1
|
Wu C, Jiang S, Chen Z, Li T, Gu X, Dai M, Du F, Ye Y, Tang L, Wang M, Wang X, Li T, Ye S, Bao C, Zhang X, Fu Q. Single-cell transcriptomics reveal potent extrafollicular B cell response linked with granzyme K + CD8 T cell activation in lupus kidney. Ann Rheum Dis 2024:ard-2024-225876. [PMID: 39419536 DOI: 10.1136/ard-2024-225876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES B and T cells constitute the majority of infiltrating lymphocytes in the kidney and represent the local perpetrators in lupus nephritis (LN), but the underlying pathogenic mechanisms are not well elucidated. The aim of this study is to explore the kidney-specific adaptive immune landscape in patients with active LN at the single-cell level. METHODS We performed single-cell RNA/B cell receptor (BCR)/T cell receptor (TCR) sequencing analysis on sorting-purified B and T cells from the kidney and paired peripheral blood of patients with active LN, and the periphery of matched controls. Flow cytometry, Assay for Transposase Accessible-sequencing, multiplexed immunohistochemistry and functional studies were performed to validate the transcriptomic results. RESULTS High infiltrations of intrarenal atypical B cells (ABCs) and antibody-secreting cells (ASCs) were identified in the B cell compartment. The single-cell BCR repertoire analysis revealed strong clonal expansion of intrarenal ASCs dominated by IGHG1 and IGHG3 isotypes, accompanied by lower frequencies of heavy-chain and light-chain somatic mutations, compared with the peripheral ASCs. Notably, a unique expansion of IGHG4-59 and clonal overlap between ABCs and ASCs was found in kidney-specific clonotypes. In the T cell compartment, we identified granzyme K (GZMK)+ CD8 T cells as the dominant kidney-associated T cells which shared inflammation- and stress-related gene pathways with ABCs. Intrarenal GZMK+ CD8 T cells highly expressed IFNG and displayed strong communication with ABCs via the type II interferon (IFN) pathway. Intrarenal GZMK+ CD8 T cells and ABCs were largely co-localised within the tertiary lymphoid structure, and GZMK+ CD8 T cells potentially contributed to the differentiation of ABCs via IFN-γ and interleukin-21. CONCLUSIONS Our study revealed a potent extrafollicular B cell response linked with overactivation of GZMK+ CD8 T cells in the kidney of patients with LN, which may lead to innovative treatments for LN.
Collapse
Affiliation(s)
- Chunmei Wu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Shan Jiang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zechuan Chen
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Teng Li
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xixi Gu
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Dai
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Du
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Xiaodong Wang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunde Bao
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Zhang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Immune Therapy Institute, Shanghai, China
| |
Collapse
|
2
|
Zhu DYD, Maurer DP, Castrillon C, Deng Y, Mohamed FAN, Ma M, Schmidt AG, Lingwood D, Carroll MC. Lupus-associated innate receptors drive extrafollicular evolution of autoreactive B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574739. [PMID: 38260501 PMCID: PMC10802414 DOI: 10.1101/2024.01.09.574739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In systemic lupus erythematosus, recent findings highlight the extrafollicular (EF) pathway as prominent origin of autoantibody-secreting cells (ASCs). CD21loCD11c+ B cells, associated with aging, infection, and autoimmunity, are contributors to autoreactive EF ASCs but have an obscure developmental trajectory. To study EF kinetics of autoreactive B cell in tissue, we adoptively transferred WT and gene knockout B cell populations into the 564Igi mice - an autoreactive host enriched with autoantigens and T cell help. Time-stamped analyses revealed TLR7 dependence in early escape of peripheral B cell tolerance and establishment of a pre-ASC division program. We propose CD21lo cells as precursors to EF ASCs due to their elevated TLR7 sensitivity and proliferative nature. Blocking receptor function reversed CD21 loss and reduced effector cell generation, portraying CD21 as a differentiation initiator and a possible target for autoreactive B cell suppression. Repertoire analysis further delineated proto-autoreactive B cell selection and receptor evolution toward self-reactivity. This work elucidates receptor and clonal dynamics in EF development of autoreactive B cells, and establishes modular, native systems to probe mechanisms of autoreactivity.
Collapse
Affiliation(s)
- Danni Yi-Dan Zhu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel P Maurer
- Harvard Graduate Program in Virology, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carlos Castrillon
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Yixiang Deng
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron G Schmidt
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Daniel Lingwood
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Voss LF, Howarth AJ, Wittenborn TR, Hummelgaard S, Juul-Madsen K, Kastberg KS, Pedersen MK, Jensen L, Papanastasiou AD, Vorup-Jensen T, Weyer K, Degn SE. The extrafollicular response is sufficient to drive initiation of autoimmunity and early disease hallmarks of lupus. Front Immunol 2022; 13:1021370. [PMID: 36591222 PMCID: PMC9795406 DOI: 10.3389/fimmu.2022.1021370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Many autoimmune diseases are characterized by germinal center (GC)-derived, affinity-matured, class-switched autoantibodies, and strategies to block GC formation and progression are currently being explored clinically. However, extrafollicular responses can also play a role. The aim of this study was to investigate the contribution of the extrafollicular pathway to autoimmune disease development. Methods We blocked the GC pathway by knocking out the transcription factor Bcl-6 in GC B cells, leaving the extrafollicular pathway intact. We tested the impact of this intervention in two murine models of systemic lupus erythematosus (SLE): a pharmacological model based on chronic epicutaneous application of the Toll-like receptor (TLR)-7 agonist Resiquimod (R848), and 564Igi autoreactive B cell receptor knock-in mice. The B cell intrinsic effects were further investigated in vitro and in autoreactive mixed bone marrow chimeras. Results GC block failed to curb autoimmune progression in the R848 model based on anti-dsDNA and plasma cell output, superoligomeric DNA complexes, and immune complex deposition in glomeruli. The 564Igi model confirmed this based on anti-dsDNA and plasma cell output. In vitro, loss of Bcl-6 prevented GC B cell expansion and accelerated plasma cell differentiation. In a competitive scenario in vivo, B cells harboring the genetic GC block contributed disproportionately to the plasma cell output. Discussion We identified the extrafollicular pathway as a key contributor to autoimmune progression. We propose that therapeutic targeting of low quality and poorly controlled extrafollicular responses could be a desirable strategy to curb autoreactivity, as it would leave intact the more stringently controlled and high-quality GC responses providing durable protection against infection.
