1
|
Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med 2023; 29:97. [PMID: 37460961 PMCID: PMC10353253 DOI: 10.1186/s10020-023-00682-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Toll-like receptors play a significant role in the innate immune system and are also involved in the pathophysiology of many different diseases. Over the past 35 years, there have been a growing number of publications exploring the role of the orphan toll-like receptor, CD180. We therefore set out to provide a narrative review of the current evidence surrounding CD180 in both health and disease. We first explore the evidence surrounding the role of CD180 in physiology including its expression, function and signaling in antigen presenting cells (APCs) (dendritic cells, monocytes, and B cells). We particularly focus on the role of CD180 as a modulator of other TLRs including TLR2, TLR4, and TLR9. We then discuss the role of CD180 in inflammatory and autoimmune diseases, as well as in hematological malignancies of B cell origin, including chronic lymphocytic leukemia (CLL). Based on this evidence we produce a current model for CD180 in disease and explore the potential role for CD180 as both a prognostic biomarker and therapeutic target. Throughout, we highlight specific areas of research which should be addressed to further the understanding of CD180 biology and the translational potential of research into CD180 in various diseases.
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK
| | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK.
- The University of Georgia, Tbilisi, Georgia.
- Division of Infection of Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Nino Kulikova
- Agricultural University of Georgia, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
2
|
Fang C, Fang W, Xu L, Gao F, Hou Y, Zou H, Ma Y, Moll JM, Yang Y, Wang D, Huang Y, Ren H, Zhao H, Qin S, Zhong H, Li J, Liu S, Yang H, Wang J, Brix S, Kristiansen K, Zhang L. Distinct Functional Metagenomic Markers Predict the Responsiveness to Anti-PD-1 Therapy in Chinese Non-Small Cell Lung Cancer Patients. Front Oncol 2022; 12:837525. [PMID: 35530307 PMCID: PMC9069064 DOI: 10.3389/fonc.2022.837525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background Programmed death 1 (PD-1) and the ligand of PD-1 (PD-L1) are central targets for immune-checkpoint therapy (ICT) blocking immune evasion-related pathways elicited by tumor cells. A number of PD-1 inhibitors have been developed, but the efficacy of these inhibitors varies considerably and is typically below 50%. The efficacy of ICT has been shown to be dependent on the gut microbiota, and experiments using mouse models have even demonstrated that modulation of the gut microbiota may improve efficacy of ICT. Methods We followed a Han Chinese cohort of 85 advanced non-small cell lung cancer (NSCLC) patients, who received anti-PD-1 antibodies. Tumor biopsies were collected before treatment initiation for whole exon sequencing and variant detection. Fecal samples collected biweekly during the period of anti-PD-1 antibody administration were used for metagenomic sequencing. We established gut microbiome abundance profiles for identification of significant associations between specific microbial taxa, potential functionality, and treatment responses. A prediction model based on random forest was trained using selected markers discriminating between the different response groups. Results NSCLC patients treated with antibiotics exhibited the shortest survival time. Low level of tumor-mutation burden and high expression level of HLA-E significantly reduced progression-free survival. We identified metagenomic species and functional pathways that differed in abundance in relation to responses to ICT. Data on differential enrichment of taxa and predicted microbial functions in NSCLC patients responding or non-responding to ICT allowed the establishment of random forest algorithm-adopted models robustly predicting the probability of whether or not a given patient would benefit from ICT. Conclusions Overall, our results identified links between gut microbial composition and immunotherapy efficacy in Chinese NSCLC patients indicating the potential for such analyses to predict outcome prior to ICT.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liqin Xu
- BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Fangfang Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong Hou
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Hua Zou
- BGI-Shenzhen, Shenzhen, China
| | - Yuxiang Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Janne Marie Moll
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yunpeng Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Yan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huahui Ren
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Huanzi Zhong
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- *Correspondence: Susanne Brix, ; Karsten Kristiansen, ; Li Zhang,
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
- Institute of Metagenomics, Qingdao-Europe Advance Institute for Life Sciences, BGI-Qingdao, Qingdao, China
- *Correspondence: Susanne Brix, ; Karsten Kristiansen, ; Li Zhang,
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Susanne Brix, ; Karsten Kristiansen, ; Li Zhang,
| |
Collapse
|
3
|
Xiao Z, Deng Q, Zhou W, Zhang Y. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacol Ther 2021; 229:107921. [PMID: 34174277 DOI: 10.1016/j.pharmthera.2021.107921] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Lycium barbarum is widely used as a functional food and medicinal herb to promote health and longevity in China and in some other Asian countries. In modern pharmacological and chemical studies, the most valuable and well-researched component of L. barbarum is a group of unique water-soluble glycoconjugates that are collectively termed Lycium barbarum polysaccharides (LBPs). Numerous modern pharmacological studies have revealed that LBPs possess antiaging, antidiabetic, antifibrotic, neuroprotective, and immunomodulation properties, while the immunomodulatory effect is primary and is involved in other activities. However, due to their structural heterogeneity and lack of chromophores, it has long been unclear how LBPs work on the immune system. A few studies have recently provided some insights into the proposed mode of action of LBPs, such as structure-activity relationships, receptor recognition, and gut microbiota modulation of LBPs. This review provides a comprehensive overview of the immunoregulating properties of LBPs and their related mechanisms of action.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Deng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| |
Collapse
|
4
|
Hydrothermal processing of β-glucan from Aureobasidium pullulans produces a low molecular weight reagent that regulates inflammatory responses induced by TLR ligands. Biochem Biophys Res Commun 2019; 511:318-322. [PMID: 30803755 DOI: 10.1016/j.bbrc.2019.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022]
Abstract
The Kururu no β-glu® (KBG) is a commercial hydrothermal-treated Aureobasidium pullulans β-glucan produced by a unique hydrothermal process that results in high solubility of the β-glucan. In this study, we examined the biological activities of this reagent. RAW264.7 cells do not express Dictin-1 on the cell surface, but cells still respond to various pathogen molecular patterns. Lipopolysaccharide (LPS) induced nitrogen oxide (NO) synthesis and TNF-α production in RAW264.7 cells, and those were suppressed by KBG in a dose-dependent manner. The major signaling cell surface receptor respond to LPS is the TLR4/MD-2 complex. The UT12 antibody against to the TLR4/MD-2 complex mimics LPS function and induces cell responses. NO generation and TNF-α production were similarly induced in cells by stimulation with the antibody, but those were not suppressed by KBG. Cell responses induced by other TLR ligands, such as CPG (TLR9 ligand) and Pam3CSK4 (TLR1/TLR2 ligand), were also suppressed by KBG. Therefore, the target molecule for KBG is different from TLR receptors and Dictin-1. Although we also examined the suppressive activities of several other β-glucan products, comparable activities were not detected with other reagents. A unique hydrothermal process may produce the active reagent. Reprocessing KBG increased low molecular weight fractions, and suppressive activities were markedly enhanced. Therefore, low molecular weight fractions obtained by hydrothermal processing of KBG may result in potential reagents that control inflammation induced by various pathogens.
