1
|
Xu J, Wang L, Yang Q, Ma Q, Zhou Y, Cai Y, Mao X, Da Q, Lu T, Su Y, Bagi Z, Lucas R, Liu Z, Hong M, Ouyang K, Huo Y. Deficiency of Myeloid Pfkfb3 Protects Mice From Lung Edema and Cardiac Dysfunction in LPS-Induced Endotoxemia. Front Cardiovasc Med 2021; 8:745810. [PMID: 34660743 PMCID: PMC8511447 DOI: 10.3389/fcvm.2021.745810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis, a pathology resulting from excessive inflammatory response that leads to multiple organ failure, is a major cause of mortality in intensive care units. Macrophages play an important role in the pathophysiology of sepsis. Accumulating evidence has suggested an upregulated rate of aerobic glycolysis as a key common feature of activated proinflammatory macrophages. Here, we identified a crucial role of myeloid 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3), a glycolytic activator in lipopolysaccharide (LPS)-induced endotoxemia in mice. Pfkfb3 expression is substantially increased in bone marrow derived macrophages (BMDMs) treated with LPS in vitro and in lung macrophages of mice challenged with LPS in vivo. Myeloid-specific knockout of Pfkfb3 in mice protects against LPS-induced lung edema, cardiac dysfunction and hypotension, which were associated with decreased expression of interleukin 1 beta (Il1b), interleukin 6 (Il6) and nitric oxide synthase 2 (Nos2), as well as reduced infiltration of neutrophils and macrophages in lung tissue. Pfkfb3 ablation in cultured macrophages attenuated LPS-induced glycolytic flux, resulting in a decrease in proinflammatory gene expression. Mechanistically, Pfkfb3 ablation or inhibition with a Pfkfb3 inhibitor AZ26 suppresses LPS-induced proinflammatory gene expression via the NF-κB signaling pathway. In summary, our study reveals the critical role of Pfkfb3 in LPS-induced sepsis via reprogramming macrophage metabolism and regulating proinflammatory gene expression. Therefore, PFKFB3 is a potential target for the prevention and treatment of inflammatory diseases such as sepsis.
Collapse
Affiliation(s)
- Jiean Xu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lina Wang
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qiuhua Yang
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qian Ma
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yaqi Zhou
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yongfeng Cai
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Xiaoxiao Mao
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tammy Lu
- Oxford College, Emory University, Oxford, GA, United States
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zhiping Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Deficiency of the novel high mobility group protein HMGXB4 protects against systemic inflammation-induced endotoxemia in mice. Proc Natl Acad Sci U S A 2021; 118:2021862118. [PMID: 33563757 DOI: 10.1073/pnas.2021862118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sepsis is a major cause of mortality in intensive care units, which results from a severely dysregulated inflammatory response that ultimately leads to organ failure. While antibiotics can help in the early stages, effective strategies to curtail inflammation remain limited. The high mobility group (HMG) proteins are chromosomal proteins with important roles in regulating gene transcription. While HMGB1 has been shown to play a role in sepsis, the role of other family members including HMGXB4 remains unknown. We found that expression of HMGXB4 is strongly induced in response to lipopolysaccharide (LPS)-elicited inflammation in murine peritoneal macrophages. Genetic deletion of Hmgxb4 protected against LPS-induced lung injury and lethality and cecal ligation and puncture (CLP)-induced lethality in mice, and attenuated LPS-induced proinflammatory gene expression in cultured macrophages. By integrating genome-wide transcriptome profiling and a publicly available ChIP-seq dataset, we identified HMGXB4 as a transcriptional activator that regulates the expression of the proinflammatory gene, Nos2 (inducible nitric oxide synthase 2) by binding to its promoter region, leading to NOS2 induction and excessive NO production and tissue damage. Similar to Hmgxb4 ablation in mice, administration of a pharmacological inhibitor of NOS2 robustly decreased LPS-induced pulmonary vascular permeability and lethality in mice. Additionally, we identified the cell adhesion molecule, ICAM1, as a target of HMGXB4 in endothelial cells that facilitates inflammation by promoting monocyte attachment. In summary, our study reveals a critical role of HMGXB4 in exacerbating endotoxemia via transcriptional induction of Nos2 and Icam1 gene expression and thus targeting HMGXB4 may be an effective therapeutic strategy for the treatment of sepsis.
Collapse
|
3
|
Pegoraro S, Ros G, Sgubin M, Petrosino S, Zambelli A, Sgarra R, Manfioletti G. Targeting the intrinsically disordered architectural High Mobility Group A (HMGA) oncoproteins in breast cancer: learning from the past to design future strategies. Expert Opin Ther Targets 2020; 24:953-969. [PMID: 32970506 DOI: 10.1080/14728222.2020.1814738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat because of its heterogeneity and lack of specific therapeutic targets. High Mobility Group A (HMGA) proteins are chromatin architectural factors that have multiple oncogenic functions in breast cancer, and they represent promising molecular therapeutic targets for this disease. AREAS COVERED We offer an overview of the strategies that have been exploited to counteract HMGA oncoprotein activities at the transcriptional and post-transcriptional levels. We also present the possibility of targeting cancer-associated factors that lie downstream of HMGA proteins and discuss the contribution of HMGA proteins to chemoresistance. EXPERT OPINION Different strategies have been exploited to counteract HMGA protein activities; these involve interfering with their nucleic acid binding properties and the blocking of HMGA expression. Some approaches have provided promising results. However, some unique characteristics of the HMGA proteins have not been exploited; these include their extensive protein-protein interaction network and their intrinsically disordered status that present the possibility that HMGA proteins could be involved in the formation of proteinaceous membrane-less organelles (PMLO) by liquid-liquid phase separation. These unexplored characteristics could open new pharmacological avenues to counteract the oncogenic contributions of HMGA proteins.