Collapse
Affiliation(s)
- Lasse F. Voss
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | | | | | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren E. Degn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,*Correspondence: Søren E. Degn,
| |
Collapse
|
4
|
Wangriatisak K, Thanadetsuntorn C, Krittayapoositpot T, Leepiyasakulchai C, Suangtamai T, Ngamjanyaporn P, Khowawisetsut L, Khaenam P, Setthaudom C, Pisitkun P, Chootong P. The expansion of activated naive DNA autoreactive B cells and its association with disease activity in systemic lupus erythematosus patients. Arthritis Res Ther 2021; 23:179. [PMID: 34229724 PMCID: PMC8259008 DOI: 10.1186/s13075-021-02557-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/20/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Autoreactive B cells are well recognized as key participants in the pathogenesis of systemic lupus erythematosus (SLE). However, elucidating the particular subset of B cells in producing anti-dsDNA antibodies is limited due to their B cell heterogeneity. This study aimed to identify peripheral B cell subpopulations that display autoreactivity to DNA and contribute to lupus pathogenesis. METHODS Flow cytometry was used to detect total B cell subsets (n = 20) and DNA autoreactive B cells (n = 15) in SLE patients' peripheral blood. Clinical disease activities were assessed in SLE patients using modified SLEDAI-2 K and used for correlation analyses with expanded B cell subsets and DNA autoreactive B cells. RESULTS The increases of circulating double negative 2 (DN2) and activated naïve (aNAV) B cells were significantly observed in SLE patients. Expanded B cell subsets and DNA autoreactive B cells represented a high proportion of aNAV B cells with overexpression of CD69 and CD86. The frequencies of aNAV B cells in total B cell populations were significantly correlated with modified SLEDAI-2 K scores. Further analysis showed that expansion of aNAV DNA autoreactive B cells was more related to disease activity and serum anti-dsDNA antibody levels than to total aNAV B cells. CONCLUSION Our study demonstrated an expansion of aNAV B cells in SLE patients. The association between the frequency of aNAV B cells and disease activity patients suggested that these expanded B cells may play a role in SLE pathogenesis.
Collapse
Affiliation(s)
- Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Nakhonpathom, 73170, Thailand
| | - Chokchai Thanadetsuntorn
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Thamonwan Krittayapoositpot
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Nakhonpathom, 73170, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Nakhonpathom, 73170, Thailand
| | - Thanitta Suangtamai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pintip Ngamjanyaporn
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasong Khaenam
- Center of Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chavachol Setthaudom
- Immunology Laboratory, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, 10400, Thailand.
- Translational Medicine Program, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Nakhonpathom, 73170, Thailand.
| |
Collapse
|
5
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
6
|
Seth A, Craft J. Spatial and functional heterogeneity of follicular helper T cells in autoimmunity. Curr Opin Immunol 2019; 61:1-9. [PMID: 31374450 DOI: 10.1016/j.coi.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
Follicular helper T cells provide signals that promote B cell development, proliferation, and production of affinity matured and appropriately isotype switched antibodies. In addition to their classical locations within B cell follicles and germinal centers therein, B cell helper T cells are also found in extrafollicular spaces - either in secondary lymphoid or non-lymphoid tissues. Both follicular and extrafollicular T helper cells drive autoantibody-mediated autoimmunity. Interfering with B cell help provided by T cells can ameliorate autoimmune disease in animal models and human patients. The next frontier in Tfh cell biology will be identification of Tfh cell-specific pathogenic changes in autoimmunity and exploiting them for therapeutic purposes.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Internal Medicine, Section of Rheumatology, New Haven, CT, United States
| | - Joe Craft
- Department of Internal Medicine, Section of Rheumatology, New Haven, CT, United States; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
7
|
Giles JR, Neves AT, Marshak-Rothstein A, Shlomchik MJ. Autoreactive helper T cells alleviate the need for intrinsic TLR signaling in autoreactive B cell activation. JCI Insight 2017; 2:e90870. [PMID: 28239656 PMCID: PMC5313065 DOI: 10.1172/jci.insight.90870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
T cells play a significant role in the pathogenesis of systemic autoimmune diseases, including systemic lupus erythematosus; however, there is relatively little information on the nature and specificity of autoreactive T cells. Identifying such cells has been technically difficult because they are likely to be rare and low affinity. Here, we report a method for identifying autoreactive T cell clones that recognize proteins contained in autoantibody immune complexes, providing direct evidence that functional autoreactive helper T cells exist in the periphery of normal mice. These T cells significantly enhanced autoreactive B cell proliferation and altered B cell differentiation in vivo. Most importantly, these autoreactive T cells were able to rescue many aspects of the TLR-deficient AM14 (anti-IgG2a rheumatoid factor) B cell response, suggesting that TLR requirements can be bypassed. This result has implications for the efficacy of TLR-targeted therapy in the treatment of ongoing disease.
