1
|
Bao K, Isik Can U, Miller MM, Brown IK, Dell'Aringa M, Dooms H, Seibold MA, Scott-Browne J, Lee Reinhardt R. A bifurcated role for c-Maf in Th2 and Tfh2 cells during helminth infection. Mucosal Immunol 2023; 16:357-372. [PMID: 37088263 PMCID: PMC10290510 DOI: 10.1016/j.mucimm.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Differences in transcriptomes, transcription factor usage, and function have identified T follicular helper 2 (Tfh2) cells and T helper 2 (Th2) cells as distinct clusters of differentiation 4+",(CD4) T-cell subsets in settings of type-2 inflammation. Although the transcriptional programs driving Th2 cell differentiation and cytokine production are well defined, dependence on these classical Th2 programs by Tfh2 cells is less clear. Using cytokine reporter mice in combination with transcription factor inference analysis, the b-Zip transcription factor c-Maf and its targets were identified as an important regulon in both Th2 and Tfh2 cells. Conditional deletion of c-Maf in T cells confirmed its importance in type-2 cytokine expression by Th2 and Tfh2 cells. However, while c-Maf was not required for Th2-driven helminth clearance or lung eosinophilia, it was required for Tfh2-driven Immunoglobulin E production and germinal center formation. This differential regulation of cell-mediated and humoral immunity by c-Maf was a result of redundant pathways in Th2 cells that were absent in Tfh2 cells, and c-Maf-specific mechanisms in Tfh2 cells that were absent in Th2 cells. Thus, despite shared expression by Tfh2 and Th2 cells, c-Maf serves as a unique regulator of Tfh2-driven humoral hallmarks during type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, USA
| | - Uryan Isik Can
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Mindy M Miller
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Ivy K Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Mark Dell'Aringa
- Department of Immunology, Duke University Medical Center, Durham, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Hans Dooms
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, USA; Department of Pediatrics, National Jewish Health, Denver, USA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, USA
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Richard Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
2
|
Evaluating the Performance of PPE44, HSPX, ESAT-6 and CFP-10 Factors in Tuberculosis Subunit Vaccines. Curr Microbiol 2022; 79:260. [PMID: 35852636 PMCID: PMC9295111 DOI: 10.1007/s00284-022-02949-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is an intracellular pathogen causing long-term infection in humans that mainly attacks macrophages and can escape from the immune system with the various mechanisms. The only FDA-approved vaccine against M. tuberculosis (MTB) is Mycobacterium bovis bacillus Calmette-Guérin (BCG). The protection of this vaccine typically lasts 10–15 years. Due to the increasing number of people becoming ill with MTB each year worldwide, the need to develop a new effective treatment against the disease has been increased. During the past two decades, the research budget for TB vaccine has quadrupled to over half a billion dollars. Most of these research projects were based on amplifying and stimulating the response of T-cells and developing the subunit vaccines. Additionally, these studies have demonstrated that secretory and immunogenic proteins of MTB play a key role in the pathogenesis of the bacteria. Therefore, these proteins were used to develop the new subunit vaccines. In this review, based on the use of these proteins in the successful new subunit vaccines, the PPE44, HSPX, CFP-10 and ESAT-6 antigens were selected and the role of these antigens in designing and developing new subunit vaccines against TB and for the prevention of TB were investigated.
Collapse
|
3
|
Yang X, Li M, Ji Y, Lin Y, Xu L, Gu X, Sun H, Wang W, Shen Y, Liu H, Zhu J. Changes of Gene Expression Patterns of Muscle Pathophysiology-Related Transcription Factors During Denervated Muscle Atrophy. Front Physiol 2022; 13:923190. [PMID: 35812340 PMCID: PMC9263185 DOI: 10.3389/fphys.2022.923190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injury is common, and can lead to skeletal muscle atrophy and dysfunction. However, the underlying molecular mechanisms are not fully understood. The transcription factors have been proved to play a key role in denervated muscle atrophy. In order to systematically analyze transcription factors and obtain more comprehensive information of the molecular regulatory mechanisms in denervated muscle atrophy, a new transcriptome survey focused on transcription factors are warranted. In the current study, we used microarray to identify and analyze differentially expressed genes encoding transcription factors in denervated muscle atrophy in a rat model of sciatic nerve dissection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to explore the biological functions of differentially expressed transcription factors and their target genes related to skeletal muscle pathophysiology. We found that the differentially expressed transcription factors were mainly involved in the immune response. Based on correlation analysis and the expression trends of transcription factors, 18 differentially expressed transcription factors were identified. Stat3, Myod1, Runx1, Atf3, Junb, Runx2, Myf6, Stat5a, Tead4, Klf5, Myog, Mef2a, and Hes6 were upregulated. Ppargc1a, Nr4a1, Lhx2, Ppara, and Rxrg were downregulated. Functional network mapping revealed that these transcription factors are mainly involved in inflammation, development, aging, proteolysis, differentiation, regeneration, autophagy, oxidative stress, atrophy, and ubiquitination. These findings may help understand the regulatory mechanisms of denervated muscle atrophy and provide potential targets for future therapeutic interventions for muscle atrophy following peripheral nerve injury.