Collapse
|
5
|
Hara H, Seregin SS, Yang D, Fukase K, Chamaillard M, Alnemri ES, Inohara N, Chen GY, Núñez G. The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell 2018; 175:1651-1664.e14. [PMID: 30392956 DOI: 10.1016/j.cell.2018.09.047] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/26/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023]
Abstract
The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and interleukin-1β (IL-1β)/IL-18 maturation in macrophages. Nlrp6-/- and Casp11-/- mice were less susceptible to L. monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6-/- or Casp11-/- mice restored the susceptibility of mutant mice to L. monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.
Collapse
Affiliation(s)
- Hideki Hara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Sergey S Seregin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dahai Yang
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mathias Chamaillard
- CIIL-Centre d'Infection et d'Immunité de Lille, Université de Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 8204, F-59000, Lille, France
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Grace Y Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in physiological conditions. Sci Rep 2017; 7:13113. [PMID: 29030613 PMCID: PMC5640642 DOI: 10.1038/s41598-017-13302-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023] Open
Abstract
Physiologically, lipopolysaccharide (LPS) is present in the bloodstream and can be bound to several proteins for its transport (i.e.) LPS binding protein (LBP) and plasma lipoproteins). LPS receptors CD14 and TLR-4 are constitutively expressed in the Central Nervous System (CNS). To our knowledge, LPS infiltration in CNS has not been clearly demonstrated. A naturalistic experiment with healthy rats was performed to investigate whether LPS is present with its receptors in brain. Immunofluorescences showed that lipid A and core LPS were present in circumventricular organs, choroid plexus, meningeal cells, astrocytes, tanycytes and endothelial cells. Co-localization of LPS regions with CD14/TLR-4 was found. The role of lipoprotein receptors (SR-BI, ApoER2 and LDLr) in the brain as targets for a LPS transport mechanism by plasma apolipoproteins (i.e. ApoAI) was studied. Co-localization of LPS regions with these lipoproteins markers was observed. Our results suggest that LPS infiltrates in the brain in physiological conditions, possibly, through a lipoprotein transport mechanism, and it is bound to its receptors in blood-brain interfaces.
Collapse
|
7
|
Tsukamoto H, Yamagata Y, Ukai I, Takeuchi S, Okubo M, Kobayashi Y, Kozakai S, Kubota K, Numasaki M, Kanemitsu Y, Matsumoto Y, Tomioka Y. An inhibitory epitope of human Toll-like receptor 4 resides on leucine-rich repeat 13 and is recognized by a monoclonal antibody. FEBS Lett 2017; 591:2406-2416. [PMID: 28741733 DOI: 10.1002/1873-3468.12768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/15/2017] [Accepted: 07/23/2017] [Indexed: 12/16/2022]
Abstract
Lipopolysaccharide (LPS)-induced activation of Toll-like receptor 4 (TLR4) elicits the innate immune response and can trigger septic shock if excessive. Two antibodies (HT4 and HT52) inhibit LPS-induced human TLR4 activation via novel LPS binding-independent mechanisms. The HT52 epitope resides on leucine-rich repeat 2 (LRR2) and is a feature of many inhibitory antibodies; antigen specificity of HT4 does not reside in LRR2. Here, we identified an HT4 epitope on LRR13 located close to the TLR4 dimerization interface that plays a role in NFκB activation. HT4 and HT52 mutually enhanced TLR4 inhibition. LRR13 is a novel inhibitory epitope and may be useful for developing anti-TLR4 antibodies. Combination therapy with LRR2 and LRR13 may effectively inhibit TLR4 activation.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuki Yamagata
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ippo Ukai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shino Takeuchi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Misaki Okubo
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yohei Kobayashi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sao Kozakai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kanae Kubota
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Muneo Numasaki
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshitomi Kanemitsu
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Ortiz-Suarez M, Bond P. The Structural Basis for Lipid and Endotoxin Binding in RP105-MD-1, and Consequences for Regulation of Host Lipopolysaccharide Sensitivity. Structure 2016; 24:200-211. [DOI: 10.1016/j.str.2015.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/09/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
|
9
|
Mattis DM, Chervin AS, Ranoa DR, Kelley SL, Tapping RI, Kranz DM. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses. Mol Immunol 2015; 68:203-12. [PMID: 26320630 DOI: 10.1016/j.molimm.2015.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022]
Abstract
Bacterial lipopolysaccharide (LPS) activates the innate immune system by forming a complex with myeloid differentiation factor 2 (MD-2) and Toll-like receptor 4 (TLR4), which is present on antigen presenting cells. MD-2 plays an essential role in this activation of the innate immune system as a member of the ternary complex, TLR4:MD-2:LPS. With the goal of further understanding the molecular details of the interaction of MD-2 with LPS and TLR4, and possibly toward engineering dominant negative regulators of the MD-2 protein, here we subjected MD-2 to a mutational analysis using yeast display. The approach included generation of site-directed alanine mutants, and ligand-driven selections of MD-2 mutant libraries. Our findings showed that: (1) proline mutations in the F119-K132 loop that binds LPS were strongly selected for enhanced yeast surface stability, (2) there was a preference for positive-charged side chains (R/K) at residue 120 for LPS binding, and negative-charged side chains (D/E) for TLR4 binding, (3) aromatic residues were strongly preferred at F119 and F121 for LPS binding, and (4) an MD-2 mutant (T84N/D101A/S118A/S120D/K122P) exhibited increased binding to TLR4 but decreased binding to LPS. These studies revealed the impact of specific residues and regions of MD-2 on the binding of LPS and TLR4, and they provide a framework for further directed evolution of the MD-2 protein.
Collapse
Affiliation(s)
- Daiva M Mattis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Adam S Chervin
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Diana R Ranoa
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Stacy L Kelley
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Richard I Tapping
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Tsukamoto H, Ihara H, Ito R, Ukai I, Suzuki N, Kimoto M, Tomioka Y, Ikeda Y. MD-2-dependent human Toll-like receptor 4 monoclonal antibodies detect extracellular association of Toll-like receptor 4 with extrinsic soluble MD-2 on the cell surface. Biochem Biophys Res Commun 2013; 440:31-6. [PMID: 24021278 DOI: 10.1016/j.bbrc.2013.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/02/2013] [Indexed: 11/18/2022]
Abstract
MD-2 is essential for lipopolysaccharide (LPS) recognition of Toll-like receptor 4 (TLR4) but not for cell surface expression. The TLR4/MD-2 complex is formed intracellularly through co-expression. Extracellular complex formation remains a matter for debate because of the aggregative nature of secreted MD-2 in the absence of TLR4 co-expression. We demonstrated extracellular complex formation using three independent monoclonal antibodies (mAbs), all of which are specific for complexed TLR4 but unreactive with free TLR4 and MD-2. These mAbs bound to TLR4-expressing Ba/F3 cells only when co-cultured with MD-2-secreting Chinese hamster ovary cells or incubated with conditioned medium from these cells. All three mAbs bound the extracellularly formed complex indistinguishably from the intracellularly formed complex in titration studies. In addition, we demonstrated that two mAbs lost their affinity for TLR4/MD-2 on LPS stimulation, suggesting that these mAbs bound to conformation-sensitive epitopes. This was also found when the extracellularly formed complex was stimulated with LPS. Additionally, we showed that cell surface TLR4 and extrinsically secreted MD-2 are capable of forming the functional complex extracellularly, indicating an additional or alternative pathway for the complex formation.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578, Japan; Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shi XZ, Zhong X, Yu XQ. Drosophila melanogaster NPC2 proteins bind bacterial cell wall components and may function in immune signal pathways. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:545-56. [PMID: 22580186 PMCID: PMC3358802 DOI: 10.1016/j.ibmb.2012.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/22/2012] [Accepted: 04/13/2012] [Indexed: 05/14/2023]
Abstract
ML (MD-2 (myeloid differentiation factor-2)-related Lipid-recognition) is a conserved domain identified in MD-2, MD-1, NPC2 (Niemann-Pick disease type C2), and mite major allergen protein from animals, plants, and fungi. Vertebrate members of the ML family proteins, such as NPC2 and MD-2, play important roles in lipid metabolism and immune signaling pathway. MD-2 is an essential co-receptor in the lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4) signaling pathway. Insects contain multiple ML genes, arbitrarily named md-2- or npc2-like genes. However, whether insect ML genes have functions similar to vertebrate md-2 is unknown. In Drosophila melanogaster, there are eight npc2 genes (npc2a-h), and they can be further divided into three subgroups based on the numbers of cysteine residues (6, 7 and 8 Cys) in the mature proteins. The purpose of this study is to investigate whether any Drosophila npc2 genes may have functions in immune signaling pathways. We chose npc2a, npc2e and npc2h genes representing the three subgroups for this study. We showed that recombinant NPC2a, NPC2e and NPC2h not only bound to LPS and lipid A, but also bound to peptidoglycan (PG) and lipoteichoic acid (LTA), a property that has not been reported previously for vertebrate NPC2 or MD-2. More importantly, we showed that over-expression of NPC2a and NPC2e activated diptericin promoter reporter in S2 cells stimulated by PG, suggesting that NPC2e and NPC2a may play a role in the immune deficiency (Imd) pathway. This is the first in vitro study about NPC2 proteins in innate immunity of D. melanogaster.
