1
|
Grao-Cruces E, Lopez-Enriquez S, Martin ME, Montserrat-de la Paz S. High-density lipoproteins and immune response: A review. Int J Biol Macromol 2022; 195:117-123. [PMID: 34896462 DOI: 10.1016/j.ijbiomac.2021.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023]
Abstract
High-density lipoproteins (HDLs) are heterogeneous lipoproteins that modify their composition and functionality depending on physiological or pathological conditions. The main roles of HDL are cholesterol efflux, and anti-inflammatory and antioxidant functions. These functions can be compromised under pathological conditions. HDLs play a role in the immune system as anti-inflammatory molecules but when inflammation occurs, HDLs change their composition and carry pro-inflammatory cargo. Hence, many molecular intermediates that influence inflammatory microenvironments and cell signaling pathways can modulate HDLs structural modification and function. This review provides a comprehensive assessment of the importance of HDL composition and anti-inflammatory function in the onset and progression of atherosclerotic cardiovascular diseases. On the other hand, immune cell activation during progression of atheroma plaque formation can be influenced by HDLs through HDL-derived cholesterol depletion from lipid rafts and through HDL interaction with HDL receptors expressed on T and B lymphocytes. Cholesterol efflux is mediated by HDL receptors located in lipid rafts in peripheral cells, which undergo membrane structural modifications, and interferes with subsequent molecules interactions or intracellular signaling cascades. Regarding antigen-presentation cells such as macrophages or dendritic cells, HDL function may then modulate lymphocytes activation in immune response. Our review also contributes to the understanding of the effects exerted by HDLs in signal transduction associated to our immune cell population during chronic diseases progression.
Collapse
Affiliation(s)
- Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| |
Collapse
|
2
|
Hanafusa K, Hotta T, Iwabuchi K. Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains. Front Cell Dev Biol 2020; 8:589799. [PMID: 33195253 PMCID: PMC7658261 DOI: 10.3389/fcell.2020.589799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane microdomains, also called lipid rafts, are areas on membrane enriched in glycolipids, sphingolipids, and cholesterol. Although membrane microdomains are thought to play key roles in many cellular functions, their structures, properties, and biological functions remain obscure. Cellular membranes contain several types of glycoproteins, glycolipids, and other lipids, including cholesterol, glycerophospholipids, and sphingomyelin. Depending on their physicochemical properties, especially the characteristics of their glycolipids, various microdomains form on these cell membranes, providing structural or functional contextures thought to be essential for biological activities. For example, the plasma membranes of human neutrophils are enriched in lactosylceramide (LacCer) and phosphatidylglucoside (PtdGlc), each of which forms different membrane microdomains with different surrounding molecules and is involved in different functions of neutrophils. Specifically, LacCer forms Lyn-coupled lipid microdomains, which mediate neutrophil chemotaxis, phagocytosis, and superoxide generation, whereas PtdGlc-enriched microdomains mediate neutrophil differentiation and spontaneous apoptosis. However, the mechanisms by which these glycolipids form different nano/meso microdomains and mediate their specialized functions remain incompletely understood. This review describes current understanding of the roles of glycolipids and sphingolipids in their enriched contextures on cellular membranes, including their mechanisms of facilitation and regulation of intracellular signaling. This review also introduces new concepts about the roles of glycolipid and sphingolipid-dependent contextures in immunological functions.
Collapse
Affiliation(s)
- Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| |
Collapse
|
3
|
Chakraborty D, Chauhan P, Kumar S, Chaudhary S, Chandrasekaran N, Mukherjee A, Ethiraj K. Utilizing corona on functionalized selenium nanoparticles for loading and release of doxorubicin payload. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Thibodeau J, Moulefera MA, Balthazard R. On the structure–function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking. Hum Immunol 2019; 80:15-31. [DOI: 10.1016/j.humimm.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/01/2022]
|
5
|
Bhagwandin C, Ashbeck EL, Whalen M, Bandola-Simon J, Roche PA, Szajman A, Truong SM, Wertheim BC, Klimentidis YC, Ishido S, Renquist BJ, Lybarger L. The E3 ubiquitin ligase MARCH1 regulates glucose-tolerance and lipid storage in a sex-specific manner. PLoS One 2018; 13:e0204898. [PMID: 30356278 PMCID: PMC6200199 DOI: 10.1371/journal.pone.0204898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes is typified by insulin-resistance in adipose tissue, skeletal muscle, and liver, leading to chronic hyperglycemia. Additionally, obesity and type 2 diabetes are characterized by chronic low-grade inflammation. Membrane-associated RING-CH-1 (MARCH1) is an E3 ubiquitin ligase best known for suppression of antigen presentation by dendritic and B cells. MARCH1 was recently found to negatively regulate the cell surface levels of the insulin receptor via ubiquitination. This, in turn, impaired insulin sensitivity in mouse models. Here, we report that MARCH1-deficient (knockout; KO) female mice exhibit excessive weight gain and excessive visceral adiposity when reared on standard chow diet, without increased inflammatory cell infiltration of adipose tissue. By contrast, male MARCH1 KO mice had similar weight gain and visceral adiposity to wildtype (WT) male mice. MARCH1 KO mice of both sexes were more glucose tolerant than WT mice. The levels of insulin receptor were generally higher in insulin-responsive tissues (especially the liver) from female MARCH1 KO mice compared to males, with the potential to account in part for the differences between male and female MARCH1 KO mice. We also explored a potential role for MARCH1 in human type 2 diabetes risk through genetic association testing in publicly-available datasets, and found evidence suggestive of association. Collectively, our data indicate an additional link between immune function and diabetes, specifically implicating MARCH1 as a regulator of lipid metabolism and glucose tolerance, whose function is modified by sex-specific factors.