Collapse
Affiliation(s)
- Josephine R. Giles
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adriana Turqueti Neves
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Mark J. Shlomchik
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Ols ML, Cullen JL, Turqueti-Neves A, Giles J, Shlomchik MJ. Dendritic Cells Regulate Extrafollicular Autoreactive B Cells via T Cells Expressing Fas and Fas Ligand. Immunity 2016; 45:1052-1065. [PMID: 27793595 DOI: 10.1016/j.immuni.2016.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 07/22/2016] [Accepted: 08/15/2016] [Indexed: 11/17/2022]
Abstract
The extrafollicular (EF) plasmablast response to self-antigens that contain Toll-like receptor (TLR) ligands is prominent in murine lupus models and some bacterial infections, but the inhibitors and activators involved have not been fully delineated. Here, we used two conventional dendritic cell (cDC) depletion systems to investigate the role of cDCs on a classical TLR-dependent autoreactive EF response elicited in rheumatoid-factor B cells by DNA-containing immune complexes. Contrary to our hypothesis, cDC depletion amplified rather than dampened the EF response in Fas-intact but not Fas-deficient mice. Further, we demonstrated that cDC-dependent regulation requires Fas and Fas ligand (FasL) expression by T cells, but not Fas expression by B cells. Thus, cDCs activate FasL-expressing T cells that regulate Fas-expressing extrafollicular helper T (Tefh) cells. These studies reveal a regulatory role for cDCs in B cell plasmablast responses and provide a mechanistic explanation for the excess autoantibody production observed in Fas deficiency.
Collapse
Affiliation(s)
- Michelle L Ols
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jaime L Cullen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Adriana Turqueti-Neves
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Josephine Giles
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
9
|
Sang A, Niu H, Cullen J, Choi SC, Zheng YY, Wang H, Shlomchik MJ, Morel L. Activation of rheumatoid factor-specific B cells is antigen dependent and occurs preferentially outside of germinal centers in the lupus-prone NZM2410 mouse model. THE JOURNAL OF IMMUNOLOGY 2014; 193:1609-21. [PMID: 25015835 DOI: 10.4049/jimmunol.1303000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AM14 rheumatoid factor (RF) B cells in the MRL/lpr mice are activated by dual BCR and TLR7/9 ligation and differentiate into plasmablasts via an extrafollicular (EF) route. It was not known whether this mechanism of activation of RF B cells applied to other lupus-prone mouse models. We investigated the mechanisms by which RF B cells break tolerance in the NZM2410-derived B6.Sle1.Sle2.Sle3 (TC) strain in comparison with C57BL/6 (B6) controls, each expressing the AM14 H chain transgene in the presence or absence of the IgG2a(a) autoantigen. The TC, but not B6, genetic background promotes the differentiation of RF B cells into Ab-forming cells (AFCs) in the presence of the autoantigen. Activated RF B cells preferentially differentiated into plasmablasts in EF zones. Contrary to the MRL/lpr strain, TC RF B cells were also located within germinal centers, but only the formation of EF foci was positively correlated with the production of RF AFCs. Immunization of young TC.AM14 H chain transgenic mice with IgG2a(a) anti-chromatin immune complexes (ICs) activated RF B cells in a BCR- and TLR9-dependent manner. However, these IC immunizations did not result in the production of RF AFCs. These results show that RF B cells break tolerance with the same general mechanisms in the TC and the MRL/lpr lupus-prone genetic backgrounds, namely the dual activation of the BCR and TLR9 pathways. There are also distinct differences, such as the presence of RF B cells in GCs and the requirement of chronic IgG2a(a) anti-chromatin ICs for full differentiation of RF AFCs.
Collapse
Affiliation(s)
- Allison Sang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Haitao Niu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Jaime Cullen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520; and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Seung Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Ying Yi Zheng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Haowei Wang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520; and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Mark J Shlomchik
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520; and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|
10
|
Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Fas(lpr) mouse. Proc Natl Acad Sci U S A 2013; 110:20194-9. [PMID: 24282294 DOI: 10.1073/pnas.1317632110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNA-155 (miR-155) regulates antibody responses and subsequent B-cell effector functions to exogenous antigens. However, the role of miR-155 in systemic autoimmunity is not known. Using the death receptor deficient (Fas(lpr)) lupus-prone mouse, we show here that ablation of miR-155 reduced autoantibody responses accompanied by a decrease in serum IgG but not IgM anti-dsDNA antibodies and a reduction of kidney inflammation. MiR-155 deletion in Fas(lpr) B cells restored the reduced SH2 domain-containing inositol 5'-phosphatase 1 to normal levels. In addition, coaggregation of the Fc γ receptor IIB with the B-cell receptor in miR-155(-/-)-Fas(lpr) B cells resulted in decreased ERK activation, proliferation, and production of switched antibodies compared with miR-155 sufficient Fas(lpr) B cells. Thus, by controlling the levels of SH2 domain-containing inositol 5'-phosphatase 1, miR-155 in part maintains an activation threshold that allows B cells to respond to antigens.
Collapse
|
11
|
Clatworthy MR. B-cell regulation and its application to transplantation. Transpl Int 2013; 27:117-28. [PMID: 23909582 DOI: 10.1111/tri.12160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/08/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
There has been increasing interest in the role played by B cells and their associated antibody in the immune response to an allograft, driven by the need to undertake antibody-incompatible transplantation and evidence suggesting that B cells play a role in acute T-cell-mediated rejection and in acute and chronic antibody-mediated rejection. This review focuses on the molecular events, both activating and inhibitory, which control B-cell activation, and considers how this information might inform therapeutic strategies. Potential targets include the BAFF (B-cell-activating factor belonging to the tumour necrosis factor family) and CD40-CD40L pathways and inhibitory molecules, such as CD22 and FcγRIIB. B cells can also play an immunomodulatory role via interleukin (IL)10 production and may contribute to transplant tolerance. The expansion of allograft-specific IL10-producing B cells may be an additional therapeutic goal. Thus, the treatment paradigm required in transplantation has shifted from that of simple B-cell depletion, to that of a more subtle, differential manipulation of different B-cell subsets.