Collapse
Affiliation(s)
| | | | - Xiao-Qiang Yu
- Send correspondence to: Xiao-Qiang Yu, PhD, Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, Telephone: (816)-235-6379, Fax: (816)-235-1503,
| |
Collapse
|
12
|
Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Ihara H, Ikeda Y, Kimoto M. Multiple potential regulatory sites of TLR4 activation induced by LPS as revealed by novel inhibitory human TLR4 mAbs. Int Immunol 2012; 24:495-506. [PMID: 22499954 DOI: 10.1093/intimm/dxs053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recognition of LPS by the toll-like receptor 4 (TLR4)/MD-2 complex is a trigger of innate immune defense against bacterial invasion. However, excessive immune activation by this receptor complex causes septic shock and autoimmunity. Manipulation of TLR4 signaling represents a potential therapy that would avoid the detrimental consequences of unnecessary immune responses. In this study, we established two novel mAbs that inhibit LPS-induced human TLR4 activation. HT52 and HT4 mAbs inhibited LPS-induced nuclear factor-κB activation in TLR4/MD-2-expressing Ba/F3-transfected cells and cytokine production and up-regulation of CD86 in the human cell line U373 and PBMCs. These inhibitory activities were stronger than that of HTA125 mAb, which we previously reported. Immunofluorescent and biochemical studies using TLR4 deletion mutants revealed that HT52 and HT4 recognized spatially distinct regions on TLR4 irrespective of MD-2 association. The HT52 and HTA125 epitopes were localized within aa 50-190, while the HT4 epitope was formed only by the full length of TLR4. In addition, we demonstrated that HT52 and HT4 failed to compete with LPS for binding to TLR4/MD-2 but inhibited LPS-induced TLR4 internalization. Inhibitory activities were not due to the interaction with the Fcγ receptor CD32. Our finding that binding of mAbs to at least two distinct regions on TLR4 inhibits LPS-dependent activation provides a novel method for manipulating TLR4 activation and also a rationale for designing drugs targeted to TLR4.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Department of Immunology, Saga Medical School, Saga 849-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Chaplin JW, Kasahara S, Clark EA, Ledbetter JA. Anti-CD180 (RP105) activates B cells to rapidly produce polyclonal Ig via a T cell and MyD88-independent pathway. THE JOURNAL OF IMMUNOLOGY 2011; 187:4199-209. [PMID: 21918197 DOI: 10.4049/jimmunol.1100198] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD180 is homologous to TLR4 and regulates TLR4 signaling, yet its function is unclear. We report that injection of anti-CD180 mAb into mice induced rapid Ig production of all classes and subclasses, with the exception of IgA and IgG2b, with up to 50-fold increases in serum IgG1 and IgG3. IgG production after anti-CD180 injection was not due to reactivation of memory B cells and was retained in T cell-deficient (TCR knockout [KO]), CD40 KO, IL-4 KO, and MyD88 KO mice. Anti-CD180 rapidly increased both transitional and mature B cells, with especially robust increases in transitional B cell number, marginal zone B cell proliferation, and CD86, but not CD80, expression. In contrast, anti-CD40 induced primarily follicular B cell and myeloid expansion, with increases in expression of CD80 and CD95 but not CD86. The expansion of splenic B cells was due, in part, to proliferation and occurred in wild-type and TCR KO mice, whereas T cell expansion occurred in wild-type, but not in B cell-deficient, mice, indicating a direct role for B cells in CD180 stimulation in vivo. Combination of anti-CD180 with various MyD88-dependent TLR ligands biased B cell fate because coinjection diminished Ig production, but purified B cells exhibited synergistic proliferation. Anti-CD180 had no effect on cytokine production from B cells, but it increased IL-6, IL-10, and TNF-α production in combination with LPS or CpG. Thus, CD180 stimulation induces intrinsic B cell proliferation and differentiation, causing rapid increases in IgG, and integrates MyD88-dependent TLR signals to regulate proliferation, cytokine production, and differentiation.
Collapse
Affiliation(s)
- Jay W Chaplin
- Division of Rheumatology, Department of Medicine; University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
14
|
Tukhvatulin AI, Logunov DY, Shcherbinin DN, Shmarov MM, Naroditsky BS, Gudkov AV, Gintsburg AL. Toll-like receptors and their adapter molecules. BIOCHEMISTRY (MOSCOW) 2011; 75:1098-114. [PMID: 21077829 DOI: 10.1134/s0006297910090038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLR) are among key receptors of the innate mammalian immune system. Receptors of this family are able to recognize specific highly conserved molecular regions (patterns) in pathogen structures, thus initiating reactions of both innate and acquired immune response finally resulting in the elimination of the pathogen. In this case every individual TLR type is able to bind a broad spectrum of molecules of microbial origin characterized by different chemical properties and structures. Recent data demonstrate the existence of a multistep mechanism of the TLR recognition of the pathogen in which, in addition to receptors proper, the involvement of different adapter molecules is necessary. However, functions of separate adapter molecules as well as the principles of formation of a multicomponent system of ligand-specific recognition are still not quite understandable. We describe all identified as well as possible (candidate) adapter TLR molecules by giving their brief characteristics, and we also propose generalized possible variants of the TLR ligand-specific recognition with involvement of adapter molecules.