Collapse
Affiliation(s)
- Silvia Pegoraro
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Gloria Ros
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Michela Sgubin
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Sara Petrosino
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | | |
Collapse
|
4
|
Park EJ, Sang-Ngern M, Chang LC, Pezzuto JM. Physalactone and 4β-Hydroxywithanolide E Isolated from Physalis peruviana Inhibit LPS-Induced Expression of COX-2 and iNOS Accompanied by Abatement of Akt and STAT1. JOURNAL OF NATURAL PRODUCTS 2019; 82:492-499. [PMID: 30649869 DOI: 10.1021/acs.jnatprod.8b00861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In previous studies, withanolides isolated from Physalis peruviana were found to exhibit anti-inflammatory potential by suppressing nitrite production induced by lipopolysaccharide (LPS) treatment. Currently, we selected two of the most potent compounds, 4β-hydroxywithanolide E (1) and physalactone (2), to examine the underlying mechanism of action. With LPS-stimulated RAW 264.7 cells in culture, the compounds inhibited the mRNA and protein expression of iNOS and COX-2. To determine which upstream signaling proteins were involved in these effects, phosphorylation levels of three mitogen-activated protein kinases (MAPKs) including ERK1/2, JNK1/2, and p38, were examined, but found unaffected. Similarly, the degradation of IκBα was not attenuated by the compounds. However, phosphorylation of Akt at the Ser-473 residue was inhibited, as was the phosphorylation of STAT1. Interestingly, the compounds also reduced the protein level of total STAT1, possibly by ubiquitin-dependent protein degradation. In sum, these results indicate the potential of 1 and 2 to mediate anti-inflammatory effects through the unexpected mechanism of inhibiting the transcription of iNOS and COX-2 via Akt- and STAT1-related signaling pathways.
Collapse
Affiliation(s)
- Eun-Jung Park
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences , Long Island University , Brooklyn , New York 11201 , United States
- The Daniel K. Inouye College of Pharmacy , University of Hawaìi at Hilo , Hilo , Hawaii 96720 , United States
| | - Mayuramas Sang-Ngern
- The Daniel K. Inouye College of Pharmacy , University of Hawaìi at Hilo , Hilo , Hawaii 96720 , United States
- School of Cosmetic Science , Mae Fah Luang University , Tasud, Muang, Chiang Rai , Thailand
| | - Leng Chee Chang
- The Daniel K. Inouye College of Pharmacy , University of Hawaìi at Hilo , Hilo , Hawaii 96720 , United States
| | - John M Pezzuto
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences , Long Island University , Brooklyn , New York 11201 , United States
- The Daniel K. Inouye College of Pharmacy , University of Hawaìi at Hilo , Hilo , Hawaii 96720 , United States
| |
Collapse
|
5
|
Wei Y, Meng M, Tian Z, Xie F, Yin Q, Dai C, Wang J, Zhang Q, Liu Y, Liu C, Yan F, Jiang F, Guo X. Pharmacological preconditioning with the cellular stress inducer thapsigargin protects against experimental sepsis. Pharmacol Res 2018; 141:114-122. [PMID: 30579975 DOI: 10.1016/j.phrs.2018.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Previous studies have shown that pretreatment with thapsigargin (TG), a cellular stress inducer, produced potent protective actions against various pathologic injuries. So far there is no information on the effects of TG on the development of bacterial sepsis. Using lipopolysaccharides- and cecal ligation/puncture-induced sepsis models in mice, we demonstrated that preconditioning with a single bolus administration of TG conferred significant improvements in survival. The beneficial effects of TG were not mediated by ER stress induction or changes in Toll-like receptor 4 signaling. In vivo and in cultured macrophages, we identified that TG reduced the protein production of pro-inflammatory cytokines, but exhibited no significant effects on steady state levels of their transcriptions. Direct measurement on the fraction of polysome-bound mRNAs revealed that TG reduced the translational efficiency of pro-inflammatory cytokines in macrophages. Moreover, we provided evidence suggesting that repression of the mTOR (the mammalian target of rapamycin) signaling pathway, but not activation of the PERK (protein kinase R-like endoplasmic reticulum kinase)-eIF2α (eukaryotic initiation factor 2α) pathway, might be involved in mediating the TG effects on cytokine production. In summary, our results support that pharmacological preconditioning with TG may represent a novel strategy to prevent sepsis-induced mortality and organ injuries.
Collapse
Affiliation(s)
- Yaping Wei
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Meng
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated, Shandong University, Jinan, Shandong Province, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fubo Xie
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qihui Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chaochao Dai
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chang Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Feng Yan
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
6
|
Baron RM, Kwon MY, Castano AP, Ghanta S, Riascos-Bernal DF, Lopez-Guzman S, Macias AA, Ith B, Schissel SL, Lederer JA, Reeves R, Yet SF, Layne MD, Liu X, Perrella MA. Frontline Science: Targeted expression of a dominant-negative high mobility group A1 transgene improves outcome in sepsis. J Leukoc Biol 2018; 104:677-689. [PMID: 29975792 PMCID: PMC6431081 DOI: 10.1002/jlb.4hi0817-333rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/24/2023] Open
Abstract
High mobility group (HMG) proteins are a family of architectural transcription factors, with HMGA1 playing a role in the regulation of genes involved in promoting systemic inflammatory responses. We speculated that blocking HMGA1-mediated pathways might improve outcomes from sepsis. To investigate HMGA1 further, we developed genetically modified mice expressing a dominant negative (dn) form of HMGA1 targeted to the vasculature. In dnHMGA1 transgenic (Tg) mice, endogenous HMGA1 is present, but its function is decreased due to the mutant transgene. These mice allowed us to specifically study the importance of HMGA1 not only during a purely pro-inflammatory insult of endotoxemia, but also during microbial sepsis induced by implantation of a bacterial-laden fibrin clot into the peritoneum. We found that the dnHMGA1 transgene was only present in Tg and not wild-type (WT) littermate mice, and the mutant transgene was able to interact with transcription factors (such as NF-κB), but was not able to bind DNA. Tg mice exhibited a blunted hypotensive response to endotoxemia, and less mortality in microbial sepsis. Moreover, Tg mice had a reduced inflammatory response during sepsis, with decreased macrophage and neutrophil infiltration into tissues, which was associated with reduced expression of monocyte chemotactic protein-1 and macrophage inflammatory protein-2. Collectively, these data suggest that targeted expression of a dnHMGA1 transgene is able to improve outcomes in models of endotoxin exposure and microbial sepsis, in part by modulating the immune response and suggest a novel modifiable pathway to target therapeutics in sepsis.