Collapse
|
12
|
Kil LP, Hendriks RW. Aberrant B cell selection and activation in systemic lupus erythematosus. Int Rev Immunol 2013; 32:445-70. [PMID: 23768157 DOI: 10.3109/08830185.2013.786712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detrimental role of B lymphocytes in systemic lupus erythematosus (SLE) is evident from the high levels of pathogenic antinuclear autoantibodies (ANAs) found in SLE patients. Affirming this causative role, additional antibody-independent roles of B cells in SLE were appreciated. In recent years, many defects in B cell selection and activation have been identified in murine lupus models and SLE patients that explain the increased emergence and persistence of autoreactive B cells and their lowered activation threshold. Therefore, clinical trials with B cell depletion regimens in SLE patients were initiated but disappointingly the efficacy of B cell depleting agents proved to be limited. Remarkably however, a major breakthrough in SLE therapy was accomplished by blocking B cell survival factors rather then eliminating B cells. This surprising finding indicates that although SLE is a B cell-driven disease, the amplifying crosstalk between B cells and other cells of the immune system likely evokes the observed tolerance breakdown in B cells. Moreover, this implies that intelligent interception of pro-inflammatory loops rather then selectively silencing B cells will be key to the development of new SLE therapies. In this review, we will not only highlight the intrinsic B cell defects that facilitate the persistence of autoreactive B cells and their activation, but in addition we will focus on B cell extrinsic signals derived from T cells and innate immune cells that lower the activation threshold for B cells.
Collapse
Affiliation(s)
- Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MC, NL 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
13
|
Sweet RA, Cullen JL, Shlomchik MJ. Rheumatoid factor B cell memory leads to rapid, switched antibody-forming cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:1974-81. [PMID: 23365079 DOI: 10.4049/jimmunol.1202816] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
B cells are critical in the initiation and maintenance of lupus. Autoreactive B cells clonally expand, isotype switch, and mutate--properties associated with memory B cells (MBCs), which are typically generated via germinal centers. The development and functions of autoreactive MBCs in lupus are poorly understood. Moreover, mounting evidence implicates the extrafollicular (EF) response in the generation of switched and mutated autoantibodies that are driven by BCR and TLR corecognition, raising the question of whether MBCs are generated in this context. In this study, we investigated autoreactive MBC generation associated with this type of response. We transferred B cells from AM14 site-directed BCR transgenic mice into nontransgenic normal recipients and elicited an EF response with anti-chromatin Ab, as in prior studies. By following the fate of the stimulated cells at late time points, we found that AM14 B cells persisted at increased frequency for up to 7 wk. Furthermore, these cells had divided in response to Ag but were subsequently quiescent, with a subset expressing the memory marker CD73. These cells engendered rapid, isotype-switched secondary plasmablast responses upon restimulation. Both memory and rapid secondary responses required T cell help to develop, emphasizing the need for T-B collaboration for long-term self-reactivity. Thus, using this model system, we show that the EF response generated persistent and functional MBCs that share some, but not all, of the characteristics of traditional MBCs. Such cells could play a role in chronic or flaring autoimmune disease.
Collapse
Affiliation(s)
- Rebecca A Sweet
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
14
|
Shlomchik MJ, Weisel F. Germinal center selection and the development of memory B and plasma cells. Immunol Rev 2012; 247:52-63. [PMID: 22500831 DOI: 10.1111/j.1600-065x.2012.01124.x] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A hallmark of adaptive immune responses is the generation of long-lived protection after primary exposure to a pathogen. In humoral responses, this protection stems from a combination of sustained antibody titers and long-lived memory B cells (MBCs), with the former deriving from long-lived plasma cells (PCs). Both types of cell are thought to primarily derive from the germinal center (GC), a unique structure that forms during the immune response to many types of antigenic stimuli. GCs are seeded by antigen-specific B and T cells that were previously activated in the early stages of the response. The GC does not directly or immediately generate effector function; rather, it is a site of intense B-cell proliferation and cell death. GC B cells undergo both somatic hypermutation and isotype switch, and a Darwinian process very efficiently selects B cells with higher fitness for survival and expansion. GC B cells adopt a unique activation and transcriptional state, and the cells become poised to differentiate to either MBCs or PCs. Despite this general understanding of the events in the GC, the mechanisms that control both affinity selection as well as differentiation have not been well worked out. In this review, we address what is known about what determines whether GC B cells become MBCs or PCs. This is discussed in the broader context of the origins of both cell types, whether from the GC or potentially other sources. We present a model encompassing recent data from several laboratories including our own that suggests that the GC undergoes a temporal switch that alters the nature of its output from MBCs to PCs as the response progresses. We will discuss B-cell receptor signaling in the GC as it relates to potential mechanisms for affinity-based selection during the reaction.
Collapse
Affiliation(s)
- Mark J Shlomchik
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520-8035, USA.
| | | |
Collapse
|
15
|
Facultative role for T cells in extrafollicular Toll-like receptor-dependent autoreactive B-cell responses in vivo. Proc Natl Acad Sci U S A 2011; 108:7932-7. [PMID: 21518858 DOI: 10.1073/pnas.1018571108] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extrafollicular (EF) B-cell responses are increasingly being recognized as an alternative pathway of B-cell activation, particularly in autoimmunity. Critical cellular interactions required for the EF B-cell response are unclear. A key question in autoimmunity, in which Toll-like receptor (TLR) signals are costimulatory and could be sufficient for B-cell activation, is whether T cells are required for the response. This is pivotal, because autoreactive B cells are considered antigen-presenting cells for autoreactive T cells, but where such interactions occur has not been identified. Here, using AM14 site-directed transgenic rheumatoid factor (RF) mice, we report that B cells can be activated, differentiate, and isotype-switch independent of antigen-specific T-cell help, αβ T cells, CD40L signaling, and IL-21 signaling to B cells. However, T cells do dramatically enhance the response, and this occurs via CD40L and IL-21 signals. Surprisingly, the response is completely inducible T-cell costimulator ligand independent. These results establish that, although not required, T cells substantially amplify EF autoantibody production and thereby implicate T-independent autoreactive B cells as a potential vector for breaking T-cell tolerance. We suggest that these findings explain why autoreactivity first focuses on self-components for which B cells carry TLR ligands, because these will uniquely be able to activate B cells independently of T cells, with subsequent T-B interactions activating autoreactive T cells, resulting in chronic autoimmunity.