Collapse
Affiliation(s)
- A I Tukhvatulin
- Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, 123098, Russia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Li J, Shang G, You M, Peng S, Wang Z, Wu H, Chen GQ. Endotoxin removing method based on lipopolysaccharide binding protein and polyhydroxyalkanoate binding protein PhaP. Biomacromolecules 2011; 12:602-8. [PMID: 21261300 DOI: 10.1021/bm101230n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyhydroxyalkanoates (PHAs) granule associated protein PhaP has a strong affinity to PHA and other hydrophobic polymers. Human lipopolysaccharide binding protein (hLBP) is a natural endotoxin receptor in plasma. In this study, genes encoding hLBP fused with PhaP were expressed in Pichia pastoris GS115 for production of the fusion protein. The purified rhLBP-PhaP fusion protein was immobilized on particles of polyhydroxybutyrate (PHB), which is a member of microbial polyhydroxyalkanoates (PHA). The rhLBP-PhaP-coated PHB particles were added to endotoxin containing water and protein solutions to study their endotoxin removal and protein recovery efficiencies. The influences of ionic strengths and pH on endotoxin removal and protein recovery in different protein solutions were also studied using acidic proteins including bovine serum albumin (BSA), ovalbumin, and basic protein α-chymotrypsinogen as model proteins. The results showed that rhLBP-PhaP particles could remove endotoxin with an efficiency of over 90%. All endotoxin removal and protein recovery efficiencies were only slightly affected by ionic strengths but were drastically affected by pH changes. Our results demonstrated that rhLBP-PhaP particles with their high efficiency, ease of preparation, and nontoxicity will be a suitable system for endotoxin removal in the protein purification industry.
Collapse
Affiliation(s)
- Jian Li
- Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
16
|
LPS ligand and culture additives improve production of monomeric MD-1 and 2 in Pichia pastoris by decreasing aggregation and intermolecular disulfide bonding. Protein Expr Purif 2010; 76:173-83. [PMID: 21130168 PMCID: PMC3032050 DOI: 10.1016/j.pep.2010.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/03/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
Myeloid differentiation proteins MD-1 and MD-2 have both been shown to form a heterogeneous collection of oligomers when expressed in absence of their respective receptor, RP105 and TLR4. The biological relevance of these oligomers is not clear. Only monomeric proteins have been found to be active and able to trigger an immune response to endotoxin by modulating the TLR4 pathway. In this study, we produced variants of MD-1 and MD-2 in Pichia pastoris. To minimize the time and expense of initial expression tests, small-scale cultures have been set up to allow the rapid identification of the highest expressing clone and the optimal expression conditions. The expression vectors used, the site of linearization and the locus of integration affected the yield of transformation. Next we screened culture additives and found that they significantly increased the fraction of monomeric proteins secreted in the culture medium (up to 15% of the total MD protein produced). We confirmed their presence by size-exclusion chromatography. Optimal anti-aggregation agents were protein-dependent except for LPS that presented stabilizing effects for all MD proteins. Contrary to previous reports, this study suggests that MD-1 can bind to LPS.
Collapse
|
17
|
Crystal structure of soluble MD-1 and its interaction with lipid IVa. Proc Natl Acad Sci U S A 2010; 107:10990-5. [PMID: 20534476 DOI: 10.1073/pnas.1004153107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide (LPS) of Gram-negative bacteria is a common pathogen-associated molecular pattern (PAMP) that induces potent innate immune responses. The host immune response against LPS is triggered by myeloid differentiation factor 2 (MD-2) in association with Toll-like receptor 4 (TLR4) on the cell surface. The MD-2/TLR4-mediated LPS response is regulated by the evolutionarily related complex of MD-1 and Toll-like receptor homolog RP105. Here, we report crystallographic and biophysical data that demonstrate a previously unidentified direct interaction of MD-1 with LPS. The crystal structure of chicken MD-1 (cMD-1) at 2.0 A resolution exhibits a beta-cup-like fold, similar to MD-2, that encloses a hydrophobic cavity between the two beta-sheets. A lipid-like moiety was observed inside the cavity, suggesting the possibility of a direct MD-1/LPS interaction. LPS was subsequently identified as an MD-1 ligand by native gel electrophoresis and gel filtration analyses. The crystal structure of cMD-1 with lipid IVa, an LPS precursor, at 2.4 A resolution revealed that the lipid inserts into the deep hydrophobic cavity of the beta-cup-like structure, but with some important differences compared with MD-2. These findings suggest that soluble MD-1 alone, in addition to its complex with RP105, can regulate host LPS sensitivity.
Collapse
|
18
|
Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Kimoto M. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. Int Immunol 2010; 22:271-80. [PMID: 20133493 DOI: 10.1093/intimm/dxq005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Toll-like receptor (TLR) 4/MD-2 dimerization is thought to be required for the initiation of signaling during innate immune responses. In this study, we examined the molecular mechanisms underlying receptor dimerization in the context of accessory molecules, i.e. CD14 and lipopolysaccharide-binding protein (LBP), to determine whether dimerization is required for the initiation of signaling in response to LPS stimulation. We found that LPS-induced TLR4/MD-2 dimerization occurred only in membrane-associated CD14 (mCD14)-expressing cells. Furthermore, dimerization required LBP, but not soluble CD14 (sCD14), as an essential serum component. LPS-induced signaling as assessed by IkappaB-alpha degradation, however, occurred in mCD14-negative cells in the presence of serum and sCD14. Signaling also occurred in mCD14-positive cells in the absence of serum. Time course studies on mCD14-positive cells have demonstrated that LPS stimulation induces rapid activation of nuclear factor-kappaB and p38 in the presence of LBP (TLR4/MD-2 receptor dimerization) as compared with stimulation without LBP (receptor non-dimerization). This early activation was blocked by inhibitory anti-CD14 mAb. These studies suggest that LPS-induced TLR4/MD-2 receptor dimerization is not essential for signaling but prompts rapid signaling during innate immune responses.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Department of Immunology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | |
Collapse
|
19
|
Ichikawa S, Takai T, Yashiki T, Takahashi S, Okumura K, Ogawa H, Kohda D, Hatanaka H. Lipopolysaccharide binding of the mite allergen Der f 2. Genes Cells 2009; 14:1055-65. [PMID: 19678854 DOI: 10.1111/j.1365-2443.2009.01334.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid-binding properties and/or involvement with host defense are often found in allergen proteins, implying that these intrinsic biological functions likely contribute to the allergenicity of allergens. The group 2 major mite allergens, Der f 2 and Der p 2, show structural homology with MD-2, the lipopolysaccharide (LPS)-binding component of the Toll-like receptor (TLR) 4 signalling complex. Elucidation of the ligand-binding properties of group 2 mite allergens and identification of interaction sites by structural studies are important to explore the relationship between allergenicity and biological function. Here, we report a ligand-fishing approach in which His-tagged Der f 2 was incubated with sonicated stable isotope-labelled Escherichia coli as a potential ligand source, followed by isolation of Der f 2-bound material by a HisTrap column and NMR analysis. We found that Der f 2 binds to LPS with a nanomolar affinity and, using fluorescence and gel filtration assays that LPS binds to Der f 2 in a molar ratio of 1 : 1. We mapped the LPS-binding interface of Der f 2 by NMR perturbation studies, which suggested that LPS binds Der f 2 between the two large beta-sheets, similar to its binding to MD-2, the LPS-binding component of the innate immunity receptor TLR4.