Collapse
Affiliation(s)
- Candida Bhagwandin
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Erin L. Ashbeck
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Michael Whalen
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Paul A. Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Adam Szajman
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Sarah Mai Truong
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Betsy C. Wertheim
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| | - Yann C. Klimentidis
- Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, United States of America
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Benjamin J. Renquist
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Lonnie Lybarger
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
6
|
Wilson KR, Liu H, Healey G, Vuong V, Ishido S, Herold MJ, Villadangos JA, Mintern JD. MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS One 2018; 13:e0200540. [PMID: 30001419 PMCID: PMC6042767 DOI: 10.1371/journal.pone.0200540] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Abstract
Major histocompatibility complex class II (MHC II) expression and turn-over are regulated via its ubiquitination by the membrane associated RING-CH 1 (MARCH1) E3 ligase. Unexpectedly, we show that MHC II ubiquitination also impacts MHC I. Lack of MARCH1 in B cells and dendritic cells (DCs) resulted in a significant reduction in surface MHC I expression. This decrease was not directly caused by changes in MARCH1 ubiquitination of MHC I but indirectly by altered MHC II trafficking in the absence of its ubiquitination. Deletion of MHC II in March1-/- cells restored normal MHC I surface expression and replacement of wild type MHC II by a variant that could not be ubiquitinated caused a reduction in MHC I expression. Furthermore, these cells displayed inefficient presentation of peptide and protein antigen via MHC I to CD8+ T cells. In summary, we describe an unexpected intersection between MHC I and MHC II such that the surface expression of both molecules are indirectly and directly regulated by MARCH1 ubiquitination, respectively.
Collapse
Affiliation(s)
- Kayla R Wilson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Haiyin Liu
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Geraldine Healey
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Vivian Vuong
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Japan
| | - Marco J Herold
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| |
Collapse
|
7
|
CD9 Regulates Major Histocompatibility Complex Class II Trafficking in Monocyte-Derived Dendritic Cells. Mol Cell Biol 2017; 37:MCB.00202-17. [PMID: 28533221 DOI: 10.1128/mcb.00202-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022] Open
Abstract
Antigen presentation by dendritic cells (DCs) stimulates naive CD4+ T cells, triggering T cell activation and the adaptive arm of the immune response. Newly synthesized major histocompatibility complex class II (MHC-II) molecules accumulate at MHC-II-enriched endosomal compartments and are transported to the plasma membrane of DCs after binding to antigenic peptides to enable antigen presentation. In DCs, MHC-II molecules are included in tetraspanin-enriched microdomains (TEMs). However, the role of tetraspanin CD9 in these processes remains largely undefined. Here, we show that CD9 regulates the T cell-stimulatory capacity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent bone marrow-derived DCs (BMDCs), without affecting antigen presentation by fms-like tyrosine kinase 3 ligand (Flt3L)-dependent BMDCs. CD9 knockout (KO) GM-CSF-dependent BMDCs, which resemble monocyte-derived DCs (MoDCs), induce lower levels of T cell activation than wild-type DCs, and this effect is related to a reduction in MHC-II surface expression in CD9-deficient MoDCs. Importantly, MHC-II targeting to the plasma membrane is largely impaired in immature CD9 KO MoDCs, in which MHC-II remains arrested in acidic intracellular compartments enriched in LAMP-1 (lysosome-associated membrane protein 1), and MHC-II internalization is also blocked. Moreover, CD9 participates in MHC-II trafficking in mature MoDCs, regulating its endocytosis and recycling. Our results demonstrate that the tetraspanin CD9 specifically regulates antigenic presentation in MoDCs through the regulation of MHC-II intracellular trafficking.
Collapse
|
8
|
Invariant Chain Complexes and Clusters as Platforms for MIF Signaling. Cells 2017; 6:cells6010006. [PMID: 28208600 PMCID: PMC5371871 DOI: 10.3390/cells6010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking.
Collapse
|
9
|
Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells. Proc Natl Acad Sci U S A 2015; 112:10449-54. [PMID: 26240324 DOI: 10.1073/pnas.1507981112] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.
Collapse
|
10
|
The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 2015; 15:203-16. [PMID: 25720354 DOI: 10.1038/nri3818] [Citation(s) in RCA: 662] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antigenic peptide-loaded MHC class II molecules (peptide-MHC class II) are constitutively expressed on the surface of professional antigen-presenting cells (APCs), including dendritic cells, B cells, macrophages and thymic epithelial cells, and are presented to antigen-specific CD4(+) T cells. The mechanisms of antigen uptake, the nature of the antigen processing compartments and the lifetime of cell surface peptide-MHC class II complexes can vary depending on the type of APC. It is likely that these differences are important for the function of each distinct APC subset in the generation of effective adaptive immune responses. In this Review, we describe our current knowledge of the mechanisms of uptake and processing of antigens, the intracellular formation of peptide-MHC class II complexes, the intracellular trafficking of peptide-MHC class II complexes to the APC plasma membrane and their ultimate degradation.