Collapse
Affiliation(s)
- Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Ana P. Castano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Dario F. Riascos-Bernal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx NY 10461
| | - Silvia Lopez-Guzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Alvaro Andres Macias
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Bonna Ith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Scott L. Schissel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Raymond Reeves
- Department of Chemistry, School of Molecular Biosciences, and Institute of Biological Chemistry, Washington State University, Pullman, WA 99164
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Matthew D. Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
7
|
Li W, Pauluhn J. Phosgene-induced acute lung injury (ALI): differences from chlorine-induced ALI and attempts to translate toxicology to clinical medicine. Clin Transl Med 2017; 6:19. [PMID: 28577109 PMCID: PMC5457389 DOI: 10.1186/s40169-017-0149-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phosgene (carbonyl dichloride) gas is an indispensable chemical inter-mediate used in numerous industrial processes. There is no clear consensus as to its time- and inhaled-dose-dependent etiopathologies and associated preventive or therapeutic treatment strategies. METHODS Cardiopulmonary function was examined in rats exposed by inhalation to the alveolar irritant phosgene or to the airway irritant chlorine during and following exposure. Terminal measurements focused on hematology, protein extravasation in bronchoalveolar lavage (BAL), and increased lung weight. Noninvasive diagnostic and prognostic endpoints in exhaled breath (carbon dioxide and nitric oxide) were used to detect the clinically occult stage of pulmonary edema. RESULTS The first event observed in rats following high but sublethal acute exposure to phosgene was the stimulation of alveolar nociceptive vagal receptors. This afferent stimulation resulted in dramatic changes in cardiopulmonary functions, ventilation: perfusion imbalances, and progressive pulmonary edema and phospholipoproteinosis. Hematology revealed hemoconcentration to be an early marker of pulmonary edema and fibrin as a discriminating endpoint that was positive for the airway irritant chlorine and negative for the alveolar irritant phosgene. CONCLUSIONS The application of each gas produced typical ALI/ARDS (acute lung injury/acute respiratory distress syndrome) characteristics. Phosgene-induced ALI showed evidence of persistent apnea periods, bradycardia, and shifts of vascular fluid from the peripheral to the pulmonary circulation. Carbon dioxide in expired gas was suggestive of increased ventilation dead space and appeared to be a harbinger of progressively developing lung edema. Treatment with the iNOS inhibitor aminoguanidine aerosol by inhalation reduced the severity of phosgene-induced ALI when applied at low dose-rates. Symptomatic treatment regimens were considered inferior to causal modes of treatment.
Collapse
Affiliation(s)
- Wenli Li
- 4th Department of Toxicology, Fourth Military Medical University, No. 169 Changle West Road, Xi’an, 710032 Shaanxi Province China
| | - Juergen Pauluhn
- 4th Department of Toxicology, Fourth Military Medical University, No. 169 Changle West Road, Xi’an, 710032 Shaanxi Province China
- Covestro Deutschland AG, Global Phosgene Steering Group, K9, 565, 51365 Leverkusen, Germany
| |
Collapse
|
8
|
Kang DR, Yoon GY, Cho J, Lee SJ, Lee SJ, Park HJ, Kang TH, Han HD, Park WS, Yoon YK, Park YM, Jung ID. Neoagarooligosaccharides prevent septic shock by modulating A20-and cyclooxygenase-2-mediated interleukin-10 secretion in a septic-shock mouse model. Biochem Biophys Res Commun 2017; 486:998-1004. [PMID: 28363868 DOI: 10.1016/j.bbrc.2017.03.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Analysis of the signaling mechanism triggered by endotoxin-mediated toll-like receptor-4 activation using immune cell systems or rodent models may help identify potential agents for the prevention of Gram-negative bacteria infection. β-agarase cleaves the β-1,4-linkages of agar to produce neoagarooligosaccharides (NAOs), which have various physiological functions. The aim of this study was to investigate the efficacy of NAOs in preventing experimental sepsis caused by the administration of endotoxin or Gram-negative bacteria. Organ damage and neutrophil infiltration in an endotoxemia and septic-shock mouse model were suppressed by NAOs. Pro-inflammatory cytokine level was decreased, but IL-10 level was increased by NAO-treatment. Further induction by NAOs in the presence of endotoxin was associated with a significant induction of A20 and cyclooxygenase (COX)-2 expressions. Our data suggest that NAOs have a beneficial preventive effect in septic shock correlated with the enhancement of IL-10 via the induction of A20 and COX-2.
Collapse
Affiliation(s)
- Da Rae Kang
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Gun Young Yoon
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Joon Cho
- Department of Neurosurgery, Konkuk University Hospital, Seoul 05030, South Korea
| | - Seung Jun Lee
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Su Jin Lee
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Hee Jo Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Tae Heung Kang
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Hee Dong Han
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University, College of Medicine, Anam-dong, Sungbuk-Gu, Seoul 136-705, South Korea
| | - Yeong-Min Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea.
| | - In Duk Jung
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 380-701, South Korea.
| |
Collapse
|
9
|
Filipczak PT, Senft AP, Seagrave J, Weber W, Kuehl PJ, Fredenburgh LE, McDonald JD, Baron RM. NOS-2 Inhibition in Phosgene-Induced Acute Lung Injury. Toxicol Sci 2015; 146:89-100. [PMID: 25870319 DOI: 10.1093/toxsci/kfv072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phosgene exposure via an industrial or warfare release produces severe acute lung injury (ALI) with high mortality, characterized by massive pulmonary edema, disruption of epithelial tight junctions, surfactant dysfunction, and oxidative stress. There are no targeted treatments for phosgene-induced ALI. Previous studies demonstrated that nitric oxide synthase 2 (NOS-2) is upregulated in the lungs after phosgene exposure; however, the role of NOS-2 in the pathogenesis of phosgene-induced ALI remains unknown. We previously demonstrated that NOS-2 expression in lung epithelium exacerbates inhaled endotoxin-induced ALI in mice, mediated partially through downregulation of surfactant protein B (SP-B) expression. Therefore, we hypothesized that a selective NOS-2 inhibitor delivered to the lung epithelium by inhalation would mitigate phosgene-induced ALI. Inhaled phosgene produced increases in bronchoalveolar lavage fluid protein, histologic lung injury, and lung NOS-2 expression at 24 h. Administration of the selective NOS-2 inhibitor 1400 W via inhalation, but not via systemic delivery, significantly attenuated phosgene-induced ALI and preserved epithelial barrier integrity. Furthermore, aerosolized 1400 W augmented expression of SP-B and prevented downregulation of tight junction protein zonula occludens 1 (ZO-1), both critical for maintenance of normal lung physiology and barrier integrity. We also demonstrate for the first time that NOS-2-derived nitric oxide downregulates the ZO-1 expression at the transcriptional level in human lung epithelial cells, providing a novel target for ameliorating vascular leak in ALI. Our data demonstrate that lung NOS-2 plays a critical role in the development of phosgene-induced ALI and suggest that aerosolized NOS-2 inhibitors offer a novel therapeutic strategy for its treatment.