Collapse
Affiliation(s)
- Saori Ichikawa
- Department of Material and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins. Cell Host Microbe 2009; 5:35-46. [PMID: 19154986 DOI: 10.1016/j.chom.2008.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/22/2008] [Accepted: 12/01/2008] [Indexed: 12/19/2022]
Abstract
RP105, phylogenetically related to Toll-like receptor (TLR)-4, is reported to facilitate B cell activation by the TLR4-agonist lipopolysaccharide (LPS)--but to limit LPS-induced cytokine production by antigen-presenting cells. Here, we show that the role of RP105 extends beyond LPS recognition and that RP105 positively regulates macrophage responses to Mycobacterium tuberculosis (Mtb) lipoproteins. Mtb-infected RP105(-/-) mice exhibited impaired proinflammatory cytokine responses associated with enhanced bacterial burden and increased lung pathology. The Mtb 19 kDa lipoprotein induced release of tumor necrosis factor in a manner dependent on both TLR2 and RP105, and macrophage activation by Mtb lacking mature lipoproteins was not RP105 dependent. Thus, mycobacterial lipoproteins are RP105 agonists. RP105 physically interacted with TLR2, and both RP105 and TLR2 were required for optimal macrophage activation by Mtb. Our data identify RP105 as an accessory molecule for TLR2, forming part of the receptor complex for innate immune recognition of mycobacterial lipoproteins.
Collapse
|
21
|
Minguet S, Dopfer EP, Pollmer C, Freudenberg MA, Galanos C, Reth M, Huber M, Schamel WW. Enhanced B-cell activation mediated by TLR4 and BCR crosstalk. Eur J Immunol 2008; 38:2475-87. [PMID: 18819072 DOI: 10.1002/eji.200738094] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite the important role of B lymphocytes as a bridge between the innate and the adaptive immune system, little is known regarding lipopolysaccharide (LPS) recognition, activation of signalling networks or conceivable cooperation between LPS and the B-cell antigen receptor (BCR). Here, we show that primary B cells can efficiently discriminate between different LPS chemotypes, responding with at least 100-fold higher sensitivity to rough-form LPS compared with smooth-form LPS. Using genetically modified mice, we demonstrate that B lymphocytes recognize all LPS chemotypes via Toll-like receptor 4 (TLR4). In addition, we dissect the signalling pathways that lead to CD69 upregulation upon TLR4 and BCR activation in primary B cells. Our data suggest that TLR4 and BCR induce CD69 transcription via two distinct sets of signalling molecules, exerting quantitative and qualitative differences in B-cell activation. Finally, we show that simultaneous stimulation of TLR4 and BCR additively elevates B-cell activation. In contrast, co-engagement of TLR4 and BCR by antigen-coupled LPS synergistically enhances activation of B cells, pointing out attractive targets for signalling crosstalk in B lymphocytes.
Collapse
Affiliation(s)
- Susana Minguet
- Molecular Immunology, Institute of Biology III, University of Freiburg and Max Planck-Institute for Immunobiology, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vasl J, Prohinar P, Gioannini TL, Weiss JP, Jerala R. Functional activity of MD-2 polymorphic variant is significantly different in soluble and TLR4-bound forms: decreased endotoxin binding by G56R MD-2 and its rescue by TLR4 ectodomain. THE JOURNAL OF IMMUNOLOGY 2008; 180:6107-15. [PMID: 18424732 DOI: 10.4049/jimmunol.180.9.6107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MD-2 is an essential component of endotoxin (LPS) sensing, binding LPS independently and when bound to the ectodomain of the membrane receptor TLR4. Natural variation of proteins involved in the LPS-recognition cascade such as the LPS-binding protein, CD14, and TLR4, as well as proteins involved in intracellular signaling downstream of LPS binding, affect the cellular response to endotoxin and host defense against bacterial infections. We now describe the functional properties of two nonsynonymous coding polymorphisms of MD-2, G56R and P157S, documented in HapMap. As predicted from the MD-2 structure, the P157S mutation had little or no effect on MD-2 function. In contrast, the G56R mutation, located close to the LPS-binding pocket, significantly decreased cellular responsiveness to LPS. Soluble G56R MD-2 showed markedly reduced LPS binding that was to a large degree rescued by TLR4 coexpression or presence of TLR4 ectodomain. Thus, cells that express TLR4 without MD-2 and whose response to LPS depends on ectopically produced MD-2 were most affected by expression of the G56R variant of MD-2. Coexpression of wild-type and G56R MD-2 yielded an intermediate phenotype with responses to LPS diminished to a greater extent than that resulting from expression of the D299G TLR4 polymorphic variant.
Collapse
Affiliation(s)
- Jozica Vasl
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
23
|
Bahrun U, Kimoto M, Tsukamoto H, Tsuneyoshi N, Kohara J, Fukudome K. Preparation and characterization of agonistic monoclonal antibodies against Toll-like receptor 4-MD-2 complex. Hybridoma (Larchmt) 2008; 26:393-9. [PMID: 18158784 DOI: 10.1089/hyb.2007.0523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ligands for toll-like receptors (TLR) are known to induce a variety of immune responses. Selective induction of desirable responses would be important for the treatment of individual diseases with various pathogenesis. For this purpose, we established six MAbs against the TLR4/MD-2 complex (UT MAbs) from TLR4(-/-) mice or MD-2(-/-) mice. Three MAbs (UT12, 18, and 22) induced NF-kappaB activation and production of pro-inflammatory cytokines, but the other three (UT15, 41, and 49) did not induce such cell responses. Unlike lipopolysaccharide (LPS), agonistic UT MAbs did not require serum components for the functions. UT41 and UT49 recognized TLR4 in the absence of MD-2. On the other hand, the other four MAbs reacted to the TLR4/MD-2 complex, but not to solo TLR4. Agonistic UT MAbs shared the epitopes, but non-agonistic UT15 reacted to distinct epitope on the complex. UT MAbs appear to be useful analyzing the molecular mechanism of TLR signaling and will contribute to the development of novel immunotherapies.