Collapse
|
11
|
Anderson HA, Roche PA. MHC class II association with lipid rafts on the antigen presenting cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:775-80. [PMID: 25261705 DOI: 10.1016/j.bbamcr.2014.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022]
Abstract
MHC class II (MHC-II) molecules function by binding peptides derived from either self or foreign proteins and expressing these peptides on the surface of antigen presenting cells (APCs) for recognition by CD4 T cells. MHC-II is known to exist on clusters on the surface of APCs, and a variety of biochemical and functional studies have suggested that these clusters represent lipid raft microdomain-associated MHC-II. This review will summarize data exploring the biosynthesis of raft-associated MHC-II and the role that lipid raft association plays in regulating T cell activation by APCs. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Howard A Anderson
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Hauser JT, Lindner R. Coalescence of B cell receptor and invariant chain MHC II in a raft-like membrane domain. J Leukoc Biol 2014; 96:843-55. [PMID: 25024398 DOI: 10.1189/jlb.2a0713-353r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The BCR binds antigen for processing and subsequent presentation on MHC II molecules. Polyvalent antigen induces BCR clustering and targeting to endocytic processing compartments, which are also accessed by Ii-MHC II. Here, we report that clustered BCR is able to team up with Ii-MHC II already at the plasma membrane of mouse B-lymphocytes. Colocalization of BCR and Ii-MHC II on the cell surface required clustering of both types of molecules. The clustering of only one type did not trigger the recruitment of the other. Ii-bound MIF (a ligand of Ii) also colocalized with clustered BCR upon oligomerization of MIF on the surface of the B cell. Abundant surface molecules, such as B220 or TfnR, did not cocluster with the BCR. Some membrane raft-associated molecules, such as peptide-loaded MHC II, coclustered with the BCR, whereas others, such as GM1, did not. The formation of a BCR- and Ii-MHC II-containing membrane domain by antibody-mediated clustering was independent of F-actin and led to the coendocytosis of its constituents. With a rapid Brij 98 extraction method, it was possible to capture this membrane domain biochemically as a DRM. Ii and clustered BCR were present on the same DRM, as shown by immunoisolation. The coalescence of BCR and Ii-MHC II increased tyrosine phosphorylation, indicative of enhanced BCR signaling. Our work suggests a novel role for MIF and Ii-MHC II in BCR-mediated antigen processing.
Collapse
Affiliation(s)
- Julian T Hauser
- Hannover Medical School, Department of Cell Biology, Center for Anatomy, Hannover, Germany
| | - Robert Lindner
- Hannover Medical School, Department of Cell Biology, Center for Anatomy, Hannover, Germany
| |
Collapse
|
13
|
Bosch B, Berger AC, Khandelwal S, Heipertz EL, Scharf B, Santambrogio L, Roche PA. Disruption of multivesicular body vesicles does not affect major histocompatibility complex (MHC) class II-peptide complex formation and antigen presentation by dendritic cells. J Biol Chem 2013; 288:24286-92. [PMID: 23846690 DOI: 10.1074/jbc.m113.461996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The antigen processing compartments in antigen-presenting cells (APCs) have well known characteristics of multivesicular bodies (MVBs). However, the importance of MVB integrity to APC function remains unknown. In this study, we have altered the ultrastructure of the MVB by perturbing cholesterol content genetically through the use of a deletion of the lipid transporter Niemann-Pick type C1 (NPC1). Immunofluorescence and electron microscopic analyses reveal that the antigen processing compartments in NPC1(-/-) dendritic cells (DCs) have an abnormal ultrastructure in that the organelles are enlarged and the intraluminal vesicles are almost completely absent and those remaining are completely disorganized. MHC-II is restricted to the limiting membrane of these enlarged MVBs where it colocalizes with the peptide editor H2-DM. Curiously, proteolytic removal of the chaperone protein Invariant chain from MHC-II, degradation of internalized foreign antigens, and antigenic-peptide binding to nascent MHC-II are normal in NPC1(-/-) DCs. Antigen-pulsed NPC1(-/-) DCs are able to effectively activate antigen-specific CD4 T cells in vitro, and immunization of NPC1(-/-) mice reveals surprisingly normal CD4 T cell activation in vivo. Our data thus reveal that the localization of MHC-II on the intraluminal vesicles of multivesicular antigen processing compartments is not required for efficient antigen presentation by DCs.
Collapse
Affiliation(s)
- Berta Bosch
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Rockett BD, Melton M, Harris M, Bridges LC, Shaikh SR. Fish oil disrupts MHC class II lateral organization on the B-cell side of the immunological synapse independent of B-T cell adhesion. J Nutr Biochem 2013; 24:1810-6. [PMID: 23791516 DOI: 10.1016/j.jnutbio.2013.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 11/17/2022]
Abstract
Fish oil-enriched long chain n-3 polyunsaturated fatty acids disrupt the molecular organization of T-cell proteins in the immunological synapse. The impact of fish oil derived n-3 fatty acids on antigen-presenting cells, particularly at the animal level, is unknown. We previously demonstrated B-cells isolated from mice fed with fish oil-suppressed naïve CD4(+) T-cell activation. Therefore, here we determined the mechanistic effects of fish oil on murine B-cell major histocompatibility complex (MHC) class II molecular distribution using a combination of total internal reflection fluorescence, Förster resonance energy transfer and confocal imaging. Fish oil had no impact on presynaptic B-cell MHC II clustering. Upon conjugation with transgenic T-cells, fish-oil suppressed MHC II accumulation at the immunological synapse. As a consequence, T-cell protein kinase C theta (PKCθ) recruitment to the synapse was also diminished. The effects were independent of changes in B-T cell adhesion, as measured with microscopy, flow cytometry and static cell adhesion assays with select immune ligands. Given that fish oil can reorganize the membrane by lowering membrane cholesterol levels, we then compared the results with fish oil to cholesterol depletion using methyl-B-cyclodextrin (MβCD). MβCD treatment of B-cells suppressed MHC II and T-cell PKCθ recruitment to the immunological synapse, similar to fish oil. Overall, the results reveal commonality in the mechanism by which fish oil manipulates protein lateral organization of B-cells compared to T-cells. Furthermore, the data establish MHC class II lateral organization on the B-cell side of the immunological synapse as a novel molecular target of fish oil.