Collapse
Affiliation(s)
- Piotr T Filipczak
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115 *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Albert P Senft
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - JeanClare Seagrave
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Waylon Weber
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Philip J Kuehl
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Laura E Fredenburgh
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jacob D McDonald
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rebecca M Baron
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
10
|
Ranjan R, Deng J, Chung S, Lee YG, Park GY, Xiao L, Joo M, Christman JW, Karpurapu M. The transcription factor nuclear factor of activated T cells c3 modulates the function of macrophages in sepsis. J Innate Immun 2014; 6:754-64. [PMID: 24970700 DOI: 10.1159/000362647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 04/03/2014] [Indexed: 01/16/2023] Open
Abstract
The role of the transcription factor nuclear factor of activated T cells (NFAT) was initially identified in T and B cell gene expression, but its role in regulating gene expression in macrophages during sepsis is not known. Our data show that NFATc3 regulates expression of inducible nitric oxide synthase (iNOS) in macrophages stimulated with lipopolysaccharide. Selective inhibition of NFAT by cyclosporine A and a competitive peptide inhibitor 11R-VIVIT inhibited endotoxin-induced expression of iNOS and nitric oxide (NO) release. Macrophages from NFATc3 knockout (KO) mice show reduced iNOS expression and NO release and attenuated bactericidal activity. Gel shift and chromatin immunoprecipitation assays show that endotoxin challenge increases NFATc3 binding to the iNOS promoter, resulting in transcriptional activation of iNOS. The binding of NFATc3 to the iNOS promoter is abolished by NFAT inhibitors. NFATc3 KO mice subjected to sepsis show that NFATc3 is necessary for bacterial clearance in mouse lungs during sepsis. Our study demonstrates for the first time that NFATc3 is necessary for macrophage iNOS expression during sepsis, which is essential for containment of bacterial infections.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Medicine and Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois, Chicago, Ill., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jayashankar B, Mishra K, Ganju L, Singh S. Supercritical extract of Seabuckthorn Leaves (SCE200ET) inhibited endotoxemia by reducing inflammatory cytokines and nitric oxide synthase 2 expression. Int Immunopharmacol 2014; 20:89-94. [DOI: 10.1016/j.intimp.2014.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 01/03/2023]
|
12
|
Zhang HX, Duan GL, Wang CN, Zhang YQ, Zhu XY, Liu YJ. Protective effect of resveratrol against endotoxemia-induced lung injury involves the reduction of oxidative/nitrative stress. Pulm Pharmacol Ther 2014; 27:150-5. [DOI: 10.1016/j.pupt.2013.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/14/2013] [Accepted: 07/26/2013] [Indexed: 11/28/2022]
|
13
|
D'Alessio FR, Tsushima K, Aggarwal NR, Mock JR, Eto Y, Garibaldi BT, Files DC, Avalos CR, Rodriguez JV, Waickman AT, Reddy SP, Pearse DB, Sidhaye VK, Hassoun PM, Crow MT, King LS. Resolution of experimental lung injury by monocyte-derived inducible nitric oxide synthase. THE JOURNAL OF IMMUNOLOGY 2012; 189:2234-45. [PMID: 22844117 DOI: 10.4049/jimmunol.1102606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about the mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal LPS and assessed the response at intervals to day 10, when injury had resolved. Inducible NO synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS-/- mice were exposed to intratracheal LPS, early lung injury was attenuated; however, recovery was markedly impaired compared with WT mice. iNOS-/- mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS-/- mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of cosignaling molecule CD86 in iNOS-/- mice compared with WT mice. Ab-mediated blockade of CD86 in iNOS-/- mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair.