Collapse
Affiliation(s)
- Uleng Bahrun
- Department of Immunology, Saga Medical School, Saga, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Tsukamoto H, Fukudome K, Kohara J, Nakatake H, Kimoto M. Preparation of recombinant murine tumor necrosis factor-α in Escherichia coli: A rapid method to remove tags from fusion proteins by thrombin-cleavage and ion-exchange chromatography. Protein Expr Purif 2007; 56:138-44. [PMID: 17703948 DOI: 10.1016/j.pep.2007.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 07/05/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
A recombinant protein of murine tumor necrosis factor (TNF)-alpha was expressed in Escherichia coli (E. coli) by using a pET Trx Fusion System. The fusion protein was effectively solubilized and purified by Ni-affinity chromatography. A high concentration of thrombin quickly and specifically cleaved the introduced site between the tags and the target fragment. We found that thrombin tightly bound to an ion-exchange resin, CM-Sepharose, under conditions avoiding adsorption of most proteins. By passing through the column, thrombin was quickly removed from the reaction mixtures. These methods appear to be widely potentially useful to remove the tags from recombinant fusion proteins. Prepared recombinant TNF demonstrated cytotoxic effects to L929 cells at very low concentrations with an EC50 value of 0.19+/-0.02 pM. In addition, immunization of a rabbit with the protein induced a neutralizing antibody. The methods used in this study appear to be useful to prepare significant amount of soluble functional recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Department of Immunology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | | | | | |
Collapse
|
25
|
Teghanemt A, Re F, Prohinar P, Widstrom R, Gioannini TL, Weiss JP. Novel roles in human MD-2 of phenylalanines 121 and 126 and tyrosine 131 in activation of Toll-like receptor 4 by endotoxin. J Biol Chem 2007; 283:1257-1266. [PMID: 17977838 DOI: 10.1074/jbc.m705994200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potent mammalian cell activation by Gram-negative bacterial endotoxin requires sequential protein-endotoxin and protein-protein interactions involving lipopolysaccharide-binding protein, CD14, MD-2, and Toll-like receptor 4 (TLR4). TLR4 activation requires simultaneous binding of MD-2 to endotoxin (E) and the ectodomain of TLR4. We now describe mutants of recombinant human MD-2 that bind TLR4 and react with E.CD14 but do not support cellular responsiveness to endotoxin. The mutants F121A/K122A MD-2 and Y131A/K132A MD-2 react with E.CD14 only when co-expressed with TLR4. Single mutants K122A and K132A each react with E.CD14 +/- TLR4 and promote TLR4-dependent cell activation by endotoxin suggesting that Phe(121) and Tyr(131) are needed for TLR4-independent transfer of endotoxin from CD14 to MD-2 and also needed for TLR4 activation by bound E.MD-2. The mutant F126A MD-2 reacts as well as wild-type MD-2 with E.CD14 +/- TLR4. E.MD-2(F126A) binds TLR4 with high affinity (K(d) approximately 200 pm) but does not activate TLR4 and instead acts as a potent TLR4 antagonist, inhibiting activation of HEK/TLR4 cells by wild-type E.MD-2. These findings reveal roles of Phe(121) and Tyr(131) in TLR4-independent interactions of human MD-2 with E.CD14 and, together with Phe(126), in activation of TLR4 by bound E.MD-2. These findings strongly suggest that the structural properties of E.MD-2, not E alone, determine agonist or antagonist effects on TLR4.
Collapse
Affiliation(s)
- Athmane Teghanemt
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242
| | - Fabio Re
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Polonca Prohinar
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242
| | - Richard Widstrom
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242
| | - Theresa L Gioannini
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242; Veterans' Administration Medical Center, Iowa City, Iowa 52246; Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jerrold P Weiss
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242; Department of Microbiology, Iowa City, Iowa 52242.
| |
Collapse
|
26
|
Zimmer SM, Zughaier SM, Tzeng YL, Stephens DS. Human MD-2 discrimination of meningococcal lipid A structures and activation of TLR4. Glycobiology 2007; 17:847-56. [PMID: 17545685 DOI: 10.1093/glycob/cwm057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.
Collapse
Affiliation(s)
- Shanta M Zimmer
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
27
|
Divanovic S, Trompette A, Petiniot LK, Allen JL, Flick LM, Belkaid Y, Madan R, Haky JJ, Karp CL. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. J Leukoc Biol 2007; 82:265-71. [PMID: 17470533 DOI: 10.1189/jlb.0107021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As all immune responses have potential for damaging the host, tight regulation of such responses--in amplitude, space, time and character--is essential for maintaining health and homeostasis. It was thus inevitable that the initial wave of papers on the role of Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs) in activating innate and adaptive immune responses would be followed by a second wave of reports focusing on the mechanisms responsible for restraining and modulating signaling by these receptors. This overview outlines current knowledge and controversies about the immunobiology of the RP105/MD-1 complex, a modulator of the most robustly signaling TLR, TLR4.
Collapse
Affiliation(s)
- Senad Divanovic
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tsuneyoshi N, Kohara J, Bahrun U, Saitoh SI, Akashi S, Gauchat JF, Kimoto M, Fukudome K. Penta-acylated lipopolisaccharide binds to murine MD-2 but does not induce the oligomerization of TLR4 required for signal transduction. Cell Immunol 2007; 244:57-64. [PMID: 17420011 DOI: 10.1016/j.cellimm.2007.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 02/22/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
A mutant lipopolysaccharide (LPS) lacking a myristate chain in lipid A was shown to be non-pathogenic both in humans and mice. The mutant penta-acylated LPS from the lpxM-strain did not induce TNF-alpha production in murine peritoneal macrophages, or activation of NF-kappaB in transfected cells expressing murine TLR4/MD-2. We prepared a recombinant murine MD-2 in Escherichia coli (E. coli), and examined the binding function. Unexpectedly, specific binding was detected to both wild type and mutant LPS. However, the mutant LPS did not induce conformation changes or oligomerization of TLR4, which have been shown to be required for signal transduction. Mutant LPS appears to fail to induce appropriate conformational changes, resulting in oligomerization of the murine complex for triggering cell responses.
Collapse
Affiliation(s)
- Naoko Tsuneyoshi
- Department of Immunology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Coats SR, Do CT, Karimi-Naser LM, Braham PH, Darveau RP. Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Cell Microbiol 2007; 9:1191-202. [PMID: 17217428 DOI: 10.1111/j.1462-5822.2006.00859.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharides containing underacylated lipid A structures exhibit reduced abilities to activate the human (h) Toll-like receptor 4 (TLR4) signalling pathway and function as potent antagonists against lipopolysaccharides bearing canonical lipid A structures. Expression of underacylated lipopolysaccharides has emerged as a novel mechanism utilized by microbial pathogens to modulate host innate immune responses. Notably, antagonistic lipopolysaccharides are prime therapeutic candidates for combating Gram negative bacterial sepsis. Penta-acylated msbB and tetra-acylated Porphyromonas gingivalis lipopolysaccharides functionally antagonize hexa-acylated Escherichia coli lipopolysaccharide-dependent activation of hTLR4 through the coreceptor, hMD-2. Here, the molecular mechanism by which these antagonistic lipopolysaccharides act at hMD-2 is examined. We present evidence that both msbB and P. gingivalis lipopolysaccharides are capable of direct binding to hMD-2. These antagonistic lipopolysaccharides can utilize at least two distinct mechanisms to block E. coli lipopolysaccharide-dependent activation of hTLR4. The main mechanism consists of direct competition between the antagonistic lipopolysaccharides and E. coli lipopolysaccharide for the same binding site on hMD-2, while the secondary mechanism involves the ability of antagonistic lipopolysaccharide-hMD-2 complexes to inhibit E. coli lipopolysaccharide-hMD-2 complexes function at hTLR4. It is also shown that both hTLR4 and hMD-2 contribute to the species-specific recognition of msbB and P. gingivalis lipopolysaccharides as antagonists at the hTLR4 complex.