Collapse
Affiliation(s)
- Xiaoming Yang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Lai Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| |
Collapse
|
4
|
Identification of Regulatory Factors and Prognostic Markers in Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2022; 11:antiox11020303. [PMID: 35204186 PMCID: PMC8868268 DOI: 10.3390/antiox11020303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of motor neurons, leading to muscle atrophy, paralysis and even death. Immune disorder, redox imbalance, autophagy disorder, and iron homeostasis disorder have been shown to play critical roles in the pathogenesis of ALS. However, the exact pathogenic genes and the underlying mechanism of ALS remain unclear. The purpose of this study was to screen for pathogenic regulatory genes and prognostic markers in ALS using bioinformatics methods. We used Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and expression regulation network analysis to investigate the function of differentially expressed genes in the nerve tissue, lymphoid tissue, and whole blood of patients with ALS. Our results showed that the up-regulated genes were mainly involved in immune regulation and inflammation, and the down-regulated genes were mainly involved in energy metabolism and redox processes. Eleven up-regulated transcription factors (CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, and FOXJ1) and one down-regulated transcription factor (NOG) in the nerve tissue of patients with ALS likely play important regulatory roles in the pathogenesis of ALS. Based on construction and evaluation of the ALS biomarker screening model, cluster analysis of the identified characteristic genes, univariate Cox proportional hazards regression analysis, and the random survival forest algorithm, we found that MAEA, TPST1, IFNGR2, and ALAS2 may be prognostic markers regarding the survival of ALS patients. High expression of MAEA, TPST1, and IFNGR2 and low expression of ALAS2 in ALS patients may be closely related to short survival of ALS patients. Taken together, our results indicate that immune disorders, inflammation, energy metabolism, and redox imbalance may be the important pathogenic factors of ALS. CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, FOXJ1, and NOG may be important regulatory factors linked to the pathogenesis of ALS. MAEA, TPST1, IFNGR2, and ALAS2 are potential important ALS prognostic markers. Our findings provide evidence on the pathogenesis of ALS, potential targets for the development of new drugs for ALS, and important markers for predicting ALS prognosis.
Collapse
|
5
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
6
|
miR-200a-3p modulates gene expression in comorbid pain and depression: Molecular implication for central sensitization. Brain Behav Immun 2019; 82:230-238. [PMID: 31479730 DOI: 10.1016/j.bbi.2019.08.190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain and depression are often comorbid exhibiting common clinical presentations and biological connections related to central nervous system sensitization. Epigenetic regulation of gene expression in the brain plays a crucial role in response to long-lasting stress and chronic pain, and microRNA imbalance in the prefrontal cortex (PFC) might be involved in central sensitization. Male Sprague Dawley rats were subjected to unpredictable chronic mild stress (UCMS) and spared nerve injury (SNI) to initiate depressive-like behavior and chronic pain behavior, respectively. The next-generation sequencing technique was employed to analyze PFC microRNAs in both the UCMS and SNI models. Rats exposed to either UCMS or SNI exhibited both depressive-like and chronic pain behaviors. Five specific microRNAs (miR-10a-5p, miR-182, miR-200a-3p, miR-200b-3p, and miR-429) were simultaneously down-regulated in the depressive-like and chronic pain models after 4 weeks of short-term stress. Gene ontology revealed that the 4-week period of stress enhanced neurogenesis. Only the miR-200a-3p level was continuously elevated under prolonged stress, suggesting roles of reduced neurogenesis, inflammatory activation, disturbed circadian rhythm, lipid metabolism, and insulin secretion in the co-existence of pain and depression. Thus we conclude that miR-200a-3p might be a specific biomarker of central sensitization in chronic pain and depression.
Collapse
|
7
|
Gu C, Qiao W, Wang L, Li M, Song K. Identification of genes and pathways associated with multiple organ dysfunction syndrome by microarray analysis. Mol Med Rep 2018; 18:31-40. [PMID: 29749505 PMCID: PMC6059685 DOI: 10.3892/mmr.2018.8973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/21/2017] [Indexed: 12/14/2022] Open
Abstract
Multiple organ dysfunction syndrome (MODS) is characterized by the development of progressive physiological dysfunction of ≥2 organs or organ systems and is responsible for the majority of the morbidity and mortality among patients in intensive care units. The aim of the present study was to investigate the potential genes and pathways associated with MODS. The microarray dataset GSE60088 was downloaded from the Gene Expression Omnibus and used to identify differentially expressed genes (DEGs) between organ tissues (lung, liver and kidney) obtained from a murine model of MODS and healthy controls. The interactions between DEGs in lungs, liver and kidneys were revealed by Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Furthermore, protein‑protein interaction (PPI) data for DEGs were obtained from the Search Tool for the Retrieval of Interacting Genes and a PPI network was constructed. Additionally, DEGs that were common among the three organs were screened and transcription factors that regulated them were predicted using the iRegulon plugin. A total of 943, 267 and 227 DEGs were identified in lung, liver and kidney samples, respectively, between mice with MODS and healthy controls. In lung and liver samples, two pathways that were enriched with DEGs were identified and were common between lung and liver samples, including 'cytokine‑cytokine receptor interaction' and 'Jnk‑STAT signaling pathway', and examples of DEGs associated with these pathways include C‑X‑C motif chemokine ligand (Cxcl)1 and Cxcl10, and signal transducer and activator of transcription (Stat)1, respectively. Furthermore, two common pathways were identified in liver and kidney samples, which included 'MAPK signaling pathway' and 'p53 signaling pathway', and DEGs associated with these pathways included growth arrest and DNA damage‑inducible α. A total of 18 DEGs were common among lung, liver and kidney tissues, including CCAAT/enhancer binding protein β (Cebpb) and olfactomedin‑like 1 (Olfml1). Cebpb modulated various other DEGs, such as Cxcl1, and Olfml1 was regulated by Stat5A. These genes and pathways may serve roles in the progression of MODS and may be considered to be potential therapy targets for MODS.