Collapse
|
16
|
Abstract
The mammalian immune system comprises an adaptive and an innate component. The innate immune system employs a limited number of germ-line-encoded pattern-recognition receptors (PRRs) that recognize invariant pathogen-associated molecular patterns (PAMPs). In contrast, the adaptive immune system depends on the generation of a diverse repertoire of antigen receptors on T and B lymphocytes and subsequent activation and clonal expansion of cells carrying the appropriate antigen-specific receptors. Induction of adaptive immunity not only depends on direct antigen recognition by the antigen receptors but also relies on essential signals that are delivered by the innate immune system. In recent years, we have witnessed the discovery of a still expanding array of different PRR systems that govern the generation of adaptive immunity. Here, we review our current understanding of innate control of adaptive immunity. In particular, we discuss how PRRs initiate adaptive immune responses in general, discuss specific mechanisms that shape the ensuing T and B cell responses, and highlight open questions that are still awaiting answers.
Collapse
Affiliation(s)
- Dominik Schenten
- Howard Hughes Medical Institute, Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
17
|
Sweet RA, Christensen SR, Harris ML, Shupe J, Sutherland JL, Shlomchik MJ. A new site-directed transgenic rheumatoid factor mouse model demonstrates extrafollicular class switch and plasmablast formation. Autoimmunity 2010; 43:607-18. [PMID: 20370572 DOI: 10.3109/08916930903567500] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The AM14 rheumatoid factor (RF) transgenic (Tg) mouse has been valuable for studying how self-reactive B cells are regulated beyond central tolerance, because they remain ignorant in normal mice. AM14 B-cell activation can be studied on autoimmune-prone strains or by inducing activation with IgG2a anti-chromatin antibodies (Abs). Despite the utility of conventional Ig-Tg mice, site-directed Ig-Tg (sd-Tg) mice provide a more physiological model for B-cell responses, allowing class switch and somatic hypermutation. We report here the creation of an AM14 sd-Tg mouse and describe its phenotype on both normal and autoimmune-prone backgrounds. AM14 sd-Tg B cells develop normally but remain unactivated in the BALB/c background, even after significant aging. In contrast, in the autoimmune-prone strain MRL/lpr, AM14 sd-Tg B cells become activated and secrete large amounts of IgG RF Ab into the serum. Class-switched Ab-forming cells were found in the spleen and bone marrow. IgG RF plasmablasts were also observed in extrafollicular clusters in the spleens of aged AM14 sd-Tg MRL/lpr mice. Class switch and Ab secretion were observed additionally in AM14 sd-Tg BALB/c B cells activated in vivo using IgG2a anti-chromatin Abs. Development of IgG auto-Abs is a hallmark of severe autoimmunity and is related to pathogenesis. Using the AM14 sd-Tg, we now show that switched auto-Ab-forming cells develop robustly outside germinal centers, further confirming the extrafollicular expression of activation induced cytidine deaminase (AID). This model will allow more physiological studies of B-cell biology in the future, including memory responses marked by class switch.
Collapse
Affiliation(s)
- Rebecca A Sweet
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 6520-8035, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lartigue A, Colliou N, Calbo S, François A, Jacquot S, Arnoult C, Tron F, Gilbert D, Musette P. Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus. THE JOURNAL OF IMMUNOLOGY 2009; 183:6207-16. [PMID: 19841185 DOI: 10.4049/jimmunol.0803219] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by pathogenic autoantibodies directed against nuclear Ags and immune complex deposits in damaged organs. Environmental factors have been thought to play a role in the onset of the disease. The recognition of these factors is mediated by TLRs, in particular TLR2 and TLR4 which bind pathogen-associated molecular patterns of Gram(+) and Gram(-) bacteria, respectively. We attempted to determine the role of these TLRs in SLE by creating TLR2- or TLR4-deficient C57BL/6(lpr/lpr) mice. These mice developed a less severe disease and fewer immunological alterations. Indeed, in C57BL/6(lpr/lpr)-TLR2 or -TLR4-deficient mice, glomerular IgG deposits and mesangial cell proliferation were dramatically decreased and antinuclear, anti-dsDNA, and anti-cardiolipin autoantibody titers were significantly reduced. However, the response against nucleosome remained unaffected, indicating a role of TLR2 and TLR4 in the production of Abs directed against only certain categories of SLE-related autoantigens. Analysis of B cell phenotype showed a significant reduction of marginal zone B cells, particularly in C57BL/6(lpr/lpr)-TLR4-deficient mice, suggesting an important role of TLR4 in the sustained activation of these cells likely involved in autoantibody production. Interestingly, the lack of TLR4 also affected the production of cytokines involved in the development of lupus disease.
Collapse
|
19
|
Jacobi AM, Zhang J, Mackay M, Aranow C, Diamond B. Phenotypic characterization of autoreactive B cells--checkpoints of B cell tolerance in patients with systemic lupus erythematosus. PLoS One 2009; 4:e5776. [PMID: 19488401 PMCID: PMC2685013 DOI: 10.1371/journal.pone.0005776] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/16/2009] [Indexed: 01/20/2023] Open
Abstract
DNA-reactive B cells play a central role in systemic lupus erythematosus (SLE); DNA antibodies precede clinical disease and in established disease correlate with renal inflammation and contribute to dendritic cell activation and high levels of type 1 interferon. A number of central and peripheral B cell tolerance mechanisms designed to control the survival, differentiation and activation of autoreactive B cells are thought to be disturbed in patients with SLE. The characterization of DNA-reactive B cells has, however, been limited by their low frequency in peripheral blood. Using a tetrameric configuration of a peptide mimetope of DNA bound by pathogenic anti-DNA antibodies, we can identify B cells producing potentially pathogenic DNA-reactive antibodies. We, therefore, characterized the maturation and differentiation states of peptide, (ds) double stranded DNA cross-reactive B cells in the peripheral blood of lupus patients and correlated these with clinical disease activity. Flow cytometric analysis demonstrated a significantly higher frequency of tetramer-binding B cells in SLE patients compared to healthy controls. We demonstrated the existence of a novel tolerance checkpoint at the transition of antigen-naïve to antigen-experienced. We further demonstrate that patients with moderately active disease have more autoreactive B cells in both the antigen-naïve and antigen-experienced compartments consistent with greater impairment in B cell tolerance in both early and late checkpoints in these patients than in patients with quiescent disease. This methodology enables us to gain insight into the development and fate of DNA-reactive B cells in individual patients with SLE and paves the way ultimately to permit better and more customized therapies.