Collapse
Affiliation(s)
- Benjamin Drew Rockett
- Department of Biochemistry and Molecular Biology, Brody School of Medicine and the East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | | | | | | | | |
Collapse
|
15
|
Bosch B, Heipertz EL, Drake JR, Roche PA. Major histocompatibility complex (MHC) class II-peptide complexes arrive at the plasma membrane in cholesterol-rich microclusters. J Biol Chem 2013; 288:13236-42. [PMID: 23532855 DOI: 10.1074/jbc.m112.442640] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Antigen-specific CD4 T cells are activated by small numbers of antigenic peptide-MHC class II (pMHC-II) complexes on dendritic cells (DCs). RESULTS Newly generated pMHC-II complexes are present in small clusters on the DC surface. CONCLUSION pMHC-II clusters permit efficient T cell activation. SIGNIFICANCE The appearance of clustered pMHC-II reveals the organization of the T cell antigen receptor ligand on the DC surface. Dendritic cells (DCs) function by stimulating naive antigen-specific CD4 T cells to proliferate and secrete a variety of immunomodulatory factors. The ability to activate naive T cells comes from the capacity of DCs to internalize, degrade, and express peptide fragments of antigenic proteins on their surface bound to MHC class II molecules (MHC-II). Although DCs express tens of thousands of distinct MHC-II, very small amounts of specific peptide-MHC-II complexes are required to interact with and activate T cells. We now show that stimulatory MHC-II I-A(k)-HEL(46-61) complexes that move from intracellular antigen-processing compartments to the plasma membrane are not randomly distributed on the DC surface. Confocal immunofluorescence microscopy and quantitative immunoelectron microscopy reveal that the majority of newly generated MHC-II I-A(k)-HEL(46-61) complexes are expressed in sub-100-nm microclusters on the DC membrane. These microclusters are stabilized in cholesterol-containing microdomains, and cholesterol depletion inhibits the stability of these clusters as well as the ability of the DCs to function as antigen-presenting cells. These results demonstrate that specific cohorts of peptide-MHC-II complexes expressed on the DC surface are present in cholesterol-dependent microclusters and that cluster integrity is important for antigen-specific naive CD4 T cell activation by DCs.
Collapse
Affiliation(s)
- Berta Bosch
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
16
|
Busman-Sahay K, Sargent E, Harton JA, Drake JR. The Ia.2 epitope defines a subset of lipid raft-resident MHC class II molecules crucial to effective antigen presentation. THE JOURNAL OF IMMUNOLOGY 2011; 186:6710-7. [PMID: 21543648 DOI: 10.4049/jimmunol.1100336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous work established that binding of the 11-5.2 anti-I-A(k) mAb, which recognizes the Ia.2 epitope on I-A(k) class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-A(k) mAbs that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-A(k) molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2-bearing subset of I-A(k) class II molecules is critically necessary for effective B cell-T cell interactions, especially at low Ag doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-A(k) class II molecules possessing a β-chain-tethered hen egg lysosome peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2(-) tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous Ag to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II conformer vital to the initiation of MHC class II-restricted B cell-T cell interactions.
Collapse
Affiliation(s)
- Kathleen Busman-Sahay
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
17
|
AKAPs in lipid rafts are required for optimal antigen presentation by dendritic cells. Immunol Cell Biol 2011; 89:650-8. [PMID: 21221125 DOI: 10.1038/icb.2010.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cell (DC) maturation and antigen presentation are regulated by activation of protein kinase A (PKA) signaling pathways, through unknown mechanisms. We have recently shown that interfering with PKA signaling through the use of anchoring inhibitor peptides hinders antigen presentation and DC maturation. These experiments provide evidence that DC maturation and antigen presentation are regulated by A-kinase anchoring proteins (AKAPs). Herein, we determine that the presence of AKAPs and PKA in lipid rafts regulates antigen presentation. Using a combination of western blotting and immuno-cytochemistry, we illustrate the presence of AKAP149, AKAP79, Ezrin and the regulatory subunits of PKA in DC lipid rafts. Incubation of DCs with the type II anchoring inhibitor, AKAP-in silico (AKAP-IS), removes Ezrin and RII from the lipid raft without disrupting raft formation. Addition of a lipid raft disruptor, methyl-β-cyclodextrin, blocks the efficacy of AKAP-IS, suggesting that the lipid raft must be intact for AKAP-IS to inhibit antigen presentation. Ezrin and AKAP79 are present in the lipid raft of stimulated KG1 cells, but Ezrin is not present in the lipid raft of unstimulated KG1 cells and AKAP79 levels are greatly diminished, suggesting that Ezrin and AKAP79 may be the key AKAPs responsible for regulating antigen presentation.