Collapse
Affiliation(s)
- Changwei Gu
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wanhai Qiao
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lina Wang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Minmin Li
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Kang Song
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
8
|
Han NR, Moon PD, Ryu KJ, Kim NR, Kim HM, Jeong HJ. Inhibitory effect of naringenin via IL-13 level regulation on thymic stromal lymphopoietin-induced inflammatory reactions. Clin Exp Pharmacol Physiol 2017; 45:362-369. [PMID: 29193236 DOI: 10.1111/1440-1681.12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/04/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023]
Abstract
Naringenin (NG) has various beneficial properties, such as anti-cancer and anti-inflammatory effects. Thymic stromal lymphopoietin (TSLP) induces mast cell proliferation and inflammatory reactions. The aim of this study was to investigate the regulatory effect of NG on TSLP-induced mast cell proliferation and inflammatory reactions using human mast cell line (HMC-1) cells. HMC-1 cells were pre-treated with NG and then treated with TSLP. HMC-1 cells proliferation was determined by quantifying bromodeoxyuridine incorporation. Levels of anti-apoptotic and pro-apoptotic factors were analyzed by western blot analysis. The productions and mRNA expressions of interleukin (IL)-13 and tumour necrosis factor-α (TNF-α) were analyzed by ELISA and quantitative real-time PCR. We found that NG significantly attenuated HMC-1 cells proliferation and Ki-67 mRNA expression promoted by TSLP. NG significantly suppressed mRNA expression of TSLP receptor and IL-7 receptor α in TSLP-treated HMC-1 cells. NG significantly down-regulated levels of phosphorylated-signal transducer and activation of transcription 6 and murine double-minute 2 in TSLP-treated HMC-1 cells, up-regulated levels of cleaved poly ADP-ribose polymerase and p53 in TSLP-treated HMC-1 cells. Furthermore, NG significantly decreased the productions and mRNA expressions of IL-13 and TNF-α in TSLP-treated HMC-1 cells. These results suggest NG has an inhibitory effect on mast cell-mediated allergic inflammatory reactions.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Korea
| | - Ka-Jung Ryu
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Na-Rae Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Ja Jeong
- Department of Food Science & Technology and Research Institute for Basic Science, Hoseo University, Asan, Chungnam, Korea
| |
Collapse
|
9
|
Yoou MS, Yoon KW, Choi Y, Kim HM, Jeong HJ. Cordycepin diminishes thymic stromal lymphopoietin-induced interleukin-13 production. Eur J Pharmacol 2017; 802:1-6. [DOI: 10.1016/j.ejphar.2017.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 01/23/2023]
|
10
|
Matsuki A, Takatori H, Makita S, Yokota M, Tamachi T, Suto A, Suzuki K, Hirose K, Nakajima H. T-bet inhibits innate lymphoid cell–mediated eosinophilic airway inflammation by suppressing IL-9 production. J Allergy Clin Immunol 2017; 139:1355-1367.e6. [DOI: 10.1016/j.jaci.2016.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/14/2016] [Accepted: 08/23/2016] [Indexed: 01/24/2023]
|
11
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Zhou W, Zhang J, Goleniewska K, Dulek DE, Toki S, Newcomb DC, Cephus JY, Collins RD, Wu P, Boothby MR, Peebles RS. Prostaglandin I2 Suppresses Proinflammatory Chemokine Expression, CD4 T Cell Activation, and STAT6-Independent Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1577-86. [PMID: 27456482 DOI: 10.4049/jimmunol.1501063] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Allergic airway diseases are immune disorders associated with heightened type 2 immune responses and IL-5 and IL-13 production at the site of inflammation. We have previously reported that cyclooxygenase (COX) inhibition by indomethacin augmented allergic airway inflammation in a STAT6-independent manner. However, the key COX product(s) responsible for restraining indomethacin-mediated STAT6-independent allergic inflammation is unknown. In this study, using the mouse model of OVA-induced allergic airway inflammation, we identified that PGI2 receptor (IP) signaling was critical for indomethacin-induced, STAT6-independent proallergic effects. We demonstrated that IP deficiency increased inflammatory cell infiltration, eosinophilia, and IL-5 and IL-13 expression in the lung in a STAT6-independent manner. The augmented STAT6-independent allergic inflammation correlated with enhanced primary immune responses to allergic sensitization and elevated production of multiple inflammatory chemokines (CCL11, CCL17, CCL22, and CXCL12) in the lung after allergen challenge. We also showed that the PGI2 analogue cicaprost inhibited CD4 T cell proliferation and IL-5 and IL-13 expression in vitro, and IP deficiency diminished the stimulatory effect of indomethacin on STAT6-independent IL-5 and IL-13 responses in vivo. The inhibitory effects of PGI2 and the IP signaling pathway on CD4 T cell activation, inflammatory chemokine production, and allergic sensitization and airway inflammation suggest that PGI2 and its analogue iloprost, both Food and Drug Administration-approved drugs, may be useful in treating allergic diseases and asthma. In addition, inhibiting PGI2 signaling by drugs that either block PGI2 production or restrain IP signaling may augment STAT6-independent pathways of allergic inflammation.
Collapse
Affiliation(s)
- Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Daniel E Dulek
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Jacqueline Y Cephus
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Robert D Collins
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Pingsheng Wu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Mark R Boothby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
13
|
Regulation of IL-4 Expression in Immunity and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:31-77. [PMID: 27734408 DOI: 10.1007/978-94-024-0921-5_3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-4 was first identified as a T cell-derived growth factor for B cells. Studies over the past several decades have markedly expanded our understanding of its cellular sources and function. In addition to T cells, IL-4 is produced by innate lymphocytes, such as NTK cells, and myeloid cells, such as basophils and mast cells. It is a signature cytokine of type 2 immune response but also has a nonimmune function. Its expression is tightly regulated at several levels, including signaling pathways, transcription factors, epigenetic modifications, microRNA, and long noncoding RNA. This chapter will review in detail the molecular mechanism regulating the cell type-specific expression of IL-4 in physiological and pathological type 2 immune responses.