Collapse
Affiliation(s)
- Annett M. Jacobi
- The Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Jie Zhang
- The Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Meggan Mackay
- The Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Cynthia Aranow
- The Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Betty Diamond
- The Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Herlands RA, Christensen SR, Sweet RA, Hershberg U, Shlomchik MJ. T cell-independent and toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity 2008; 29:249-60. [PMID: 18691914 DOI: 10.1016/j.immuni.2008.06.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 05/12/2008] [Accepted: 06/05/2008] [Indexed: 01/22/2023]
Abstract
On the lupus-prone MRL-lpr/lpr (MRL-lpr) background, AM14 rheumatoid factor (RF) B cells are activated, differentiate into plasmablasts, and undergo somatic hypermutation outside of follicles. Using multiple strategies to impair T cells, we found that such AM14 B cell activation did not require T cells but could be modulated by them. In vitro, the signaling adaptor MyD88 is required for IgG anti-chromatin to stimulate AM14 B cell proliferation when T cells are absent. However, the roles of Toll-like receptors (TLRs) in AM14 B cell activation in vivo have not been investigated. We found that activation, expansion, and differentiation of AM14 B cells depended on MyD88; however, mice lacking either TLR7 or TLR9 displayed partial defects, indicating complex roles for these receptors. T cell-independent activation of certain autoreactive B cells, which gain stimuli via endogenous TLR ligands instead of T cells, may be the initial step in the generation of canonical autoantibodies.
Collapse
Affiliation(s)
- Robin A Herlands
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8035, USA
| | | | | | | | | |
Collapse
|
21
|
Odegard JM, Marks BR, DiPlacido LD, Poholek AC, Kono DH, Dong C, Flavell RA, Craft J. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. ACTA ACUST UNITED AC 2008; 205:2873-86. [PMID: 18981236 PMCID: PMC2585848 DOI: 10.1084/jem.20080840] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of specialized follicular helper T (TFH) cells in the germinal center has become well recognized, but it is less clear how effector T cells govern the extrafollicular response, the dominant pathway of high-affinity, isotype-switched autoantibody production in the MRL/MpJ-Faslpr (MRLlpr) mouse model of lupus. MRLlpr mice lacking the Icos gene have impaired extrafollicular differentiation of immunoglobulin (Ig) G+ plasma cells accompanied by defects in CXC chemokine receptor (CXCR) 4 expression, interleukin (IL) 21 secretion, and B cell helper function in CD4 T cells. These phenotypes reflect the selective loss of a population of T cells marked by down-regulation of P-selectin glycoprotein ligand 1 (PSGL-1; also known as CD162). PSGL-1lo T cells from MRLlpr mice express CXCR4, localize to extrafollicular sites, and uniquely mediate IgG production through IL-21 and CD40L. In other autoimmune strains, PSGL-1lo T cells are also abundant but may exhibit either a follicular or extrafollicular phenotype. Our findings define an anatomically distinct extrafollicular population of cells that regulates plasma cell differentiation in chronic autoimmunity, indicating that specialized humoral effector T cells akin to TFH cells can occur outside the follicle.
Collapse
Affiliation(s)
- Jared M Odegard
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
B cells are essential for the development and pathogenesis of both systemic and organ-specific autoimmune diseases. Autoreactive B cells are typically thought of as sources of autoantibody, but their most important pathogenetic roles may be to present autoantigens to T cells and to secrete proinflammatory cytokines. A rate-limiting step in the genesis of autoimmunity then is the activation of autoreactive B cells. Here, mechanisms are discussed that normally prevent such activation and how they break down during disease. Integrating classic work with recent insights, emphasis is placed on efforts to pinpoint the precursor cells for autoantibody-secreting cells and the unique stimuli and pathways by which they are activated.
Collapse
|
23
|
Herlands RA, William J, Hershberg U, Shlomchik MJ. Anti-chromatin antibodies drive in vivo antigen-specific activation and somatic hypermutation of rheumatoid factor B cells at extrafollicular sites. Eur J Immunol 2008; 37:3339-51. [PMID: 18034429 DOI: 10.1002/eji.200737752] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A dominant type of spontaneous autoreactive B cell activation in murine lupus is the extrafollicular generation of plasmablasts. The factors governing such activation have been difficult to identify due to the stochastic onset and chronic nature of the response. Thus, the ability to induce a similar autoreactive B cell response with a known autoantigen in vivo would be a powerful tool in deciphering how autoimmune responses are initiated. We report here the establishment and characterization of a system to initiate autoreactive extrafollicular B cell responses, using IgG anti-chromatin antibodies, that closely mirrors the spontaneous response. We demonstrate that exogenously administered anti-chromatin antibody, presumably by forming immune complexes with released nuclear material, drives activation of rheumatoid factor B cells in AM14 Tg mice. Anti-chromatin elicits autoreactive B cell activation and development into antibody-forming cells at the T zone/red pulp border. Plasmablast generation occurs equally in BALB/c, MRL/+ and MRL/lpr mice, indicating that an autoimmune-prone genetic background is not required for the induced response. Importantly, infused IgG anti-chromatin induces somatic hypermutation in the absence of a GC response, thus proving the extrafollicular somatic hypermutation pathway. This system provides a window on the initiation of an autoantibody response and reveals authentic initiators of it.