Collapse
Affiliation(s)
- Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhou X, Baron RM, Hardin M, Cho MH, Zielinski J, Hawrylkiewicz I, Sliwinski P, Hersh CP, Mancini JD, Lu K, Thibault D, Donahue AL, Klanderman BJ, Rosner B, Raby BA, Lu Q, Geldart AM, Layne MD, Perrella MA, Weiss ST, Choi AM, Silverman EK. Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Hum Mol Genet 2012; 21:1325-35. [PMID: 22140090 PMCID: PMC3284120 DOI: 10.1093/hmg/ddr569] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/16/2011] [Accepted: 11/28/2011] [Indexed: 01/11/2023] Open
Abstract
Multiple intergenic single-nucleotide polymorphisms (SNPs) near hedgehog interacting protein (HHIP) on chromosome 4q31 have been strongly associated with pulmonary function levels and moderate-to-severe chronic obstructive pulmonary disease (COPD). However, whether the effects of variants in this region are related to HHIP or another gene has not been proven. We confirmed genetic association of SNPs in the 4q31 COPD genome-wide association study (GWAS) region in a Polish cohort containing severe COPD cases and healthy smoking controls (P = 0.001 to 0.002). We found that HHIP expression at both mRNA and protein levels is reduced in COPD lung tissues. We identified a genomic region located ∼85 kb upstream of HHIP which contains a subset of associated SNPs, interacts with the HHIP promoter through a chromatin loop and functions as an HHIP enhancer. The COPD risk haplotype of two SNPs within this enhancer region (rs6537296A and rs1542725C) was associated with statistically significant reductions in HHIP promoter activity. Moreover, rs1542725 demonstrates differential binding to the transcription factor Sp3; the COPD-associated allele exhibits increased Sp3 binding, which is consistent with Sp3's usual function as a transcriptional repressor. Thus, increased Sp3 binding at a functional SNP within the chromosome 4q31 COPD GWAS locus leads to reduced HHIP expression and increased susceptibility to COPD through distal transcriptional regulation. Together, our findings reveal one mechanism through which SNPs upstream of the HHIP gene modulate the expression of HHIP and functionally implicate reduced HHIP gene expression in the pathogenesis of COPD.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Alleles
- Blotting, Western
- Bronchi/cytology
- Bronchi/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Case-Control Studies
- Cells, Cultured
- Chromatin Immunoprecipitation
- Chromosome Mapping
- Chromosomes, Human, Pair 4/genetics
- Electrophoretic Mobility Shift Assay
- Enhancer Elements, Genetic/genetics
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Genetic Predisposition to Disease
- Genotype
- Haplotypes/genetics
- Humans
- Lung/cytology
- Lung/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Middle Aged
- Polymorphism, Single Nucleotide/genetics
- Prognosis
- Promoter Regions, Genetic/genetics
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Real-Time Polymerase Chain Reaction
- Smoking/genetics
- Sp3 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Xiaobo Zhou
- Channing Laboratory, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Megan Hardin
- Channing Laboratory, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Michael H. Cho
- Channing Laboratory, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Jan Zielinski
- Institute of Tuberculosis and Lung Diseases, Plocka 26, Warsaw 01-138, Poland
| | - Iwona Hawrylkiewicz
- Institute of Tuberculosis and Lung Diseases, Plocka 26, Warsaw 01-138, Poland
| | - Pawel Sliwinski
- Institute of Tuberculosis and Lung Diseases, Plocka 26, Warsaw 01-138, Poland
| | - Craig P. Hersh
- Channing Laboratory, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | | | - Ke Lu
- Channing Laboratory, Department of Medicine
| | | | | | | | | | - Benjamin A. Raby
- Channing Laboratory, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Quan Lu
- Harvard School of Public Health, Boston, MA 02115, USA and
| | - Adriana M. Geldart
- Newborn Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew D. Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
- Newborn Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott T. Weiss
- Channing Laboratory, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Augustine M.K. Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| | - Edwin K. Silverman
- Channing Laboratory, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and
| |
Collapse
|
15
|
Smith AE, Buchmueller KL. Molecular basis for the inhibition of HMGA1 proteins by distamycin A. Biochemistry 2011; 50:8107-16. [PMID: 21854010 DOI: 10.1021/bi200822c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The molecular mechanism for the displacement of HMGA1 proteins from DNA is integral to disrupting their cellular function, which is linked to many metastatic cancers. Chemical shift and NOESY NMR experiments provide structural evidence for the displacement of an AT hook peptide (DNA binding motif of HMGA1 proteins) by both monomeric and dimeric distamycin. However, the displaced AT hook alters distamycin binding by weakening the distamycin:DNA complex, while slowing monomeric distamycin dissociation when AT hook is in excess. The central role of the AT hook was evaluated by monitoring full-length HMGA1a protein binding using fluorescence anisotropy. HMGA1a was effectively displaced by distamycin, but the cooperative binding exhibited by distamycin was eliminated by displaced HMGA1a. Additionally, these studies indicate that HMGA1a is displaced from the DNA by 1 equiv of distamycin, suggesting the ability to develop therapeutics that take advantage of the positively cooperative nature of HMGA1a binding.
Collapse
Affiliation(s)
- Austin E Smith
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | | |
Collapse
|
16
|
Lange NE, Zhou X, Lasky-Su J, Himes BE, Lazarus R, Soto-Quirós M, Avila L, Celedón JC, Hawrylowicz CM, Raby BA, Litonjua AA. Comprehensive genetic assessment of a functional TLR9 promoter polymorphism: no replicable association with asthma or asthma-related phenotypes. BMC MEDICAL GENETICS 2011; 12:26. [PMID: 21324137 PMCID: PMC3048492 DOI: 10.1186/1471-2350-12-26] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 02/15/2011] [Indexed: 12/27/2022]
Abstract
Background Prior studies suggest a role for a variant (rs5743836) in the promoter of toll-like receptor 9 (TLR9) in asthma and other inflammatory diseases. We performed detailed genetic association studies of the functional variant rs5743836 with asthma susceptibility and asthma-related phenotypes in three independent cohorts. Methods rs5743836 was genotyped in two family-based cohorts of children with asthma and a case-control study of adult asthmatics. Association analyses were performed using chi square, family-based and population-based testing. A luciferase assay was performed to investigate whether rs5743836 genotype influences TLR9 promoter activity. Results Contrary to prior reports, rs5743836 was not associated with asthma in any of the three cohorts. Marginally significant associations were found with FEV1 and FVC (p = 0.003 and p = 0.008, respectively) in one of the family-based cohorts, but these associations were not significant after correcting for multiple comparisons. Higher promoter activity of the CC genotype was demonstrated by luciferase assay, confirming the functional importance of this variant. Conclusion Although rs5743836 confers regulatory effects on TLR9 transcription, this variant does not appear to be an important asthma-susceptibility locus.