Collapse
|
18
|
Walseng E, Furuta K, Goldszmid RS, Weih KA, Sher A, Roche PA. Dendritic cell activation prevents MHC class II ubiquitination and promotes MHC class II survival regardless of the activation stimulus. J Biol Chem 2010; 285:41749-54. [PMID: 21047782 DOI: 10.1074/jbc.m110.157586] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of MHC class II (MHC-II) on the surface of antigen-presenting cells, such as dendritic cells (DCs), is tightly regulated during cellular activation. Many cells, including DCs, are activated following stimulation of innate Toll-like receptors (TLRs) by products of microorganisms. In the resting (immature) state, MHC-II is ubiquitinated in immature DCs and is rapidly degraded; however, after activation of these cells with MyD88-dependent TLR ligands, MHC-II ubiquitination is blocked, and MHC-II survival is prolonged. We now show that DC activation using MyD88-dependent TLR ligands, MyD88-independent TLR ligands, and even infection with the intracellular parasite Toxoplasma gondii leads to identical changes in MHC-II expression, ubiquitination, and surface stability, revealing a conserved role for enhanced MHC-II stability after DC activation by different stimuli.
Collapse
Affiliation(s)
- Even Walseng
- Experimental Immunology Branch, NCI, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Rafts are domains of the plasma membrane, enriched in cholesterol and sphingolipids; they form a platform for signaling proteins and receptors. The lipid rafts are utilized in the replication cycle of numerous viruses. Internalization receptors of many viruses localize to rafts or are recruited there after virus binding. Arrays of signal transduction proteins found in rafts contribute to efficient trafficking and productive infection. Some viruses are dependent on raft domains for the biogenesis of their membranous replication structures. Finally, rafts are often important in virus assembly and budding. Subsequently, raft components in the viral envelope may be vital for the entry to a new host cell. Here, we summarize the current knowledge of the involvement of rafts in virus infection.
Collapse
Affiliation(s)
- Paula Upla
- Department of Biological & Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| | - Timo Hyypiä
- Department of Virology, University of Turku, FI-20520 Turku, Finland
| | - Varpu Marjomäki
- Department of Biological & Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| |
Collapse
|
20
|
Affiliation(s)
- Adam C Berger
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
21
|
Walseng E, Bakke O, Roche PA. Major histocompatibility complex class II-peptide complexes internalize using a clathrin- and dynamin-independent endocytosis pathway. J Biol Chem 2008; 283:14717-27. [PMID: 18378669 DOI: 10.1074/jbc.m801070200] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules (MHC-II) function by binding antigenic peptides and displaying these peptides on the surface of antigen presenting cells (APCs) for recognition by peptide-MHC-II (pMHC-II)-specific CD4 T cells. It is known that cell surface MHC-II can internalize, exchange antigenic peptides in endosomes, and rapidly recycle back to the plasma membrane; however, the molecular machinery and trafficking pathways utilized by internalizing/recycling MHC-II have not been identified. We now demonstrate that unlike newly synthesized invariant chain-associated MHC-II, mature cell surface pMHC-II complexes internalize following clathrin-, AP-2-, and dynamin-independent endocytosis pathways. Immunofluorescence microscopy of MHC-II expressing HeLa-CIITA cells, human B cells, and human DCs revealed that pMHC enters Arf6(+)Rab35(+)EHD1(+) tubular endosomes following endocytosis. These data contrast the internalization pathways followed by newly synthesized and peptide-loaded MHC-II molecules and demonstrates that cell surface pMHC-II internalize and rapidly recycle from early endocytic compartments in tubular endosomes.
Collapse
Affiliation(s)
- Even Walseng
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
22
|
Yoon J, Terada A, Kita H. CD66b regulates adhesion and activation of human eosinophils. THE JOURNAL OF IMMUNOLOGY 2008; 179:8454-62. [PMID: 18056392 DOI: 10.4049/jimmunol.179.12.8454] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eosinophils and their products are likely important in the pathophysiology of allergic diseases, such as bronchial asthma, and in host immunity to parasitic organisms. However, the mechanisms for proinflammatory mediator release by eosinophils are poorly understood. CD66b (CEACAM8, CGM6, NCA-95) is a single chain, GPI-anchored, highly glycosylated protein belonging to the carcinoembryonic Ag supergene family. CD66b is an activation marker for human granulocytes; however, its biological functions are largely unknown in eosinophils. We found that CD66b is highly expressed on the surface of human peripheral blood eosinophils isolated from healthy individuals. Engagement of CD66b, but not CD66a, by mAb or a natural ligand, galectin-3, activated a Src kinase family molecule, hemopoietic cell kinase (Hck), and induced cellular adhesion, superoxide production, and degranulation of eosinophils. CD66b molecules were localized in lipid rafts, and disruption of lipid rafts or removal of the GPI anchor inhibited the adhesion and activation of eosinophils. Importantly, CD66b was constitutively and physically associated with a beta2 integrin, CD11b, and cross-linking of CD66b induced a striking clustering of CD11b molecules. Thus, CD66b molecules are involved in regulating adhesion and activation of eosinophils, possibly through their localization in lipid rafts and interaction with other cell surface molecules, such as CD11b. Binding of exogenous or endogenous carbohydrate ligands(s) to CD66b may be important in the release of proinflammatory mediators by human eosinophils.