Collapse
Affiliation(s)
- Robin A Herlands
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8035, USA
| | | | | | | |
Collapse
|
24
|
Achtman AH, Stephens R, Cadman ET, Harrison V, Langhorne J. Malaria-specific antibody responses and parasite persistence after infection of mice with Plasmodium chabaudi chabaudi. Parasite Immunol 2007; 29:435-44. [PMID: 17727567 DOI: 10.1111/j.1365-3024.2007.00960.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While it is known that antibodies are critical for clearance of malaria infections, it is not clear whether adequate antibody responses are maintained and what effect chronic infection has on this response. Here we show that mice with low-grade chronic primary infections of Plasmodium chabaudi or infections very recently eliminated have reduced second infections when compared with the second infection of parasite-free mice. We also show that parasite-specific antibody responses induced by infection of mice with Plasmodium chabaudi contain both short- and long-lived components as well as memory B cells responsible for a faster antibody response during re-infection. Furthermore, parasite-specific antibodies to the C-terminal fragment of merozoite surface protein-1 (MSP-1) undergo avidity maturation. However, antibodies with both low and high avidity persist throughout infection and after re-infection, suggesting repeated rounds of activation and maturation of memory B cells. Neither the avidity profile of the antibody response, nor its maintenance is affected by persisting live parasites. Therefore, differences in parasitemia in re-infection cannot be explained solely by higher levels of antibody or greater affinity maturation of malaria-specific antibodies. These data suggest that there may be an antibody-independent component to the early control of secondary infections in mice that are chronically infected.
Collapse
Affiliation(s)
- A H Achtman
- Division of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
25
|
Faust KB, Finke D, Klempt-Giessing K, Randers K, Zachrau B, Schlenke P, Kirchner H, Goerg S. Antigen-induced B cell apoptosis is independent of complement C4. Clin Exp Immunol 2007; 150:132-9. [PMID: 17645767 PMCID: PMC2219293 DOI: 10.1111/j.1365-2249.2007.03456.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Deficiencies in early complement components are associated with the development of systemic lupus erythematosus (SLE) and therefore early complement components have been proposed to influence B lymphocyte activation and tolerance induction. A defect in apoptosis is a potential mechanism for breaking of peripheral B cell tolerance, and we hypothesized that the lack of the early complement component C4 could initiate autoimmunity through a defect in peripheral B lymphocyte apoptosis. Previous studies have shown that injection of a high dose of soluble antigen, during an established primary immune response, induces massive apoptotic death in germinal centre B cells. Here, we tested if the antigen-induced apoptosis within germinal centres is influenced by early complement components by comparing complement C4-deficient mice with C57BL/6 wild-type mice. We demonstrate that after the application of a high dose of soluble antigen in wild-type mice, antibody levels declined temporarily but were restored almost completely after a week. However, after antigen-induced apoptosis, B cell memory was severely limited. Interestingly, no difference was observed between wild-type and complement C4-deficient animals in the number of apoptotic cells, restoration of antibody levels and memory response.
Collapse
Affiliation(s)
- K B Faust
- Institute of Immunology and Transfusion Medicine, University of Luebeck, Luebeck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol 2007; 25:419-41. [PMID: 17378763 DOI: 10.1146/annurev.immunol.22.012703.104514] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pattern recognition receptors (PRRs), expressed on cells of both the innate and adaptive immune systems, serve as sentinels, waiting to alert the host to the first signs of microbial infection and to activate the initial line of immune defense. Research has increasingly demonstrated that many of the same PRRs also recognize self-epitopes that either are released from dying or damaged cells or are present at the surface of apoptotic cells or apoptotic bodies. In this context, PRRs play a critical role in tissue repair and the clearance of cellular debris. However, failure to appropriately regulate self-responses triggered by certain PRRs can have serious pathological consequences. The Toll-like receptor (TLR) gene family represents a case in point. TLR7, 8, and 9 were originally identified as receptors specific for bacterial and viral RNA and DNA, but more recent in vitro and in vivo studies have now linked these receptors to the detection of host RNA, DNA, and RNA- or DNA-associated proteins. In this context, they likely play a key role in the development of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Ann Marshak-Rothstein
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
27
|
Christensen SR, Shlomchik MJ. Regulation of lupus-related autoantibody production and clinical disease by Toll-like receptors. Semin Immunol 2007; 19:11-23. [PMID: 17276080 PMCID: PMC2709770 DOI: 10.1016/j.smim.2006.12.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 12/10/2006] [Indexed: 12/23/2022]
Abstract
Autoantigens that contain DNA, RNA, or self-IgG are preferred targets for autoantibodies in systemic lupus erythematosus (SLE). B cells promote SLE pathogenesis by producing autoantibodies, activating autoreactive T cells, and secreting cytokines. We discuss how certain autoreactive B cells are selectively activated, with emphasis on the roles of key Toll-like receptors (TLRs). Although TLR7, which recognizes ssRNA, promotes autoimmune disease, TLR9, which recognizes DNA, unexpectedly regulates disease, despite being required for the secretion of anti-chromatin autoantibodies. We describe positive feedback loops involving B cells, T cells, DCs, and soluble mediators, and how these networks are regulated by TLR signals.
