP-1. In contrast to caspase-4, the contribution of caspase-5 to stress-induced apoptosis was moderate. CONCLUSIONS Caspase-5 mRNA synthesis, protein expression, and catalytic activation were highly regulated in response to various proinflammatory stimuli, ATP, and ER stress inducers. Mutual activation between caspase-5 and -1 suggests caspase-5 may work predominantly in concert with caspase-1 in modulating hRPE inflammatory responses.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | |
Collapse
|
15
|
Manukyan MC, Alvernaz CH, Poynter JA, Wang Y, Brewster BD, Weil BR, Abarbanell AM, Herrmann JL, Crowe BJ, Keck AC, Meldrum DR. Interleukin-10 protects the ischemic heart from reperfusion injury via the STAT3 pathway. Surgery 2011; 150:231-9. [PMID: 21719057 DOI: 10.1016/j.surg.2011.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 05/16/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cardiac surgery induces the release of inflammatory mediators that can prolong cardiac dysfunction after operative intervention. Interleukin-10 (IL-10), a potent inhibitor of myocardial inflammation, is a known factor in myocardial protection after ischemia/reperfusion (I/R) injury. We hypothesized that IL-10 activity during initial reperfusion is mediated through the signal transducer and activator of transcription 3 (STAT3) pathway. METHODS Adult rat hearts were isolated and perfused via Langendorff protocol and subjected to global I/R. After determining the effective IL-10 dose, hearts were administered vehicle, IL-10, or IL-10 + Stattic (specific STAT3 inhibitor) 1 min prior to ischemia. After reperfusion, hearts were sectioned and assessed for levels of myocardial inflammatory cytokines and protein. RESULTS The IL-10 minimum effective dose was 1 μg. IL-10-treated hearts had improved markedly myocardial function after global I/R compared to both vehicle and IL-10 + Stattic groups. In addition, IL-10 treatment was associated with a significant decrease in myocardial interleukin-1β (IL-1β) and interleukin-6 (IL-6) and increase in myocardial IL-10. Myocardial STAT3 was elevated markedly in IL-10 treated hearts. CONCLUSION IL-10 improves myocardial function after acute global I/R and suppresses inflammation through the STAT3 pathway. The administration of anti-inflammatory agents may have potential therapeutic applications in cardiac surgery.
Collapse
Affiliation(s)
- Mariuxi C Manukyan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 2009; 4:e7140. [PMID: 19779610 PMCID: PMC2744928 DOI: 10.1371/journal.pone.0007140] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/29/2009] [Indexed: 01/20/2023] Open
Abstract
Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1beta and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death.
Collapse
Affiliation(s)
- Anasuya Sarkar
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Srabani Mitra
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Sonya Mehta
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Raquel Raices
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
17
|
Perfusion with lipopolysaccharide differently affects the secretion of interleukin-1 beta and interleukin-1 receptor antagonist by term and preterm human placentae. Placenta 2008; 29:593-601. [DOI: 10.1016/j.placenta.2008.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 03/30/2008] [Accepted: 03/31/2008] [Indexed: 11/18/2022]
|
18
|
Fahy RJ, Exline MC, Gavrilin MA, Bhatt NY, Besecker BY, Sarkar A, Hollyfield JL, Duncan MD, Nagaraja HN, Knatz NL, Hall M, Wewers MD. Inflammasome mRNA expression in human monocytes during early septic shock. Am J Respir Crit Care Med 2008; 177:983-8. [PMID: 18263805 DOI: 10.1164/rccm.200703-418oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Monocytes are central to the initiation of the inflammatory response in sepsis, with caspase-1 activation playing a key role. Monocyte deactivation during sepsis has been linked to poor outcomes. OBJECTIVES Given the importance of caspase-1 in the immune response, we investigated whether monocytes from patients early in septic shock demonstrate alterations in mRNAs for caspase-1-related molecules. METHODS Patients with septic shock (n = 26; age >18 years), critically ill intensive care unit patients (n = 20), and healthy volunteers (n = 22) were enrolled in a prospective cohort study in a university intensive care unit. Demographic, biological, physiologic, and plasma cytokine measurements were obtained. Monocytes were assayed for ex vivo tumor necrosis factor-alpha production, and fresh monocyte mRNA was analyzed by quantitative reverse-transcription polymerase chain reaction for Toll-like receptors, NOD-LRR proteins, cytokines, and nuclear factor-kappaB-related genes. MEASUREMENTS AND MAIN RESULTS Relative copy numbers for the inflammasome mRNAs for ASC, caspase-1, NALP1, and Pypaf-7 were significantly lower in patients with septic shock compared with critically ill control subjects. NALP1 mRNA levels were linked to survival in patients with sepsis (P = 0.0068) and correlated with SAPS II scores (r = -0.63). CONCLUSIONS These data suggest that monocyte deactivation occurs during the earliest stages of the systemic inflammatory response and that changes in inflammasome mRNA expression are part of this process.