Collapse
|
14
|
Mandal PK, Morlacchi P, Knight JM, Link TM, Lee GR, Nurieva R, Singh D, Dhanik A, Kavraki L, Corry DB, Ladbury JE, McMurray JS. Targeting the Src Homology 2 (SH2) Domain of Signal Transducer and Activator of Transcription 6 (STAT6) with Cell-Permeable, Phosphatase-Stable Phosphopeptide Mimics Potently Inhibits Tyr641 Phosphorylation and Transcriptional Activity. J Med Chem 2015; 58:8970-84. [PMID: 26506089 DOI: 10.1021/acs.jmedchem.5b01321] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Signal transducer and activator of transcription 6 (STAT6) transmits signals from cytokines IL-4 and IL-13 and is activated in allergic airway disease. We are developing phosphopeptide mimetics targeting the SH2 domain of STAT6 to block recruitment to phosphotyrosine residues on IL-4 or IL-13 receptors and subsequent Tyr641 phosphorylation to inhibit the expression of genes contributing to asthma. Structure-affinity relationship studies showed that phosphopeptides based on Tyr631 from IL-4Rα bind with weak affinity to STAT6, whereas replacing the pY+3 residue with simple aryl and alkyl amides resulted in affinities in the mid to low nM range. A set of phosphatase-stable, cell-permeable prodrug analogues inhibited cytokine-stimulated STAT6 phosphorylation in both Beas-2B human airway cells and primary mouse T-lymphocytes at concentrations as low as 100 nM. IL-13-stimulated expression of CCL26 (eotaxin-3) was inhibited in a dose-dependent manner, demonstrating that targeting the SH2 domain blocks both phosphorylation and transcriptional activity of STAT6.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ankur Dhanik
- The Department of Computer Science, Rice University , Houston, Texas 77251, United States
| | - Lydia Kavraki
- The Department of Computer Science, Rice University , Houston, Texas 77251, United States
| | - David B Corry
- Departments of Medicine and Pathology & Immunology, The Baylor College of Medicine , Houston, Texas 77030, United States
| | | | | |
Collapse
|
15
|
Bredo G, Storie J, Shrestha Palikhe N, Davidson C, Adams A, Vliagoftis H, Cameron L. Interleukin-25 initiates Th2 differentiation of human CD4(+) T cells and influences expression of its own receptor. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:455-68. [PMID: 26734466 PMCID: PMC4693727 DOI: 10.1002/iid3.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/20/2015] [Accepted: 09/05/2015] [Indexed: 12/15/2022]
Abstract
Human CRTh2+ Th2 cells express IL‐25 receptor (IL‐25R) and IL‐25 has been shown to potentiate production of Th2 cytokines. However, regulation of IL‐25R and whether it participates in Th2 differentiation of human cells have not been examined. We sought to characterize IL‐25R expression on CD4+ T cells and determine whether IL‐25 plays a role in Th2 differentiation. Naïve human CD4+ T cells were activated in the presence of IL‐25, IL‐4 (Th2 conditions) or both cytokines to assess their relative influence on Th2 differentiation. For experiments with differentiated Th2 cells, CRTh2‐expressing cells were isolated from differentiating cultures. IL‐25R, GATA3, CRTh2 and Th2 cytokine expression were assessed by flow cytometry, qRT‐PCR and ELISA. Expression of surface IL‐25R was induced early during Th2 differentiation (2 days). Addition of IL‐25 to naïve CD4+ T cells revealed that it induces expression of its own receptor, more strongly than IL‐4. IL‐25 also increased the proportions of IL‐4‐, GATA3‐ and CRTh2‐expressing cells and expression of IL‐5 and IL‐13. Activation of differentiated CRTh2+ Th2 cells through the TCR or by CRTh2 agonist increased surface expression of IL‐25R, though re‐expression of CRTh2 following TCR downregulation was impeded by IL‐25. These data suggest that IL‐25 may play various roles in Th2 mediated immunity. We establish here it regulates expression of its own receptor and can initiate Th2 differentiation, though not as strongly as IL‐4.
Collapse
Affiliation(s)
- Graeme Bredo
- Pulmonary Research Group, Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Jessica Storie
- Pulmonary Research Group, Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Nami Shrestha Palikhe
- Pulmonary Research Group, Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Courtney Davidson
- Pulmonary Research Group, Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Alexis Adams
- Pulmonary Research Group, Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Harissios Vliagoftis
- Pulmonary Research Group, Department of Medicine University of Alberta Edmonton Alberta Canada
| | - Lisa Cameron
- Pulmonary Research Group, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
16
|
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 2015; 75:25-37. [PMID: 26073683 DOI: 10.1016/j.cyto.2015.05.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States
| | - R Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
17
|
Stritesky GL, Kaplan MH. Changing the STATus quo in T helper cells. Transcription 2014; 2:179-182. [PMID: 21922060 DOI: 10.4161/trns.2.4.16614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022] Open
Abstract
STAT proteins are obligate promoters of T helper cell differentiation and initial studies suggested that activation of a single STAT protein resulted in a particular phenotype. More recent work has supported a more complex paradigm wherein the activation of several STAT proteins is required for differentiation to a single effector lineage.
Collapse
Affiliation(s)
- Gretta L Stritesky
- Department of Lab Medicine and Pathology; Center for Immunology; University of Minnesota; Minneapolis, MN USA
| | | |
Collapse
|
18
|
Glosson NL, Bruns HA, Kaplan MH. Wheezing and itching: The requirement for STAT proteins in allergic inflammation. JAKSTAT 2014; 1:3-12. [PMID: 24058746 PMCID: PMC3670132 DOI: 10.4161/jkst.19086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/16/2011] [Indexed: 12/16/2022] Open
Abstract
The development of allergic inflammation requires the orchestration of gene expression from the inflamed tissue and from the infiltrating immune cells. Since many of the cytokines that promote allergic inflammation signal through hematopoietin family receptors, the Signal Transducer and Activator of Transcription (STAT) family have obligate roles in pro-allergic cytokine-induced gene regulation in multiple cell types. In this review, we summarize work defining the contribution of each of the STAT family members to the development of allergic inflammation, using data from mouse models of allergic inflammation, studies on patient samples and correlations with single nucleotide polymorphisms in STAT genes.