Collapse
Affiliation(s)
- Stephen R Coats
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
30
|
Koraha J, Tsuneyoshi N, Kimoto M, Gauchat JF, Nakatake H, Fukudome K. Comparison of lipopolysaccharide-binding functions of CD14 and MD-2. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2006; 12:1292-7. [PMID: 16275943 PMCID: PMC1287769 DOI: 10.1128/cdli.12.11.1292-1297.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prior to being recognized by the cell surface Toll-like receptor 4/MD-2 complex, lipopolysaccharide (LPS) in the bacterial outer membrane has to be processed by LPS-binding protein and CD14. CD14 forms a complex with monomeric LPS extracted by LPS-binding protein and transfers LPS to the cell surface signaling complex. In a previous study, we prepared a functional recombinant MD-2 using a bacterial expression system. We expressed the recombinant protein in Escherichia coli as a fusion protein with thioredoxin and demonstrated specific binding to LPS. In this study, we prepared recombinant CD14 fusion proteins using the same approach. Specific binding of LPS was demonstrated with a recombinant protein containing 151 amino-terminal residues. The region contained a hydrophilic region and the first three leucine-rich repeats (LRRs). The LRRs appeared to contribute to the binding because removal of the region resulted in a reduction in the binding function. LPS binding to the recombinant MD-2 was resistant to detergents. On the other hand, the binding to CD14 was prevented in the presence of low concentrations of detergents. In the case of human MD-2, the secondary myristoyl chain of LPS added by LpxM was required for the binding. A nonpathogenic penta-acyl LPS mutant lacking the myristoyl chain did not bind to MD-2 but did so normally to CD14. The broader LPS-binding spectrum of CD14 may allow recognition of multiple pathogens, and the lower affinity for LPS binding of CD14 allows transmission of captured materials to MD-2.
Collapse
Affiliation(s)
- Jun Koraha
- Department of Immunology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Gorczynski RM, Kai Y, Miyake K. MD1 expression regulates development of regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:1078-84. [PMID: 16818764 DOI: 10.4049/jimmunol.177.2.1078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intense interest has centered around the role of a subset of regulatory T cells, CD4+CD25+ Treg, in controlling the development of autoimmune disorders, allograft rejection, infection, malignancy, and allergy. We previously reported that MD1, a molecule known to be important in regulation of expression of RP105, also was important in regulating alloimmunity, and that blockade of expression of MD1 diminished graft rejection in vivo. One mechanism by which an MD1-RP105 complex exerts an effect on immune responses is through interference with an LPS-derived signal delivered through the CD14-MD-2-TLR4 complex. We show below that LPS signaling for Treg induction occurs at higher LPS thresholds that for effector T cell responses. In addition, blockade of MD1 functional activity in dendritic cells (using anti-MD1 mAbs, MD1 antisense deoxyoligonucleotides, or responder cells from mice with deletion of the MD1 gene), resulted in elevated Treg induction in response to allogeneic stimulation (in vivo or in vitro) in the presence of LPS. These data offer one mechanistic explanation for the augmented immunosuppression described following anti-MD1 treatment.
Collapse
Affiliation(s)
- Reginald M Gorczynski
- Departments of Surgery and Immunology, University Health Network and the Toronto Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
32
|
Visintin A, Iliev DB, Monks BG, Halmen KA, Golenbock DT. MD-2. Immunobiology 2006; 211:437-47. [PMID: 16920483 DOI: 10.1016/j.imbio.2006.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Toll-like receptors (TLRs) are a small family of type-I glycoproteins that bind to and are activated by conserved non-self molecular signatures carried by microorganisms. Toll-like receptor 4 is triggered by most lipopolysaccharides (LPS). LPS is a complex amphipathic saccharolipidic glycan derived from Gram-negative bacteria. Unique among TLRs, TLR4 activity and interaction with its natural ligand(s) strictly depends on the presence of the extracellular adaptor MD-2. MD-2 is a small secreted glycoprotein that binds with cytokine-like affinities to both the hydrophobic portion of LPS and to the extracellular domain of TLR4. The interaction between MD-2 and LPS induces a triggering event on TLR4, which involves the molecular rearrangement of the receptor complex and its homotypic aggregation. In silico analysis suggests that MD-2 and MD-1 are paralogs derived from a common predecessor at the level of early vertebrates. In this review, we summarize the current state of knowledge concerning MD-2.
Collapse
Affiliation(s)
- Alberto Visintin
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | |
Collapse
|
33
|
Kohara J, Tsuneyoshi N, Gauchat JF, Kimoto M, Fukudome K. Preparation and characterization of truncated human lipopolysaccharide-binding protein in Escherichia coli. Protein Expr Purif 2006; 49:276-83. [PMID: 16839777 DOI: 10.1016/j.pep.2006.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/25/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria, and is the causative agent of endotoxin shock. LPS induces signal transduction in immune cells when it is recognized by the cell surface complex of toll-like receptor 4 (TLR4) and MD-2. The complex recognizes the lipid A structure in LPS, which is buried in the membrane of the outer envelope. To present the Lipid A structure to the TLR4/MD-2, processing of LPS by LPS-binding protein (LBP) and CD14 is required. In previous studies, we expressed recombinant proteins of human MD-2 and CD14 as fusion proteins with thioredoxin in Escherichia coli, and demonstrated their specific binding abilities to LPS. In this study, we prepared a recombinant fusion protein containing 212 amino terminal residues of human LBP (HLB212) by using the same expression system. The recombinant protein expressed in E. coli was purified as a complex form with host LPS. The binding was not affected by high concentrations of salt, but was prevented by low concentrations of various detergents. Both rough-type LPS lacking the O antigen and smooth-type LPS with the antigen bound to HLBP212. Therefore, oligosaccharide repeats appeared to be unnecessary for the binding. A nonpathogenic penta-acylated LPS also bound to HLBP212, but the binding was weaker than that of the wild type. The hydrophobic interaction between the LBP and acyl chains of lipid A appears to be important for the binding. The recombinant proteins of LPS-binding molecules would be useful for analyzing the defense mechanism against infections.
Collapse
Affiliation(s)
- Jun Kohara
- Department of Immunology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | | | | | |
Collapse
|
34
|
Kobayashi M, Saitoh SI, Tanimura N, Takahashi K, Kawasaki K, Nishijima M, Fujimoto Y, Fukase K, Akashi-Takamura S, Miyake K. Regulatory Roles for MD-2 and TLR4 in Ligand-Induced Receptor Clustering. THE JOURNAL OF IMMUNOLOGY 2006; 176:6211-8. [PMID: 16670331 DOI: 10.4049/jimmunol.176.10.6211] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
LPS, a principal membrane component in Gram-negative bacteria, is recognized by a receptor complex consisting of TLR4 and MD-2. MD-2 is an extracellular molecule that is associated with the extracellular domain of TLR4 and has a critical role in LPS recognition. MD-2 directly interacts with LPS, and the region from Phe(119) to Lys(132) (Arg(132) in mice) has been shown to be important for interaction between LPS and TLR4/MD-2. With mouse MD-2 mutants, we show in this study that Gly(59) was found to be a novel critical amino acid for LPS binding outside the region 119-132. LPS signaling is thought to be triggered by ligand-induced TLR4 clustering, which is also regulated by MD-2. Little is known, however, about a region or an amino acid in the MD-2 molecule that regulates ligand-induced receptor clustering. MD-2 mutants substituting alanine for Phe(126) or Gly(129) impaired LPS-induced TLR4 clustering, but not LPS binding to TLR4/MD-2, demonstrating that ligand-induced receptor clustering is differentially regulated by MD-2 from ligand binding. We further show that dissociation of ligand-induced receptor clustering and of ligand-receptor interaction occurs in a manner dependent on TLR4 signaling and requires endosomal acidification. These results support a principal role for MD-2 in LPS recognition.