Collapse
Affiliation(s)
- Nancy E Lange
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Baron RM, Lopez-Guzman S, Riascos DF, Macias AA, Layne MD, Cheng G, Harris C, Chung SW, Reeves R, von Andrian UH, Perrella MA. Distamycin A inhibits HMGA1-binding to the P-selectin promoter and attenuates lung and liver inflammation during murine endotoxemia. PLoS One 2010; 5:e10656. [PMID: 20498830 PMCID: PMC2871042 DOI: 10.1371/journal.pone.0010656] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 04/17/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The architectural transcription factor High Mobility Group-A1 (HMGA1) binds to the minor groove of AT-rich DNA and forms transcription factor complexes ("enhanceosomes") that upregulate expression of select genes within the inflammatory cascade during critical illness syndromes such as acute lung injury (ALI). AT-rich regions of DNA surround transcription factor binding sites in genes critical for the inflammatory response. Minor groove binding drugs (MGBs), such as Distamycin A (Dist A), interfere with AT-rich region DNA binding in a sequence and conformation-specific manner, and HMGA1 is one of the few transcription factors whose binding is inhibited by MGBs. OBJECTIVES To determine whether MGBs exert beneficial effects during endotoxemia through attenuating tissue inflammation via interfering with HMGA1-DNA binding and modulating expression of adhesion molecules. METHODOLOGY/PRINCIPAL FINDINGS Administration of Dist A significantly decreased lung and liver inflammation during murine endotoxemia. In intravital microscopy studies, Dist A attenuated neutrophil-endothelial interactions in vivo following an inflammatory stimulus. Endotoxin induction of P-selectin expression in lung and liver tissue and promoter activity in endothelial cells was significantly reduced by Dist A, while E-selectin induction was not significantly affected. Moreover, Dist A disrupted formation of an inducible complex containing NF-kappaB that binds an AT-rich region of the P-selectin promoter. Transfection studies demonstrated a critical role for HMGA1 in facilitating cytokine and NF-kappaB induction of P-selectin promoter activity, and Dist A inhibited binding of HMGA1 to this AT-rich region of the P-selectin promoter in vivo. CONCLUSIONS/SIGNIFICANCE We describe a novel targeted approach in modulating lung and liver inflammation in vivo during murine endotoxemia through decreasing binding of HMGA1 to a distinct AT-rich region of the P-selectin promoter. These studies highlight the ability of MGBs to function as molecular tools for dissecting transcriptional mechanisms in vivo and suggest alternative treatment approaches for critical illness.
Collapse
Affiliation(s)
- Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Protective effect of sesamol on the pulmonary inflammatory response and lung injury in endotoxemic rats. Food Chem Toxicol 2010; 48:1821-6. [PMID: 20398721 DOI: 10.1016/j.fct.2010.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/27/2010] [Accepted: 04/11/2010] [Indexed: 01/19/2023]
Abstract
We investigated the effect of sesamol on systemic lipopolysaccharide (LPS)-induced lung inflammation in rats. Sesamol decreased lung edema and injury, significantly decreased LPS-induced cell counts, protein concentration, tumor necrosis factor (TNF)-alpha, and nitrite levels in bronchoalveolar lavage fluid, and decreased the TNF-alpha, nitrite, and inducible nitric oxide synthase protein expression in lung tissue. Further, sesamol significantly inhibited LPS-induced TNF-alpha, nitrite, inducible nitric oxide synthase expression, and nuclear factor-kappaB activation levels in primary alveolar macrophages. We hypothesize that sesamol attenuates systemic LPS-induced lung inflammation by inhibiting the alveolar macrophage inflammatory response in rats.
Collapse
|
19
|
Bansal S, Chhibber S. Curcumin alone and in combination with augmentin protects against pulmonaryinflammation and acute lung injury generated during Klebsiella pneumoniae B5055-induced lung infection in BALB/c mice. J Med Microbiol 2010; 59:429-437. [DOI: 10.1099/jmm.0.016873-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute lung injuries due to acute lung infections remain a major cause ofmortality. Thus a combination of an antibiotic and a compound with immunomodulatoryand anti-inflammatory activities can help to overcome acute lung infection-inducedinjuries. Curcumin derived from the rhizome of turmeric has been used fordecades and it exhibits anti-inflammatory, anti-carcinogenic, immunomodulatoryproperties by downregulation of various inflammatory mediators. Keeping theseproperties in mind, we investigated the anti-inflammatory properties of curcuminin a mouse model of acute inflammation by introducing Klebsiella pneumoniae B5055 into BALB/c mice via the intranasal route. Intranasal instillationof bacteria in this mouse model of acute pneumonia-induced inflammation resultedin a significant increase in neutrophil infiltration in the lungs along withincreased production of various inflammatory mediators [i.e. malondialdehyde (MDA),myeloperoxidase (MPO), nitric oxide (NO), tumour necrosisfactor (TNF)-α] in the lung tissue. The animalsthat received curcumin alone orally or in combination with augmentin, 15 daysprior to bacterial instillation into the lungs via the intranasal route, showeda significant (P <0.05) decrease in neutrophil influxinto the lungs and a significant (P <0.05) decreasein the production of MDA, NO, MPO activity and TNF-α levels.Augmentin treatment alone did not decrease the MDA, MPO, NO and TNF-α levels significantly (P >0.05) as compared tothe control group. We therefore conclude that curcumin ameliorates lung inflammationinduced by K. pneumoniae B5055 without significantly (P <0.05) decreasing the bacterial load in the lung tissue whereasaugmentin takes care of bacterial proliferation. Hence, curcumin can be usedas an adjunct therapy along with antibiotics as an anti-inflammatory or animmunomodulatory agent in the case of acute lung infection.
Collapse
Affiliation(s)
- Shruti Bansal
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
20
|
Netropsin improves survival from endotoxaemia by disrupting HMGA1 binding to the NOS2 promoter. Biochem J 2009; 418:103-12. [PMID: 18937643 DOI: 10.1042/bj20081427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inducible form of nitric oxide synthase (NOS2) plays an important role in sepsis incurred as a result of infection with Gram-negative bacteria that elaborate endotoxin. The HMGA1 (high-mobility group A1) architectural transcription factor facilitates NOS2 induction by binding a specific AT-rich Oct (octamer) sequence in the core NOS2 promoter via AT-hook motifs. The small-molecule MGB (minor-groove binder) netropsin selectively targets AT-rich DNA sequences and can interfere with transcription factor binding. We therefore hypothesized that netropsin would improve survival from murine endotoxaemia by attenuating NOS2 induction through interference with HMGA1 DNA binding to the core NOS2 promoter. Netropsin improved survival from endotoxaemia in wild-type mice, yet not in NOS2-deficient mice, supporting an important role for NOS2 in the beneficial effects of MGB administration. Netropsin significantly attenuated NOS2 promoter activity in macrophage transient transfection studies and the AT-rich HMGA1 DNA-binding site was critical for this effect. EMSAs (electrophoretic mobility-shift assays) demonstrated that netropsin interferes with HMGA1 NOS2 promoter binding and NMR spectroscopy was undertaken to characterize this disruption. Chemical shift perturbation analysis identified that netropsin effectively competes both HMGA1 DNA-binding AT-hooks from the AT-rich NOS2 promoter sequence. Furthermore, NOESY data identified direct molecular interactions between netropsin and A/T base pairs within the NOS2 promoter HMGA1-binding site. Finally, we determined a structure of the netropsin/NOS2 promoter Oct site complex from molecular modelling and dynamics calculations. These findings represent important steps toward refined structure-based ligand design of novel compounds for therapeutic benefit that can selectively target key regulatory regions within genes that are important for the development of critical illness.