Collapse
Affiliation(s)
- Juhan Yoon
- Department of Immunology, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
23
|
Muntasell A, Berger AC, Roche PA. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J 2007; 26:4263-72. [PMID: 17805347 PMCID: PMC2230838 DOI: 10.1038/sj.emboj.7601842] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 08/07/2007] [Indexed: 12/15/2022] Open
Abstract
Antigen-specific interactions between B cells and T cells are essential for the generation of an efficient immune response. Since this requires peptide-MHC class II complexes (pMHC-II) on the B cell to interact with TCR on antigen-specific T cells, we have examined the mechanisms regulating the persistence, loss, and secretion of specific pMHC-II complexes on activated B cells. Using a mAb that recognizes specific pMHC-II, we found that activated B cells degrade approximately 50% of pMHC-II every day and release 12% of these pMHC-II from the cell on small membrane vesicles termed exosomes. These exosomes directly stimulate primed, but not naïve, CD4 T cells. Interestingly, engagement of antigen-loaded B cells with specific CD4 T cells stimulates exosome release in a manner that can be mimicked by pMHC-II crosslinking. Biochemical studies revealed that the pMHC-II released on exosomes was previously expressed on the plasma membrane of the B cells, suggesting that regulated exosome release from activated B cells is a mechanism to allow pMHC-II to escape intracellular degradation and decorate secondary lymphoid organs with membrane-associated pMHC-II complexes.
Collapse
Affiliation(s)
- Aura Muntasell
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adam C Berger
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 10, Room 4B36, Bethesda, MD 20892, USA. Tel.: +1 301 594 2595; Fax: +1 301 496 0887; E-mail:
| |
Collapse
|
24
|
He T, Zong S, Wu X, Wei Y, Xiang J. CD4+ T cell acquisition of the bystander pMHC I colocalizing in the same immunological synapse comprising pMHC II and costimulatory CD40, CD54, CD80, OX40L, and 41BBL. Biochem Biophys Res Commun 2007; 362:822-8. [PMID: 17803957 DOI: 10.1016/j.bbrc.2007.08.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
We previously showed that CD4+ T cells acquired peptide/major histocompatibility complex (pMHC) I and costimulatory molecules by dendritic cell (DC) activation. However, the molecular mechanism for pMHC I acquisition is unclear. In this study, by using a panel of engineered DC2.4 cells or incubation of these cells with Con A-stimulated CD4+ T cells, we conducted capping and synapse formation assay and examined them by confocal fluorescence microscopy. We demonstrated that (i) CD54 and CD80 colocalized with pMHC I/II in the same lipid rafts, whereas CD40, OX40L, and 41BBL localized in the lipid rafts but separately from pMHC I/II, and (ii) MHC I/II colocalized with the costimulatory molecules in the same synapse formed between a DC and a CD4+ T cell, leading to expression of the acquired bystander pMHC I on CD4+ T cells via internalization/recycling pathway. These results provide some useful information in composition and dynamics of immunological synapses.
Collapse
Affiliation(s)
- Tianpei He
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 4H4
| | | | | | | | | |
Collapse
|
25
|
Vascotto F, Lankar D, Faure-André G, Vargas P, Diaz J, Le Roux D, Yuseff MI, Sibarita JB, Boes M, Raposo G, Mougneau E, Glaichenhaus N, Bonnerot C, Manoury B, Lennon-Duménil AM. The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation. ACTA ACUST UNITED AC 2007; 176:1007-19. [PMID: 17389233 PMCID: PMC2064085 DOI: 10.1083/jcb.200611147] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antigen (Ag) capture and presentation onto major histocompatibility complex (MHC) class II molecules by B lymphocytes is mediated by their surface Ag receptor (B cell receptor [BCR]). Therefore, the transport of vesicles that carry MHC class II and BCR–Ag complexes must be coordinated for them to converge for processing. In this study, we identify the actin-associated motor protein myosin II as being essential for this process. Myosin II is activated upon BCR engagement and associates with MHC class II–invariant chain complexes. Myosin II inhibition or depletion compromises the convergence and concentration of MHC class II and BCR–Ag complexes into lysosomes devoted to Ag processing. Accordingly, the formation of MHC class II–peptides and subsequent CD4 T cell activation are impaired in cells lacking myosin II activity. Therefore, myosin II emerges as a key motor protein in BCR-driven Ag processing and presentation.
Collapse
Affiliation(s)
- Fulvia Vascotto
- Institut National de la Santé et de la Recherche Medicale Unité 653, Unité Mixte de Recherche 144 Institut Curie, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Poloso NJ, Denzin LK, Roche PA. CDw78 defines MHC class II-peptide complexes that require Ii chain-dependent lysosomal trafficking, not localization to a specific tetraspanin membrane microdomain. THE JOURNAL OF IMMUNOLOGY 2007; 177:5451-8. [PMID: 17015731 DOI: 10.4049/jimmunol.177.8.5451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II molecules (MHC-II) associate with detergent-resistant membrane microdomains, termed lipid rafts, which affects the function of these molecules during Ag presentation to CD4+ T cells. Recently, it has been proposed that MHC-II also associates with another type of membrane microdomain, termed tetraspan microdomains. These microdomains are defined by association of molecules to a family of proteins that contain four-transmembrane regions, called tetraspanins. It has been suggested that MHC-II associated with tetraspanins are selectively identified by a mAb to a MHC-II determinant, CDw78. In this report, we have re-examined this issue of CDw78 expression and MHC-II-association with tetraspanins in human dendritic cells, a variety of human B cell lines, and MHC-II-expressing HeLa cells. We find no correlation between the expression of CDw78 and the expression of tetraspanins CD81, CD82, CD53, CD9, and CD37. Furthermore, we find that the relative amount of tetraspanins bound to CDw78-reactive MHC-II is indistinguishable from the amount bound to peptide-loaded MHC-II. We found that expression of CDw78 required coexpression of MHC-II together with its chaperone Ii chain. In addition, analysis of a panel of MHC-II-expressing B cell lines revealed that different alleles of HLA-DR express different amounts of CDw78 reactivity. We conclude that CDw78 defines a conformation of MHC-II bound to peptides that are acquired through trafficking to lysosomal Ag-processing compartments and not MHC-II-associated with tetraspanins.