Collapse
Affiliation(s)
- Makiko Kobayashi
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Teghanemt A, Zhang D, Levis EN, Weiss JP, Gioannini TL. Molecular basis of reduced potency of underacylated endotoxins. THE JOURNAL OF IMMUNOLOGY 2005; 175:4669-76. [PMID: 16177114 DOI: 10.4049/jimmunol.175.7.4669] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Potent TLR4-dependent cell activation by gram-negative bacterial endotoxins depends on sequential endotoxin-protein and protein-protein interactions with LPS-binding protein, CD14, myeloid differentiation protein 2 (MD-2), and TLR4. Previous studies have suggested that reduced agonist potency of underacylated endotoxins (i.e., tetra- or penta- vs hexa-acylated) is determined by post-CD14 interactions. To better define the molecular basis of the differences in agonist potency of endotoxins differing in fatty acid acylation, we compared endotoxins (lipooligosaccharides (LOS)) from hexa-acylated wild-type (wt), penta-acylated mutant msbB meningococcal strains as well as tetra-acylated LOS generated by treatment of wt LOS with the deacylating enzyme, acyloxyacylhydrolase. To facilitate assay of endotoxin:protein and endotoxin:cell interactions, the endotoxins were purified after metabolic labeling with [3H]- or [14C]acetate. All LOS species tested formed monomeric complexes with MD-2 in an LPS-binding protein- and CD14-dependent manner with similar efficiency. However, msbB LOS:MD-2 and acyloxyacylhydrolase-treated LOS:MD-2 were at least 10-fold less potent in inducing TLR4-dependent cell activation than wt LOS:MD-2 and partially antagonized the action of wt LOS:MD-2. These findings suggest that underacylated endotoxins produce decreased TLR4-dependent cell activation by altering the interaction of the endotoxin:MD-2 complex with TLR4 in a way that reduces receptor activation. Differences in potency among these endotoxin species is determined not by different aggregate properties, but by different properties of monomeric endotoxin:MD-2 complexes.
Collapse
Affiliation(s)
- Athmane Teghanemt
- Inflammation Program, Department of Internal Medicine, Coralville, IA 52241, USA
| | | | | | | | | |
Collapse
|
36
|
Iliev DB, Roach JC, Mackenzie S, Planas JV, Goetz FW. Endotoxin recognition: in fish or not in fish? FEBS Lett 2005; 579:6519-28. [PMID: 16297386 PMCID: PMC1365396 DOI: 10.1016/j.febslet.2005.10.061] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/17/2005] [Accepted: 10/27/2005] [Indexed: 11/24/2022]
Abstract
The interaction between pathogens and their multicellular hosts is initiated by activation of pathogen recognition receptors (PRRs). These receptors, that include most notably members of the toll-like receptor (TLR) family, recognize specific pathogen-associated molecular patterns (PAMPs). TLR4 is a central part of the receptor complex that is involved in the activation of the immune system by lipopolysaccharide (LPS) through the specific recognition of its endotoxic moiety (Lipid A). This is a critical event that is essential for the immune response to Gram-negative bacteria as well as the etiology of endotoxic shock. Interestingly, compared to mammals, fish are resistant to endotoxic shock. This in vivo resistance concurs with in vitro studies demonstrating significantly lowered sensitivity of fish leukocytes to LPS activation. Further, our in vitro analyses demonstrate that in trout mononuclear phagocytes, LPS fails to induce antiviral genes, an event that occurs downstream of TLR4 and is required for the development of endotoxic shock. Finally, an in silico approach that includes mining of different piscine genomic and EST databases, reveals the presence in fish of all of the major TLR signaling elements except for the molecules specifically involved in TLR4-mediated endotoxin recognition and signaling in mammals. Collectively, our analysis questions the existence of TLR4-mediated cellular responses to LPS in fish. We further speculate that other receptors, in particular beta-2 integrins, may play a primary role in the activation of piscine leukocytes by LPS.
Collapse
Affiliation(s)
- Dimitar B Iliev
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA.
| | | | | | | | | |
Collapse
|
37
|
Nagai Y, Kobayashi T, Motoi Y, Ishiguro K, Akashi S, Saitoh SI, Kusumoto Y, Kaisho T, Akira S, Matsumoto M, Takatsu K, Miyake K. The Radioprotective 105/MD-1 Complex Links TLR2 and TLR4/MD-2 in Antibody Response to Microbial Membranes. THE JOURNAL OF IMMUNOLOGY 2005; 174:7043-9. [PMID: 15905547 DOI: 10.4049/jimmunol.174.11.7043] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low-affinity IgG3 Abs to microbial membranes are important for primary immune defense against microbes, but little is known about the importance of TLRs in their production. IgG3 levels were extremely low in mice lacking radioprotective 105 (RP105), a B cell surface molecule structurally related to TLRs. RP105(-/-) B cells proliferated poorly in response to not only the TLR4 ligand LPS but also TLR2 ligand lipoproteins, both of which mediate the immunostimulatory activity of microbial membranes. RP105(-/-) mice were severely impaired in hapten-specific Ab production against LPS or lipoproteins. CD138 (syndecan-1)-positive plasma cells were detected after lipid A injection in wild-type spleen but much less in RP105(-/-) spleen. RP105 ligation in vivo induced plasma cell differentiation. RP105 expression was approximately 3-fold higher on marginal zone B cells than on follicular and B1 cells and was down-regulated on germinal center cells. These results demonstrate that a signal via RP105 is uniquely important for regulating TLR-dependent Ab production to microbial membranes.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/blood
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation/genetics
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Antigens, Surface/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Proliferation
- DNA-Binding Proteins/metabolism
- Escherichia coli/immunology
- Germinal Center/cytology
- Germinal Center/immunology
- Germinal Center/metabolism
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Ligands
- Lipopolysaccharides/immunology
- Lipopolysaccharides/pharmacology
- Lymphocyte Antigen 96
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptor 9
Collapse
Affiliation(s)
- Yoshinori Nagai
- Divisions of Infectious Genetics and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, Kurt-Jones EA, Karp CL. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 2005; 6:571-8. [PMID: 15852007 PMCID: PMC2144914 DOI: 10.1038/ni1198] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/18/2005] [Indexed: 12/21/2022]
Abstract
Activation of Toll-like receptor (TLR) signaling by microbial signatures is critical to the induction of immune responses. Such responses demand tight regulation. RP105 is a TLR homolog thought to be mostly B cell specific, lacking a signaling domain. We report here that RP105 expression was wide, directly mirroring that of TLR4 on antigen-presenting cells. Moreover, RP105 was a specific inhibitor of TLR4 signaling in HEK 293 cells, a function conferred by its extracellular domain. Notably, RP105 and its helper molecule, MD-1, interacted directly with the TLR4 signaling complex, inhibiting its ability to bind microbial ligand. Finally, RP105 regulated TLR4 signaling in dendritic cells as well as endotoxin responses in vivo. Thus, our results identify RP105 as a physiological negative regulator of TLR4 responses.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Cytokines/biosynthesis
- DNA/genetics
- Dendritic Cells/immunology
- Gene Expression
- Humans
- Immunity, Innate
- In Vitro Techniques
- Lymphocyte Antigen 96
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Structure, Tertiary
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Toll-Like Receptor 4
- Toll-Like Receptors
- Transfection
Collapse
Affiliation(s)
- Senad Divanovic
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|