Collapse
Affiliation(s)
- Nicole L Glosson
- Department of Pediatrics; Herman B. Wells Center for Pediatric Research; Department of Microbiology and Immunology; Indiana University School of Medicine; Indianapolis, IN USA
| | | | | |
Collapse
|
19
|
Abstract
The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.
Collapse
Affiliation(s)
- Catherine M Evans
- Division of Infection and Immunity and UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | | |
Collapse
|
20
|
Ding L, Abebe T, Beyene J, Wilke RA, Goldberg A, Woo JG, Martin LJ, Rothenberg ME, Rao M, Hershey GKK, Chakraborty R, Mersha TB. Rank-based genome-wide analysis reveals the association of ryanodine receptor-2 gene variants with childhood asthma among human populations. Hum Genomics 2013; 7:16. [PMID: 23829686 PMCID: PMC3708719 DOI: 10.1186/1479-7364-7-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/29/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The standard approach to determine unique or shared genetic factors across populations is to identify risk alleles in one population and investigate replication in others. However, since populations differ in DNA sequence information, allele frequencies, effect sizes, and linkage disequilibrium patterns, SNP association using a uniform stringent threshold on p values may not be reproducible across populations. Here, we developed rank-based methods to investigate shared or population-specific loci and pathways for childhood asthma across individuals of diverse ancestry. We performed genome-wide association studies on 859,790 SNPs genotyped in 527 affected offspring trios of European, African, and Hispanic ancestry using publically available asthma database in the Genotypes and Phenotypes database. RESULTS Rank-based analyses showed that there are shared genetic factors for asthma across populations, more at the gene and pathway levels than at the SNP level. Although the top 1,000 SNPs were not shared, 11 genes (RYR2, PDE4D, CSMD1, CDH13, ROBO2, RBFOX1, PTPRD, NPAS3, PDE1C, SEMA5A, and CTNNA2) mapped by these SNPs were shared across populations. Ryanodine receptor 2 (RYR2, a statin response-related gene) showed the strongest association in European (p value=2.55×10(-7)) and was replicated in African (2.57×10(-4)) and Hispanic (1.18 × 10(-3)) Americans. Imputation analyses based on the 1000 Genomes Project uncovered additional RYR2 variants associated with asthma. Network and functional ontology analyses revealed that RYR2 is an integral part of dermatological or allergic disorder biological networks, specifically in the functional classes involving inflammatory, eosinophilic, and respiratory diseases. CONCLUSION Our rank-based genome-wide analysis revealed for the first time an association of RYR2 variants with asthma and replicated previously discovered PDE4D asthma gene across human populations. The replication of top-ranked asthma genes across populations suggests that such loci are less likely to be false positives and could indicate true associations. Variants that are associated with asthma across populations could be used to identify individuals who are at high risk for asthma regardless of genetic ancestry.
Collapse
Affiliation(s)
- Lili Ding
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Tilahun Abebe
- Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Joseph Beyene
- Department of Clinical Epidemiology and Biostatistics, Program in Population Genomics, McMaster University, 1280 Main Street West, MDCL 3211, Hamilton, Ontario, L8S 4K1, Canada
| | - Russell A Wilke
- Department of Medicine, Division of Clinical Pharmacology, Oates Institute for Experimental Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Arnon Goldberg
- Sapir Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Jessica G Woo
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Lisa J Martin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Marc E Rothenberg
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Marepalli Rao
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ranajit Chakraborty
- Department of Forensic and Investigative Genetics, Center for Computational Genomics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tesfaye B Mersha
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
21
|
Walford HH, Doherty TA. STAT6 and lung inflammation. JAKSTAT 2013; 2:e25301. [PMID: 24416647 PMCID: PMC3876430 DOI: 10.4161/jkst.25301] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/18/2022] Open
Abstract
Lung inflammation has many etiologies, including diseases of Th2-type immunity, such as asthma and anti-parasitic responses. Inflammatory diseases of the lung involve complex interactions among structural cells (airway epithelium, smooth muscle, and fibroblasts) and immune cells (B and T cells, macrophages, dendritic cells, and innate lymphoid cells). Signal transducer and activator of transcription 6 (STAT6) has been demonstrated to regulate many pathologic features of lung inflammatory responses in animal models including airway eosinophilia, epithelial mucus production, smooth muscle changes, Th2 cell differentiation, and IgE production from B cells. Cytokines IL-4 and IL-13 that are upstream of STAT6 are found elevated in human asthma and clinical trials are underway to therapeutically target the IL-4/IL-13/STAT6 pathway. Additionally, recent work suggests that STAT6 may also regulate lung anti-viral responses and contribute to pulmonary fibrosis. This review will focus on the role of STAT6 in lung diseases and mechanisms by which STAT6 controls immune and structural lung cell function.
Collapse
Affiliation(s)
- Hannah H Walford
- Department of Medicine; University of California, San Diego; La Jolla, CA USA ; Department of Pediatrics; University of California, San Diego; La Jolla, CA USA
| | - Taylor A Doherty
- Department of Medicine; University of California, San Diego; La Jolla, CA USA
| |
Collapse
|
22
|
Maier E, Duschl A, Horejs-Hoeck J. STAT6-dependent and -independent mechanisms in Th2 polarization. Eur J Immunol 2012; 42:2827-33. [PMID: 23041833 PMCID: PMC3557721 DOI: 10.1002/eji.201242433] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/18/2012] [Accepted: 07/25/2012] [Indexed: 01/06/2023]
Abstract
Th2 cells play a key role in directing immune responses against helminths. Additionally, Th2 cells are crucial for many types of allergic reactions. Whereas the molecular mechanisms underlying the differentiation of other types of Th cells are well understood, Th2 differentiation is still a controversial topic. IL-4 and its downstream transcription factor signal transducer and activator of transcription (STAT)6 are well-known key mediators in Th2 differentiation. The fact that Th2 cells themselves are the most potent source of IL-4 suggests that additional mechanisms promoting the initiation of Th2 differentiation exist. This article gives an overview on STAT6-dependent and -independent mechanisms involved in the process of Th2 polarization, including Notch, mTORC2, IL-2/STAT5, and Wnt. Furthermore, we emphasize the role of STAT6 not only as a transcriptional activator promoting Th2 development, but also in fine-tuning alternative signaling pathways which are involved in the initiation of Th2 polarization.