Collapse
Affiliation(s)
- Ruairi J Fahy
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Seshadri S, Duncan MD, Hart JM, Gavrilin MA, Wewers MD. Pyrin levels in human monocytes and monocyte-derived macrophages regulate IL-1beta processing and release. THE JOURNAL OF IMMUNOLOGY 2007; 179:1274-81. [PMID: 17617620 DOI: 10.4049/jimmunol.179.2.1274] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages and their precursors, monocytes, are key cells involved in the innate immune response. Although both monocytes and macrophages produce caspase-1, the key enzyme responsible for pro-IL-1beta processing; macrophages are limited in their ability to activate the enzyme and release functional IL-1beta. In this context, because mutations in the pyrin gene (MEFV) cause the inflammatory disorder familial Mediterranean fever, pyrin is believed to regulate IL-1beta processing. To determine whether variations in pyrin expression explain the difference between monocytes and macrophages in IL-1beta processing and release, pyrin was studied in human monocytes and monocyte-derived macrophages. Although monocytes express pyrin mRNA and protein, which is readily inducible by endotoxin, monocyte-derived macrophages express significantly less pyrin mRNA and protein. Pyrin levels directly correlated with IL-1beta processing in monocytes and macrophages; therefore, we asked whether pyrin might promote IL-1beta processing and release. HEK293 cells were transfected with pyrin, caspase-1, apoptotic speck protein with a caspase recruitment domain, and IL-1beta. Pyrin induced IL-1beta processing and release in a dose-dependent manner. Conversely, pyrin small interference RNA suppressed pro-IL-1beta processing in both THP-1 cells and fresh human monocytes. In summary, both pyrin expression and IL-1beta processing and release are diminished upon the maturation of monocytes to macrophages. When pyrin is ectopically expressed or silenced, IL-1beta processing and release parallels the level of pyrin. In conclusion, in the context of endotoxin-induced activation of mononuclear phagocytes, pyrin augments IL-1beta processing and release.
Collapse
Affiliation(s)
- Sudarshan Seshadri
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
20
|
Sarkar A, Hall MW, Exline M, Hart J, Knatz N, Gatson NT, Wewers MD. Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med 2006; 174:1003-10. [PMID: 16908867 PMCID: PMC2648100 DOI: 10.1164/rccm.200604-546oc] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Caspase-1 processes interleukin 1beta (IL-1beta) and IL-18 but may also contribute to apoptosis. In this context, caspase-1 knockout mice have been shown to be protected from endotoxin-induced mortality, whereas IL-1beta knockout mice are not protected. OBJECTIVES We therefore sought to delineate the mechanisms responsible for the differential responses between caspase-1 and IL-1beta knockout mice. METHODS Caspase-1 knockout, IL-1beta knockout, and IL-1beta/IL-18 double knockout mice were compared with wild-type mice for survival after intraperitoneal challenge with live Escherichia coli. MEASUREMENTS AND MAIN RESULTS Caspase-1 knockout animals were protected from bacterial challenge, whereas wild-type, IL-1beta knockout, and IL-1beta/IL-18 double knockout animals were not. Wild-type animals and both IL-1beta knockout and IL-1beta/IL-18 double knockout mice demonstrated significant splenic B lymphocyte apoptosis, which was absent in the caspase-1 knockout mice. Importantly, IL-1beta/IL-18 double knockout mice were protected from splenic cell apoptosis and sepsis-induced mortality by the caspase inhibitor zVAD-fmk. Furthermore, wild-type but not caspase-1 knockout splenic B lymphocytes induced peritoneal macrophages to assume an inhibitory phenotype. CONCLUSION Taken together, these findings suggest that caspase-1 is important in the host response to sepsis at least in part via its ability to regulate sepsis-induced splenic cell apoptosis.
Collapse
Affiliation(s)
- Anasuya Sarkar
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Sarkar A, Duncan M, Hart J, Hertlein E, Guttridge DC, Wewers MD. ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. THE JOURNAL OF IMMUNOLOGY 2006; 176:4979-86. [PMID: 16585594 DOI: 10.4049/jimmunol.176.8.4979] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Receptor interacting protein-2 (RIP2) is a caspase recruitment domain (CARD)-containing kinase that interacts with caspase-1 and plays an important role in NF-kappaB activation. Apoptosis-associated speck-like protein containing a CARD (ASC) is a PYRIN and CARD-containing molecule, important in the induction of apoptosis and caspase-1 activation. Although RIP2 has also been linked to caspase-1 activation, RIP2 knockout animals fail to show a defect in caspase-1-mediated processing of proIL-1beta to its active form. Therefore, RIP2 function in binding to caspase-1 remains poorly understood. We hypothesized that caspase-1 may serve as a scaffolding molecule that promotes RIP2 interaction with IkappaB kinase-gamma thus inducing NF-kappaB activation. We further hypothesized that ASC, which also interacts with caspase-1 via its CARD, may interfere with the caspase-1 RIP2 interaction. In HEK293 cells, ASC induced prominent activation of caspase-1 and proIL-1beta processing. RIP2 transient transfection induced transcription of an NF-kappaB reporter gene. This RIP2-induced NF-kappaB activity and caspase-1 binding was inhibited in a dose-dependent fashion by ASC. Consistent with a role for caspase-1 as a scaffold for RIP2, caspase-1 knockout macrophages were suppressed in their ability to activate NF-kappaB, and septic caspase-1 knockout animals produced less IL-6, a functional marker of NF-kappaB activity. Lastly, THP-1 cells treated with small interfering RNA for ASC decreased their caspase-1 activity while enhancing their NF-kappaB signal. These data suggest that ASC may direct caspase-1 away from RIP2-mediated NF-kappaB activation, toward caspase-1-mediated processing of proIL-1beta by interfering with the RIP2 caspase-1 interaction.