Collapse
Affiliation(s)
- Sean R Christensen
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8035, United States.
| | | |
Collapse
|
28
|
Stahl D, Sibrowski W. IgG2 containing IgM-IgG immune complexes predominate in normal human plasma, but not in plasma of patients with warm autoimmune haemolytic anaemia. Eur J Haematol 2006; 77:191-202. [PMID: 16923106 DOI: 10.1111/j.1600-0609.2006.00691.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The different physicochemical and sterical properties of IgG subclasses may favour a selective enrichment of defined IgG subclasses in IgM-IgG immune complexes (IC) of human plasma under physiological conditions. Such enrichment of IgG subclasses in IgM-IgG IC of plasma may differ from the normal IgG subclass distribution in plasma itself, and contribute to the physiological functions of IgM-IgG IC. Systematic studies on the IgG subclass distribution in IgM-IgG IC in humans are lacking. Using specific analytical techniques to characterise IgM-IgG IC in human plasma (i.e. fast protein liquid chromatography, enzyme-linked immunosorbent assay, affinity biosensor technology), and taking warm autoimmune haemolytic anaemia (WAIHA) of humans as a disease model, we here demonstrate that: (i) IgG2 is the predominant IgG subclass in IgM-IgG IC under physiological conditions, (ii) the predominance of IgG2 within IgM-IgG IC may get lost in polyclonal IgG-mediated autoimmune disease and (iii) the IgG subclass distribution in IgM-IgG IC influences the interaction between IC and blood cells involved in antigen presentation. The data presented here therefore extend the physiological function of IgG2, which is the protective immune response towards carbohydrate antigens in bacterial infections, and suggest IgG2-dependent regulation of immune responses to self-immunoglobulin in humans. The disturbed IgG subclass distribution in IgM-IgG IC of patients with WAIHA might influence activity of self-reactive B cells involved in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Dorothea Stahl
- University of Münster, Institute for Transfusion Medicine, Münster, Germany.
| | | |
Collapse
|
29
|
William J, Euler C, Primarolo N, Shlomchik MJ. B Cell Tolerance Checkpoints That Restrict Pathways of Antigen-Driven Differentiation. THE JOURNAL OF IMMUNOLOGY 2006; 176:2142-51. [PMID: 16455970 DOI: 10.4049/jimmunol.176.4.2142] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autoreactive B cells can be regulated by deletion, receptor editing, or anergy. Rheumatoid factor (RF)-expressing B lymphocytes in normal mice are not controlled by these mechanisms, but they do not secrete autoantibody and were presumed to ignore self-Ag. Surprisingly, we now find that these B cells are not quiescent, but instead are constitutively and specifically activated by self-Ag. In BALB/c mice, RF B cells form germinal centers (GCs) but few Ab-forming cells (AFCs). In contrast, autoimmune mice that express the autoantigen readily generate RF AFCs. Most interestingly, autoantigen-specific RF GCs in BALB/c mice appear defective. B cells in such GCs neither expand nor are selected as efficiently as equivalent cells in autoimmune mice. Thus, our data establish two novel checkpoints of autoreactive B cell regulation that are engaged only after initial autoreactive B cell activation: one that allows GCs but prevents AFC formation and one that impairs selection in the GC. Both of these checkpoints fail in autoimmunity.
Collapse
Affiliation(s)
- Jacqueline William
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND Rheumatoid factors (RFs) are autoantibodies associated with rheumatoid arthritis. They can be detected in normal individuals, although transiently. This dichotomy has led to questions about the origins and types of RFs. Recently it has been shown that B cells that produce RFs only do so when activated by two signals, one from engagement of the B-cell receptor and the other from recognition of a pathogen-associated molecular pattern through a Toll-like receptor (TLR). These autoantibodies thus link the innate and acquired immune responses. OBJECTIVE Through a review of the literature, an examination of the current knowledge of RF induction is presented. The focus is on a discussion of a beneficial or detrimental role for RFs in normal individuals and in those with chronic disease. RESULTS What makes RF 'good' in some cases and 'bad' in others may reflect the type of RF produced. Low-affinity polyreactive IgM RFs are probably beneficial as they aid in the clearance of immune complexes that are more efficiently cleared, and the RF B cell can act as an antigen-presenting cell and stimulate host defense. However, large amounts of high-affinity RFs found in patients with chronic disease may be harmful by participation in a vicious cycle of autoantibody production by stimulation of self lymphocytes, and/or deposition in blood vessels thus causing vasculitis. CONCLUSIONS Whether RFs are beneficial or detrimental depends on the context in which they are expressed, the type and amount of RF produced, whether the response is perpetuated by TLR ligation and whether other cells are stimulated either directly or indirectly by RF-positive B cells.
Collapse
Affiliation(s)
- Urszula M Nowak
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | | |
Collapse
|
31
|
William J, Euler C, Shlomchik MJ. Short-Lived Plasmablasts Dominate the Early Spontaneous Rheumatoid Factor Response: Differentiation Pathways, Hypermutating Cell Types, and Affinity Maturation Outside the Germinal Center. THE JOURNAL OF IMMUNOLOGY 2005; 174:6879-87. [PMID: 15905530 DOI: 10.4049/jimmunol.174.11.6879] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used a newly validated approach to identify the initiation of an autoantibody response to identify the sites and cell differentiation pathways at early and late stages of the rheumatoid factor response. The autoimmune response is mainly comprised of rapidly turning over plasmablasts that, according to BrdU labeling, TUNEL, and hypermutation data, derive from an activated B cell precursor. Surprisingly, few long-lived plasma cells were generated. The response most likely initiates at the splenic T-B zone border and continues in the marginal sinus bridging channels. Both activated B cells and plasmablasts harbor V gene mutations; large numbers of mutations in mice with long-standing response indicate that despite the rapid turnover of responding cells, clones can persist for many weeks. These studies provide insights into the unique nature of an ongoing autoimmune response and may be a model for understanding the response to therapies such as B cell depletion.
Collapse
MESH Headings
- Animals
- Antibody-Producing Cells/immunology
- Antibody-Producing Cells/metabolism
- Antibody-Producing Cells/pathology
- Antigens, CD/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Apoptosis/genetics
- Apoptosis/immunology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/pathology
- Binding Sites, Antibody/genetics
- Cell Adhesion Molecules/biosynthesis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Proliferation
- Flow Cytometry
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Lectins/biosynthesis
- Mice
- Mice, Inbred MRL lpr
- Mice, Transgenic
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Plasma Cells/pathology
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/metabolism
- Rheumatoid Factor/biosynthesis
- Rheumatoid Factor/genetics
- Sialic Acid Binding Ig-like Lectin 2
- Somatic Hypermutation, Immunoglobulin
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Stem Cells/immunology
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Jacqueline William
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|