Collapse
Affiliation(s)
- Elisabeth Maier
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
23
|
Karwot R, Übel C, Bopp T, Schmitt E, Finotto S. Increased immunosuppressive function of CD4(+)CD25(+)Foxp3(+)GITR+ T regulatory cells from NFATc2((-/-)) mice controls allergen-induced experimental asthma. Immunobiology 2012; 217:905-11. [PMID: 22317750 DOI: 10.1016/j.imbio.2012.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/21/2011] [Accepted: 01/01/2012] [Indexed: 01/08/2023]
Abstract
The expansion of effector T cells is tightly controlled by transcription factors like nuclear factor of activated T cells (NFAT) family members that mediate early intracellular responses to T cell receptor-mediated signals. In this study we show that, after allergen challenge, NFATc2((-/-)) mice had augmented number of functionally intact CD4(+)CD25(++)GITR(++) T regulatory (T regs) cells in the lung. Anti-GITR antibody treatment inhibited T regulatory cell function and enhanced the number of activated lung CD4(+) T cells associated with increased IL-2 and pSTAT-5 in the airways of NFATc2((-/-)) mice in experimental allergic asthma. This agonistic treatment led to increased inflammation in the lung of NFATc2((-/-)) treated mice. These data indicate that NFATc2((-/-)) mice have increased number of CD4(+)CD25(+)Foxp3(+) T regulatory cells with induced immunosuppressive function that control allergen-induced experimental asthma.
Collapse
Affiliation(s)
- Roman Karwot
- Laboratory of Cellular and Molecular Immunology of the Lung, Institute of Molecular Medicine, University of Mainz, 55131 Mainz, Germany
| | | | | | | | | |
Collapse
|
24
|
Cai LQ, Zhang JY, Yu CX, Zhu L. rhPLD2 suppresses chronic inflammation reactions in a guinea pig asthma model. Immunopharmacol Immunotoxicol 2011; 34:74-8. [PMID: 21854185 DOI: 10.3109/08923973.2011.577782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Asthma is a complex inflammatory disorder of the airways, and research on alternative therapeutic strategies has attracted attention. This study aimed at hypersusceptibility and toxicity of recombinant human phospholipase D2 (rhPLD2) in guinea pigs. We determined the behavioral responses in the model of immediate hypersensitivity animals and changes of eosinophil levels following use of the drugs. Special attention was given to the effects of rhPLD2 in vivo on the guinea pig with chronic persistent asthma and the mechanism involved. METHODS To investigate the effect of rhPLD2 on the expression of protein kinase C (PKC), and to examine the activity of signal transducer and activator of transcription 1 and 5a in the lung of the guinea pig with chronic asthma. Guinea pigs with chronic asthma were divided into five groups: a saline group, a dexamethasone 5.0 mg group, and rhPLD2 (1.5, 2, or 3 mg) groups. Non-sensitized animals were as normal control group. PKC expression was measured by immunohistochemistry, alterations of STAT1 and STAT5a were detected by TransAM transcription factor assay kits. RESULTS rhPLD2 (3.0 mg) decreased PKC expression to baseline and inhibited STAT1 activity compared with that of the saline group (p < 0.01). CONCLUSION The rhPLD2 may suppress the chronic inflammatory reaction through down-regulating PKC expression and STAT1/STAT5a activity in the lung. The rhPLD2 may be a suitable therapeutic target for asthma.
Collapse
Affiliation(s)
- Li-Qiong Cai
- Immunology Dept. and Center of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350004, China
| | | | | | | |
Collapse
|
25
|
Abstract
Signal transducer and activator of transcription (STAT) proteins are critical mediators of cytokine signaling. Among the seven STAT proteins, STAT6 is activated by IL-4 and IL-13 and plays a predominant role in the immune system. However, there is increasing evidence that STAT6 may function in other tissues and organ systems. IL-4, IL-13, and STAT6 promote humoral immunity, clearance of helminthic parasites as well as the pathogenesis of allergic disorders like asthma, food allergies, and atopic dermatitis. In this review, we will describe our current understanding of the biological functions of STAT6 and summarize recent advances in understanding the molecular mechanisms by which STAT6 regulates transcription.
Collapse
Affiliation(s)
- Shreevrat Goenka
- HB Wells Center of Pediatric Research, Department of Pediatrics, Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, 46202, USA.
| | | |
Collapse
|
26
|
Nair S, Pandey AD, Mukhopadhyay S. The PPE18 protein of Mycobacterium tuberculosis inhibits NF-κB/rel-mediated proinflammatory cytokine production by upregulating and phosphorylating suppressor of cytokine signaling 3 protein. THE JOURNAL OF IMMUNOLOGY 2011; 186:5413-24. [PMID: 21451109 DOI: 10.4049/jimmunol.1000773] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis bacteria are known to suppress proinflammatory cytokines like IL-12 and TNF-α for a biased Th2 response that favors a successful infection and its subsequent intracellular survival. However, the signaling pathways targeted by the bacilli to inhibit production of these cytokines are not fully understood. In this study, we demonstrate that the PPE18 protein of M. tuberculosis inhibits LPS-induced IL-12 and TNF-α production by blocking nuclear translocation of p50, p65 NF-κB, and c-rel transcription factors. We found that PPE18 upregulates the expression as well as tyrosine phosphorylation of suppressor of cytokine signaling 3 (SOCS3), and the phosphorylated SOCS3 physically interacts with IκBα-NF-κB/rel complex, inhibiting phosphorylation of IκBα at the serine 32/36 residues by IκB kinase-β, and thereby prevents nuclear translocation of the NF-κB/rel subunits in LPS-activated macrophages. Specific knockdown of SOCS3 by small interfering RNA enhanced IκBα phosphorylation, leading to increased nuclear levels of NF-κB/rel transcription factors vis-a-vis IL-12 p40 and TNF-α production in macrophages cotreated with PPE18 and LPS. The PPE18 protein did not affect the IκB kinase-β activity. Our study describes a novel mechanism by which phosphorylated SOCS3 inhibits NF-κB activation by masking the phosphorylation site of IκBα. Also, this study highlights the possible mechanisms by which the M. tuberculosis suppresses production of proinflammatory cytokines using PPE18.