Collapse
Affiliation(s)
- Anasuya Sarkar
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus 43210, USA
| | | | | | | | | | | |
Collapse
|
22
|
Linwong W, Hirasawa N, Aoyama S, Hamada H, Saito T, Ohuchi K. Inhibition of the antigen-induced activation of rodent mast cells by putative Janus kinase 3 inhibitors WHI-P131 and WHI-P154 in a Janus kinase 3-independent manner. Br J Pharmacol 2005; 145:818-28. [PMID: 15852029 PMCID: PMC1576194 DOI: 10.1038/sj.bjp.0706240] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 02/06/2023] Open
Abstract
We analyzed the effects of the Janus kinase 3 (Jak3)-specific inhibitor WHI-P131 (4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline) and the Jak3/Syk inhibitor WHI-P154 (4-(3'-bromo-4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline) on the antigen-induced activation of mast cells. In the rat mast cell line RBL-2H3, both WHI-P131 and WHI-P154 inhibited the antigen-induced degranulation and phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), p38 MAPK and c-Jun N-terminal kinase (JNK). The phosphorylation of Gab2, Akt and Vav was also inhibited by WHI-P131 and WHI-P154, indicating that these inhibitors suppress the activation of phosphatidylinositol 3-kinase (PI3K). In bone marrow-derived mast cells (BMMCs) from Jak3-deficient (Jak3-/-) mice, degranulation and activation of MAPKs were induced by the antigen in almost the same extent as in BMMCs from wild-type mice. In addition, the antigen-induced degranulation and activation of MAPKs were inhibited by WHI-P131 and WHI-P154 in both groups of BMMCs, indicating that these compounds inhibit a certain step except for Jak3. The antigen-induced increase in the activity of Fyn, a probable tyrosine kinase of Gab2, was also inhibited by WHI-P131 and WHI-P154 in RBL-2H3 cells. In BMMCs from Jak3-/- mice, the antigen stimulation induced tyrosine phosphorylation of Fyn, which was inhibited by WHI-P131, as well as in BMMCs from wild-type mice and in RBL-2H3 cells. These findings suggest that Jak3 does not play a significant role in the antigen-induced degranulation and phosphorylation of MAPKs, and that WHI-P131 and WHI-P154 inhibit the PI3K pathway by preventing the antigen-induced activation of Fyn, thus inhibiting the antigen-induced degranulation and phosphorylation of MAPKs in mast cells.
Collapse
Affiliation(s)
- Watchara Linwong
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Suzue Aoyama
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hirofumi Hamada
- Department of Molecular Medicine, Sapporo Medical University, S1 W17 Chuo-ku, Sapporo 060-8556, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology (RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazuo Ohuchi
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
23
|
Zhang XY, Jiang HC, Sun B, Zhou LW, Tai S, Wang ZD, Sun SB, Wu DQ, Han DE. Construction of an adeno-associated viral vector serotype 2/1 containing human interleukin-10 and its expression in donor liver. Shijie Huaren Xiaohua Zazhi 2005; 13:1390-1394. [DOI: 10.11569/wcjd.v13.i12.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct an adeno-associated viral vector serotype 2/1 (AAV2/1) containing human interleukin-10 (hIL-10) gene and to observe its expression in donor liver.
METHODS: hIL-10cDNA amplified by reverse transcription polymerase chain reaction (RT-PCR) from human peripheral blood mononuclear cells was cloned into vector pMD18-T. After confirming the sequence, hIL-10cDNA was isolated and inserted into eukaryotic expression vector pSNAV. The recombinant plasmid pSNAV-hIL-10 was transfected into BHK21 cells. BHK21 cells which contained ITR-hIL-10-ITR were obtained by G418 screening. Then the cells were transfected with rHSV/r2c1 containing rep2-cap1 gene. The cells were cultured and purified to obtain rAAV2/1-hIL-10. The expression of hIL-10 gene was detected after this vector was transfer into donor liver in vivo.
RESULTS: The sequence of cloned hIL-10cDNA was identical with that published on GenBank. A new adeno-associated virus vector containing hIL-10cDNA was constructed. And the transcription and expression of hIL-10 were detected in donor liver for 24 weeks. hIL-10 was significantly expressed in test group than that in empty and rAAV2/1-GFP controls 24 wk after transferred (219.15±45.83 ng/L vs 40.02, 38.64 ng/L, P<0.05).
CONCLUSION: The adeno-associated viral vector serotype 2/1 of hIL-10 is successfully established, which provides the basis for applying IL-10 in clinical organ transplantation.
Collapse
|