Collapse
Affiliation(s)
- Neil J Poloso
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
27
|
Vascotto F, Le Roux D, Lankar D, Faure-André G, Vargas P, Guermonprez P, Lennon-Duménil AM. Antigen presentation by B lymphocytes: how receptor signaling directs membrane trafficking. Curr Opin Immunol 2006; 19:93-8. [PMID: 17140785 DOI: 10.1016/j.coi.2006.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/21/2006] [Indexed: 12/16/2022]
Abstract
Antigen capture and presentation onto MHC class II molecules by B lymphocytes is mediated by their surface antigen receptor - the B-cell receptor (BCR). The BCR must therefore coordinate the transport of MHC class II- and antigen-containing vesicles for them to converge and ensure efficient processing. Recently, progress has been made in understanding which and how these vesicular transport events are molecularly linked to BCR signaling. In particular, recent studies have emphasized the key roles of membrane microdomains and the actin cytoskeleton in regulation of membrane trafficking upon BCR engagement.
Collapse
Affiliation(s)
- Fulvia Vascotto
- Unité Inserm 653, Institut Curie, 12 rue Lhomond, 75005, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Schweitzer SC, Reding AM, Patton HM, Sullivan TP, Stubbs CE, Villalobos-Menuey E, Huber SA, Newell MK. Endogenous versus exogenous fatty acid availability affects lysosomal acidity and MHC class II expression. J Lipid Res 2006; 47:2525-37. [PMID: 16914769 DOI: 10.1194/jlr.m600329-jlr200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although the immune system, inflammation, and cellular metabolism are linked to diseases associated with dyslipidemias, the mechanism(s) remain unclear. To determine whether there is a mechanistic link between lipid availability and inflammation/immune activation, we evaluated macrophage cell lines incubated under conditions of altered exogenous and endogenous lipid availability. Limiting exogenous lipids results in decreased lysosomal acidity and decreased lysosomal enzymatic activity. Both lysosomal parameters are restored with the addition of oleoyl-CoA, suggesting that fatty acids play a role in the regulation of lysosomal function. Cell surface expression of major histocompatibility complex (MHC)-encoded molecules is also decreased in the absence of exogenous lipids. Additionally, we observe decreased gamma-interferon stimulation of cell surface MHC class II. Using cerulenin to limit the endogenous synthesis of fatty acids results in decreased cell surface expression of MHC class II but does not appear to alter lysosomal acidity, suggesting that lysosomal acidity is dependent on exogenous, but not endogenous, fatty acid availability. Testing these conclusions in an in vivo mouse model, we observed statistically significant, diet-dependent differences in lysosomal acidity and MHC class II cell surface expression. Collectively, these data demonstrate a mechanistic link between lipid availability and early events in the immune response.
Collapse
Affiliation(s)
- S C Schweitzer
- Colorado University Institute of Bioenergetics, University of Colorado, Colorado Springs, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lapaque N, Forquet F, de Chastellier C, Mishal Z, Jolly G, Moreno E, Moriyon I, Heuser JE, He HT, Gorvel JP. Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts. Cell Microbiol 2006; 8:197-206. [PMID: 16441431 DOI: 10.1111/j.1462-5822.2005.00609.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The lipopolysaccharides (LPS) of intracellular Proteobacteria such as Brucella, Chlamydia, Legionella and Rickettsia, have properties distinct from enterobacterial LPSs. These properties include deficient LPS induction of host cell activation, low endotoxicity and resistance to macrophage degradation. Together these constitute key virulence mechanisms for intracellular survival and replication. We previously demonstrated that B. abortus LPS captured by macrophages was recycled back to the plasma membrane where it was found associated with macrodomains. Furthermore, this LPS interferes with the MHC class II (MHC-II) presentation of peptides to specific T cell hybridomas. Here, we characterized the Brucella LPS macrodomains by microscopy and biochemistry approaches. We show for the first time that LPS macrodomains act as detergent resistant membranes (DRMs), segregating several lipid-raft components, LPS-binding proteins and MHC-II molecules. Brucella LPS macrodomains remain intact for several months in macrophages and are resistant to the disruptive effects of methyl beta-cyclodextrin. Fluorescent anisotropy measurements show that B. abortus LPS is responsible for the formation of rigid surface membrane complexes. In addition, relocalization of MHC-II molecules is observed in these structures. The effects of B. abortus LPS on membrane properties could be responsible for pathogenic effects such as the inhibition of MHC-II-dependent antigen presentation.