Collapse
Affiliation(s)
- Shiny Nair
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, Andhra Pradesh, India
| | | | | |
Collapse
|
27
|
Sato K, Miyoshi F, Yokota K, Araki Y, Asanuma Y, Akiyama Y, Yoh K, Takahashi S, Aburatani H, Mimura T. Marked induction of c-Maf protein during Th17 cell differentiation and its implication in memory Th cell development. J Biol Chem 2011; 286:14963-71. [PMID: 21402704 DOI: 10.1074/jbc.m111.218867] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Until recently, effector T helper (Th) cells have been classified into two subsets, Th1 and Th2 cells. Since the discovery of Th17 cells, which produce IL-17, much attention has been given to Th17 cells, mainly because they have been implicated in the pathogenesis of various inflammatory diseases. We have performed transcriptome analysis combined with factor analysis and revealed that the expression level of c-Maf, which is considered to be important for Th2 differentiation, increases significantly during the course of Th17 differentiation. The IL-23 receptor (IL-23R), which is important for Th17 cells, is among putative transcriptional targets of c-Maf. Interestingly, the analysis of c-Maf transgenic Th cells revealed that the overexpression of c-Maf did not lead to the acceleration of the early stage of Th17 differentiation but rather to the expansion of memory phenotype cells, particularly with Th1 and Th17 traits. Consistently, mouse wild-type memory Th cells expressed higher mRNA levels of c-Maf, IL-23R, IL-17, and IFN-γ than control cells; in contrast, Maf(-/-) memory Th cells expressed lower mRNA levels of those molecules. Thus, we propose that c-Maf is important for the development of memory Th cells, particularly memory Th17 cells and Th1 cells.
Collapse
Affiliation(s)
- Kojiro Sato
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, Travers J, Nguyen ET, Levy DE, Kaplan MH. The transcription factor STAT3 is required for T helper 2 cell development. Immunity 2011; 34:39-49. [PMID: 21215659 DOI: 10.1016/j.immuni.2010.12.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/18/2010] [Accepted: 11/04/2010] [Indexed: 12/18/2022]
Abstract
Signal transducer and activator of transcription (STAT) family members direct the differentiation of T helper cells, with specific STAT proteins promoting distinct effector subsets. STAT6 is required for the development of T helper 2 (Th2) cells, whereas STAT3 promotes differentiation of Th17 and follicular helper T cell subsets. We demonstrated that STAT3 was also activated during Th2 cell development and was required for the expression of Th2 cell-associated cytokines and transcription factors. STAT3 bound directly to Th2 cell-associated gene loci and was required for the ability of STAT6 to bind target genes. In vivo, STAT3 deficiency in T cells eliminated the allergic inflammation in mice sensitized and challenged with ovalbumin or transgenic for constitutively active STAT6. Thus, STAT3 cooperates with STAT6 in promoting Th2 cell development. These results demonstrate that differentiating T helper cells integrate multiple STAT protein signals during Th2 cell development.
Collapse
Affiliation(s)
- Gretta L Stritesky
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Elo LL, Järvenpää H, Tuomela S, Raghav S, Ahlfors H, Laurila K, Gupta B, Lund RJ, Tahvanainen J, Hawkins RD, Oresic M, Lähdesmäki H, Rasool O, Rao KV, Aittokallio T, Lahesmaa R. Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. Immunity 2010; 32:852-62. [PMID: 20620947 DOI: 10.1016/j.immuni.2010.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/20/2010] [Accepted: 05/26/2010] [Indexed: 01/30/2023]
Abstract
Dissecting the molecular mechanisms by which T helper (Th) cells differentiate to effector Th2 cells is important for understanding the pathogenesis of immune-mediated diseases, such as asthma and allergy. Because the STAT6 transcription factor is an upstream mediator required for interleukin-4 (IL-4)-induced Th2 cell differentiation, its targets include genes important for this process. Using primary human CD4(+) T cells, and by blocking STAT6 with RNAi, we identified a number of direct and indirect targets of STAT6 with ChIP sequencing. The integration of these data sets with detailed kinetics of IL-4-driven transcriptional changes showed that STAT6 was predominantly needed for the activation of transcription leading to the Th2 cell phenotype. This integrated genome-wide data on IL-4- and STAT6-mediated transcription provide a unique resource for studies on Th cell differentiation and, in particular, for designing interventions of human Th2 cell responses.