Collapse
|
21
|
Shen M, Yen A. Nicotinamide cooperates with retinoic acid and 1,25-dihydroxyvitamin D(3) to regulate cell differentiation and cell cycle arrest of human myeloblastic leukemia cells. Oncology 2009; 76:91-100. [PMID: 19127080 DOI: 10.1159/000188664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 08/19/2008] [Indexed: 11/19/2022]
Abstract
Nicotinamide, the amide derivative of vitamin B(3), cooperates with retinoic acid (RA), a form of vitamin A, and 1,25-dihydroxyvitamin D(3) (D3), to regulate cell differentiation and proliferation of human myeloblastic leukemia cells. In human myeloblastic leukemia cells, RA or D3 are known to cause MAPK signaling leading to myeloid or monocytic differentiation and G0 cell cycle arrest. In this process, RA or D3 induces the early expression of CD38, a receptor that causes ERK signaling and propels further differentiation. Our study demonstrates that nicotinamide in combination with RA or D3 affected induced expression levels of CD38, CD11b and CD14, suggesting a cooperative function of nicotinamide and RA or D3. Nicotinamide transiently retarded the initial RA- or D3-induced expression of CD38, which subsequently reached the same nearly 100% expression. Nicotinamide induced ERK activation and further enhanced the RA-induced ERK activation, but the D3-induced ERK activation was diminished by nicotinamide, although levels still exceeded those induced by RA, suggesting lineage-specific nicotinamide responses. Nicotinamide enhanced both RA- and D3-induced CD11b expression, inducible oxidative metabolism, and G0 cell cycle arrest, accelerating their induced occurrence in all instances. Consistent with this, the RA- or D3-induced downregulation of PARP was enhanced by nicotinamide. Nicotinamide thus regulated RA- or D3-induced differentiation and G0 arrest, causing a transient delay in certain early aspects of the progression to terminal differentiation but ultimately accelerating the occurrence of terminally, functionally differentiated G0 cells.
Collapse
Affiliation(s)
- Miaoqing Shen
- Department of Biomedical Sciences, Cornell University, Ithaca, N.Y. 14853, USA
| | | |
Collapse
|
22
|
High mobility group A1 protein mediates human nitric oxide synthase 2 gene expression. FEBS Lett 2008; 582:810-4. [PMID: 18279675 DOI: 10.1016/j.febslet.2008.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 11/22/2022]
Abstract
Nitric oxide synthase (NOS)2, an inducible enzyme that produces NO during inflammation, is transcriptionally regulated. Our goal was to determine whether high mobility group (HMG)A1 contributes to human (h)NOS2 gene regulation. Using a small molecule inhibitor of HMGA1 binding to DNA, or a dominant-negative form of HMGA1, we blunted the induction of hNOS2 by pro-inflammatory stimuli. Binding of HMGA1 in the region -3506 to -3375 of the hNOS2 promoter, a region not previously known to be involved in hNOS2 regulation, contributed to the induction of hNOS2 promoter in conjunction with upstream enhancer regions. We demonstrate a previously unknown role for HMGA1 in the regulation of hNOS2.
Collapse
|
23
|
Hatziieremia S, Gray AI, Ferro VA, Paul A, Plevin R. The effects of cardamonin on lipopolysaccharide-induced inflammatory protein production and MAP kinase and NFkappaB signalling pathways in monocytes/macrophages. Br J Pharmacol 2006; 149:188-98. [PMID: 16894344 PMCID: PMC2013802 DOI: 10.1038/sj.bjp.0706856] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE In this study we examined the effect of the natural product cardamonin, upon lipopolysaccharide (LPS)-induced inflammatory gene expression in order to attempt to pinpoint the mechanism of action. EXPERIMENTAL APPROACHES Cardamonin was isolated from the Greek plant A. absinthium L. Its effects were assessed on LPS-induced nitrite release and iNOS and COX-2 protein expression in two macrophage cell lines. Western blotting was used to investigate its effects on phosphorylation of the mitogen activated protein (MAP) kinases, ERK, JNK and p38 MAP kinase, and activation of the NFkappaB pathway, at the level of IkappaBalpha degradation and phosphorylation of NFkappaB. Also its effects on NFkappaB and GAS/GAF-DNA binding were assessed by EMSA. KEY RESULTS Cardamonin concentration-dependently inhibited both NO release and iNOS expression but had no effect on COX-2 expression. It did not affect phosphorylation of the MAP kinases, degradation of IkappaBalpha or phosphorylation of NFkappaB. However, it inhibited NFkappaB DNA-binding in both LPS-stimulated cells and nuclear extracts of the cells (in vitro). It also inhibited IFNgamma-stimulated iNOS induction and GAS/GAF-DNA binding. CONCLUSIONS AND IMPLICATIONS These results show that the inhibitory effect of cardamonin on LPS-induced iNOS induction is not mediated via effects on the initial activation of the NFkappaB or MAP kinase pathways but is due to a direct effect on transcription factor binding to DNA. However, although some selectivity in cardamonin's action is implicated by its inability to affect COX-2 expression, its exact mechanism(s) of action has yet to be identified.