Collapse
Affiliation(s)
- Nicolas Lapaque
- Centre d'Immunologie INSERM-CNRS-Université Méditerranée, case 906, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kay JG, Murray RZ, Pagan JK, Stow JL. Cytokine Secretion via Cholesterol-rich Lipid Raft-associated SNAREs at the Phagocytic Cup. J Biol Chem 2006; 281:11949-54. [PMID: 16513632 DOI: 10.1074/jbc.m600857200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide-activated macrophages rapidly synthesize and secrete tumor necrosis factor alpha (TNFalpha) to prime the immune system. Surface delivery of membrane carrying newly synthesized TNFalpha is controlled and limited by the level of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin 4 and SNAP-23. Many functions in immune cells are coordinated from lipid rafts in the plasma membrane, and we investigated a possible role for lipid rafts in TNFalpha trafficking and secretion. TNFalpha surface delivery and secretion were found to be cholesterol-dependent. Upon macrophage activation, syntaxin 4 was recruited to cholesterol-dependent lipid rafts, whereas its regulatory protein, Munc18c, was excluded from the rafts. Syntaxin 4 in activated macrophages localized to discrete cholesterol-dependent puncta on the plasma membrane, particularly on filopodia. Imaging the early stages of TNFalpha surface distribution revealed these puncta to be the initial points of TNFalpha delivery. During the early stages of phagocytosis, syntaxin 4 was recruited to the phagocytic cup in a cholesterol-dependent manner. Insertion of VAMP3-positive recycling endosome membrane is required for efficient ingestion of a pathogen. Without this recruitment of syntaxin 4, it is not incorporated into the plasma membrane, and phagocytosis is greatly reduced. Thus, relocation of syntaxin 4 into lipid rafts in macrophages is a critical and rate-limiting step in initiating an effective immune response.
Collapse
Affiliation(s)
- Jason G Kay
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
31
|
Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TMC, Mellins ED. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol Rev 2005; 207:242-60. [PMID: 16181341 DOI: 10.1111/j.0105-2896.2005.00306.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In antigen-presenting cells (APCs), loading of major histocompatibility complex class II (MHC II) molecules with peptides is regulated by invariant chain (Ii), which blocks MHC II antigen-binding sites in pre-endosomal compartments. Several molecules then act upon MHC II molecules in endosomes to facilitate peptide loading: Ii-degrading proteases, the peptide exchange factor, human leukocyte antigen-DM (HLA-DM), and its modulator, HLA-DO (DO). Here, we review our findings arguing that DM stabilizes a globally altered conformation of the antigen-binding groove by binding to a lateral surface of the MHC II molecule. Our data imply changes in the interactions between specificity pockets and peptide side chains, complementing data from others that suggest DM affects hydrogen bonds. Selective weakening of peptide/MHC interactions allows DM to alter the peptide repertoire. We also review our studies in cells that highlight the ability of several factors to modulate surface expression of MHC II molecules via post-Golgi mechanisms; these factors include MHC class II-associated Ii peptides (CLIP), DM, and microbial products that modulate MHC II traffic from endosomes to the plasma membrane. In this context, we discuss possible mechanisms by which the association of some MHC II alleles with autoimmune diseases may be linked to their low CLIP affinity.
Collapse
Affiliation(s)
- Robert Busch
- Division of Pediatric Immunology and Transplantation Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94705, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Karacsonyi C, Bedke T, Hinrichsen N, Schwinzer R, Lindner R. MHC II molecules and invariant chain reside in membranes distinct from conventional lipid rafts. J Leukoc Biol 2005; 78:1097-105. [PMID: 16204642 DOI: 10.1189/jlb.0405189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Major histocompatibility complex class II (MHC II) peptide complexes can associate with lipid rafts, and this is a prerequisite for their recruitment to the immunological synapse and for efficient T cell stimulation. One of the most often used criterion for raft association is the resistance to extraction by the detergent Triton X-100 (TX-100) at low temperature. For MHC II, a variety of detergents have been used under different conditions, leading to variable and often conflicting conclusions about the association of MHC II with detergent-resistant membranes (DRMs). To clarify whether these inconsistencies were caused by variations in the isolation protocols or reflect different biochemical properties of MHC II lipid complexes, we used two standardized procedures for the isolation of membranes resistant to TX-100, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), or Brij 98. Our results suggest that some of the reported variations in the association of MHC II with DRMs are caused by differences in the methods. We also show that in our hands, specific and efficient flotation of MHC II and the MHC II-associated invariant chain from mouse B-lymphoma cells was only achieved with Brij 98, but not with TX-100 and CHAPS. We furthermore used DRMs prepared from hen egg lysozyme-fed B-lymphoma cells to activate the T cell hybridoma 3A9. In agreement with our biochemical data, T cell activation could only be achieved with Brij 98- but not with TX-100-resistant membranes. Thus, MHC II and also the invariant chain belong to a set of proteins comprising the T cell receptor, prominin, and the prion protein, which reside in membrane environments distinct from conventional lipid rafts.
Collapse
Affiliation(s)
- Claudia Karacsonyi
- Department of Cell Biology in the Center of Anatomy, Hannover Medical School, Germany
| | | | | | | | | |
Collapse
|
33
|
Lebedeva T, Dustin ML, Sykulev Y. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr Opin Immunol 2005; 17:251-8. [PMID: 15886114 DOI: 10.1016/j.coi.2005.04.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adhesion molecules are known to mediate cell-cell interactions, particularly those between T cells and antigen-presenting or target cells. Recent studies identified ICAM-1 as a co-stimulatory ligand that binds to lymphocyte function associated antigen-1 (LFA-1), thereby promoting the activation of T cells. As ICAM-1 is expressed on virtually any cell, it becomes a crucial molecule for the activation of CD8(+) T cells in the absence of co-stimulation provided by CD80 and CD86 molecules. In addition, ICAM-1 might function as cell-surface receptor, capable of initiating intracellular signaling. ICAM-1 is associated with other cell molecules, including MHC-I proteins, and our recent data show that productive engagement of ICAM-1 on target cells leads to recruitment of the MHC-I proteins to the contact area and enhances presentation of cognate peptide MHC-I complexes to cytotoxic T cells.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|