Collapse
Affiliation(s)
- Laura L Elo
- Biomathematics Research Group, Department of Mathematics, University of Turku, FI-20014 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Archambaud C, Sansoni A, Mingueneau M, Devilard E, Delsol G, Malissen B, Malissen M. STAT6 deletion converts the Th2 inflammatory pathology afflicting Lat(Y136F) mice into a lymphoproliferative disorder involving Th1 and CD8 effector T cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:2680-9. [PMID: 19234162 DOI: 10.4049/jimmunol.0803257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutant mice in which tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a lymphoproliferative disorder involving polyclonal CD4 effector T cells that produce massive amounts of IL-4 and trigger severe Th2 inflammation. Naive CD4 T cells can themselves produce IL-4 and thereby initiate a self-reinforcing positive regulatory loop that involves the STAT6 transcription factor and leads to Th2 polarization. We determined the functional outcome that results when Lat(Y136F) T cells differentiate in the absence of such STAT6-dependent regulatory loop. The lack of STAT6 had no effect on the timing and magnitude of the lymphoproliferative disorder. However, in Lat(Y136F) mice deprived of STAT6, the expanding CD4 T cell population was dominated by Th1 effector cells that triggered B cell proliferation, elevated IgG2a and IgG2b levels as well as the production of autoantibodies. In contrast to Lat(Y136F) mice that showed no CD8 T cell expansion, the CD8 T cells present in Lat(Y136F) mice deprived of STAT6 massively expanded and acquired effector potential. Therefore, the lack of STAT6 is sufficient to convert the Th2 lymphoproliferative disorder that characterizes Lat(Y136F) mice into a lymphoproliferative disorder that is dominated by Th1 and CD8 effector T cells. The possibility to dispose of a pair of mice that differs by a single gene and develops in the absence of deliberate immunization large numbers of Th cells with almost reciprocal polarization should facilitate the identification of genes involved in the control of normal and pathological Th cell differentiation.
Collapse
Affiliation(s)
- Cristel Archambaud
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Taylor BC, Zaph C, Troy AE, Du Y, Guild KJ, Comeau MR, Artis D. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. ACTA ACUST UNITED AC 2009; 206:655-67. [PMID: 19273626 PMCID: PMC2699121 DOI: 10.1084/jem.20081499] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intestinal epithelial cells (IECs) produce thymic stromal lymphopoietin (TSLP); however, the in vivo influence of TSLP–TSLP receptor (TSLPR) interactions on immunity and inflammation in the intestine remains unclear. We show that TSLP–TSLPR interactions are critical for immunity to the intestinal pathogen Trichuris. Monoclonal antibody–mediated neutralization of TSLP or deletion of the TSLPR in normally resistant mice resulted in defective expression of Th2 cytokines and persistent infection. Susceptibility was accompanied by elevated expression of interleukin (IL) 12/23p40, interferon (IFN) γ, and IL-17A, and development of severe intestinal inflammation. Critically, neutralization of IFN-γ in Trichuris-infected TSLPR−/− mice restored Th2 cytokine responses and resulted in worm expulsion, providing the first demonstration of TSLPR-independent pathways for Th2 cytokine production. Additionally, TSLPR−/− mice displayed elevated production of IL-12/23p40 and IFN-γ, and developed heightened intestinal inflammation upon exposure to dextran sodium sulfate, demonstrating a previously unrecognized immunoregulatory role for TSLP in a mouse model of inflammatory bowel disease.
Collapse
Affiliation(s)
- Betsy C Taylor
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Rautajoki KJ, Kylaniemi MK, Raghav SK, Rao K, Lahesmaa R. An insight into molecular mechanisms of human T helper cell differentiation. Ann Med 2008; 40:322-35. [PMID: 18484344 DOI: 10.1080/07853890802068582] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Selective activation of T helper (Th) cell subsets plays an important role in immune response to pathogens as well as in the pathogenesis of human allergy and inflammatory diseases. Th1 cells along with the recently discovered Th17 cells play a role in the pathogenesis of autoimmune diseases. Th2 cytokines lead to series of inflammatory processes characteristic for asthma and other atopic diseases. To understand the pathogenesis of immune-mediated diseases it is crucial to dissect pathways and regulatory networks leading to the development of distinct Th subsets. Such knowledge may lead to better strategies for developing diagnostics and therapies for these diseases. The differentiation of Th1, Th2, and Th17 effector cells is driven by signals originating from T cell and costimulatory receptors as well as cytokines in the surroundings of activated naive T helper cells. There are several proteins involved in the regulation of this differentiation process. Most of the data on T helper cell differentiation have been acquired using mouse. In this review, we have summarized what is known about human T helper differentiation. In addition, selected differences between human and mouse will be discussed.
Collapse
Affiliation(s)
- Kirsi J Rautajoki
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | | | | | | | | |
Collapse
|
33
|
Chen W, Khurana Hershey GK. Signal transducer and activator of transcription signals in allergic disease. J Allergy Clin Immunol 2007; 119:529-41; quiz 542-3. [PMID: 17336608 DOI: 10.1016/j.jaci.2007.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/03/2007] [Accepted: 01/05/2007] [Indexed: 01/05/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins are a group of transcription factors that transmit signals from the extracellular milieu of cells to the nucleus. They are crucial for the signaling of many cytokines that are mediators of allergic inflammation and impact various cell types critical to allergy including epithelial cells, mast cells, lymphocytes, dendritic cells, and eosinophils. Dysregulation of STAT signaling has been implicated in allergic disease, highlighting the importance of these ubiquitous molecules in allergic inflammation and the potential of these pathways as a target for therapeutic intervention. This review will summarize the current understanding of the roles of STAT signaling in allergic disease and the potential of targeting STATs for the treatment of allergic disorders, emphasizing recent observations.
Collapse
Affiliation(s)
- Weiguo Chen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
34
|
Abstract
Helper T cells coordinate immune responses through the production of cytokines. Th2 cells express the closely linked Il4, Il13, and Il5 cytokine genes, whereas these same genes are silenced in the Th1 lineage. The Th1/Th2 lineage choice has become a textbook example for the regulation of cell differentiation, and recent discoveries have further refined and expanded our understanding of how Th2 differentiation is initiated and reinforced by signals from antigen-presenting cells and cytokine-driven feedback loops. Epigenetic changes that stabilize the active or silent state of the Il4 locus in differentiating helper T cells have been a major focus of recent research. Overall, the field is progressing toward an integrated model of the signaling and transcription factor networks, cis-regulatory elements, epigenetic modifications, and RNA interference mechanisms that converge to determine the lineage fate and gene expression patterns of differentiating helper T cells.
Collapse
Affiliation(s)
- K Mark Ansel
- Harvard Medical School, CBR Institute for Biomedical Research, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|