Collapse
Affiliation(s)
- S Hatziieremia
- Department of Pharmaceutical Sciences, Strathclyde Institute for Biomedical Science, University of Strathclyde Glasgow, UK
| | - A I Gray
- Department of Pharmaceutical Sciences, Strathclyde Institute for Biomedical Science, University of Strathclyde Glasgow, UK
| | - V A Ferro
- Department of Immunology, University of Strathclyde, Strathclyde Institute for Biomedical Science Glasgow, UK
| | - A Paul
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Science Glasgow, UK
| | - R Plevin
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Science Glasgow, UK
- Author for correspondence:
| |
Collapse
|
24
|
Farley KS, Wang LF, Razavi HM, Law C, Rohan M, McCormack DG, Mehta S. Effects of macrophage inducible nitric oxide synthase in murine septic lung injury. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1164-72. [PMID: 16414981 DOI: 10.1152/ajplung.00248.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) contributes importantly to septic pulmonary protein leak in mice with septic acute lung injury (ALI). However, the role of alveolar macrophage (AM) iNOS in septic ALI is not known. Thus we assessed the specific effects of AM iNOS in murine septic ALI through selective AM depletion (via intratracheal instillation of clodronate liposomes) and subsequent AM reconstitution (via intratracheal instillation of donor iNOS+/+ or iNOS−/− AM). Sepsis was induced by cecal ligation and perforation, and ALI was assessed at 4 h: protein leak by the Evans blue (EB) dye method, neutrophil infiltration via myeloperoxidase (MPO) activity, and pulmonary iNOS mRNA expression via RT-PCR. In iNOS+/+ mice, AM depletion attenuated the sepsis-induced increases in pulmonary microvascular protein leak (0.3 ± 0.1 vs. 1.4 ± 0.1 μg EB·g lung−1·min−1; P < 0.05) and MPO activity (37 ± 4 vs. 67 ± 8 U/g lung; P < 0.05) compared with that shown in non-AM-depleted mice. In AM-depleted iNOS+/+ mice, septic pulmonary protein leak was restored by AM reconstitution with iNOS+/+ AM (0.9 ± 0.3 μg EB·g lung−1·min−1) but not with iNOS−/− donor AM. In iNOS−/− mice, sepsis did not induce pulmonary protein leak or iNOS mRNA expression, despite increased pulmonary MPO activity. However, AM depletion in iNOS−/− mice and subsequent reconstitution with iNOS+/+ donor AM resulted in significant sepsis-induced pulmonary protein leak and iNOS expression. Septic pulmonary MPO levels were similar in all AM-reconstituted groups. Thus septic pulmonary protein leak is absolutely dependent on the presence of functional AM and specifically on iNOS in AM. AM iNOS-dependent pulmonary protein leak was not mediated through changes in pulmonary neutrophil influx.
Collapse
Affiliation(s)
- K S Farley
- Centrre for Critical Illness Research, Division of Respirology, Department of Medicine, London Health Sciences Center, University of Western Ontario, South St. Campus, 375 South Street, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Baron RM, Zhu G, Joo M, Christman JW, Silverman ES, Perrella MA, Riese RJ, Cernadas M. PU.1 regulates cathepsin S expression in professional APCs. THE JOURNAL OF IMMUNOLOGY 2006; 176:275-83. [PMID: 16365419 DOI: 10.4049/jimmunol.176.1.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cathepsin S (CTSS) is a cysteine protease that is constitutively expressed in APCs and mediates processing of MHC class II-associated invariant chain. CTSS and the Ets family transcription factor PU.1 are highly expressed in cells of both myeloid (macrophages and dendritic cells) and lymphoid (B lymphocytes) lineages. Therefore, we hypothesized that PU.1 participates in the transcriptional regulation of CTSS in these cells. In A549 cells (a human epithelial cell line that does not express either CTSS or PU.1), the expression of PU.1 enhances CTSS promoter activity approximately 5- to 10-fold. In RAW cells (a murine macrophage-like cell line that constitutively expresses both CTSS and PU.1), the expression of a dominant-negative PU.1 protein and a short-interfering RNA PU.1 construct attenuates basal CTSS promoter activity, mRNA levels, and protein expression. EMSAs show binding of PU.1 to oligonucleotides derived from the CTSS promoter at two different Ets consensus binding elements. Mutation of these sites decreases the baseline CTSS activity in RAW cells that constitutively express PU.1. Chromatin immunoprecipitation experiments show binding of PU.1 with the CTSS promoter in this same region. Finally, the expression of PU.1, in concert with several members of the IFN regulatory factor family, enhances CTSS promoter activity beyond that achieved by PU.1 alone. These data indicate that PU.1 participates in the regulation of CTSS transcription in APCs. Thus, manipulation of PU.1 expression may directly alter the endosomal proteolytic environment in these cells.
Collapse
Affiliation(s)
- Ying Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mehta S. The effects of nitric oxide in acute lung injury. Vascul Pharmacol 2005; 43:390-403. [PMID: 16256443 DOI: 10.1016/j.vph.2005.08.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Acute lung injury (ALI) is a common clinical problem associated with significant morbidity and mortality. Ongoing clinical and basic research and a greater understanding of the pathophysiology of ALI have not been translated into new anti-inflammatory therapeutic options for patients with ALI, or into a significant improvement in the outcome of ALI. In both animal models and humans with ALI, there is increased endogenous production of nitric oxide (NO) due to enhanced expression and activity of inducible NO synthase (iNOS). This increased presence of iNOS and NO in ALI contributes importantly to the pathophysiology of ALI. However, inhibition of total NO production or selective inhibition of iNOS has not been effective in the treatment of ALI. We have recently suggested that there may be differential effects of NO derived from different cell populations in ALI. This concept of cell-source-specific effects of NO in ALI has potential therapeutic relevance, as targeted iNOS inhibition specifically to key individual cells may be an effective therapeutic approach in patients with ALI. In this paper, we will explore the potential role for endogenous iNOS-derived NO in ALI. We will review the evidence for increased iNOS expression and NO production, the effects of non-selective NOS inhibition, the effects of selective inhibition or deficiency of iNOS, and this concept of cell-source-specific effects of iNOS in both animal models and human ALI.
Collapse
Affiliation(s)
- Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, Division of Respirology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
27
|
Current World Literature. Curr Opin Allergy Clin Immunol 2005. [DOI: 10.1097/01.all.0000162314.10050.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|