1
|
Jeong H, Lee SY, Seo H, Kim BJ. Recombinant Mycobacterium smegmatis delivering a fusion protein of human macrophage migration inhibitory factor (MIF) and IL-7 exerts an anticancer effect by inducing an immune response against MIF in a tumor-bearing mouse model. J Immunother Cancer 2021; 9:jitc-2021-003180. [PMID: 34389619 PMCID: PMC8365831 DOI: 10.1136/jitc-2021-003180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 11/22/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a pleotropic inflammatory cytokine that is overexpressed in a number of cancer types including most types of human cancer. Inhibition of MIF signaling can restore anticancer immune responses in tumor microenvironments. In this study, we aimed to develop a therapeutic vaccine capable of inhibiting tumor development by inducing anti-MIF immune responses. Methods We introduced a recombinant Mycobacterium smegmatis (rSmeg-hMIF-hIL-7) vaccine that could deliver a fusion protein of human macrophage migration inhibitory factor (MIF) and interleukin 7, which could act as a target antigen and as an adjuvant of cancer vaccine, respectively. We checked the anticancer potential of the vaccine in a tumor-bearing mouse model. Results We found that rSmeg-hMIF-hIL-7 showed enhanced oncolytic activity compared with PBS, BCG or Smeg in MC38-bearing mice, and there was an increase in the humoral and cell-mediated immune responses against MIF. rSmeg-hMIF-hIL-7 can also induce a neutralizing effect regarding MIF tautomerase activity in the serum of vaccinated mice. We also found downregulation of MIF, CD74, and CD44, which are related to the MIF signaling pathway and PI3K/Akt and MMP2/9 signaling, which are regulated by MIF in the tumor tissue of rSmeg-hMIF-hIL-7-vaccinated mice, suggesting a significant role of the anti-MIF immune response to rSmeg-hMIF-hIL-7 in its anticancer effect. In addition, rSmeg-hMIF-hIL-7 treatment led to enhanced activation of CD4+ and CD8+ T cells in the tumor regions of vaccinated mice, also contributing to the anticancer effect. This trend was also found in LLC-bearing and PanO2-bearing mouse models. In addition, rSmeg-hMIF-hIL-7 treatment exerted an enhanced anticancer effect with one of the immune checkpoint inhibitors, the anti-PD-L1 antibody, in a tumor-bearing mouse model. Conclusions In conclusion, our data showed that rSmeg-hMIF-hIL-7 exerts a strong antitumor immune response in mice, possibly by inhibiting the MIF-dependent promotion of tumorigenesis by the anti-MIF immune response and via enhanced cytotoxic T cell recruitment into tumor microenvironments. We also found that it also exerted an enhanced anticancer effect with immune checkpoint inhibitors. These results suggest that rSmeg-hMIF-hIL-7 is a potential adjuvant for cancer immunotherapy. This is the first report to prove anticancer potential of immunotherapeutic vaccine targeting immune response against MIF.
Collapse
Affiliation(s)
- Hyein Jeong
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110799, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National Universtiy, Seoul 03080, Korea.,Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.,Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.,Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110799, Korea.,Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.,Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.,Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110799, Korea.,Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.,Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.,Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110799, Korea .,Department of Biomedical Sciences, College of Medicine, Seoul National Universtiy, Seoul 03080, Korea.,Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.,Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.,Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Korea
| |
Collapse
|
2
|
Sayed IM, Sahan AZ, Venkova T, Chakraborty A, Mukhopadhyay D, Bimczok D, Beswick EJ, Reyes VE, Pinchuk I, Sahoo D, Ghosh P, Hazra TK, Das S. Helicobacter pylori infection downregulates the DNA glycosylase NEIL2, resulting in increased genome damage and inflammation in gastric epithelial cells. J Biol Chem 2020; 295:11082-11098. [PMID: 32518160 DOI: 10.1074/jbc.ra119.009981] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 05/30/2020] [Indexed: 01/08/2023] Open
Abstract
Infection with the Gram-negative, microaerophilic bacterium Helicobacter pylori induces an inflammatory response and oxidative DNA damage in gastric epithelial cells that can lead to gastric cancer (GC). However, the underlying pathogenic mechanism is largely unclear. Here, we report that the suppression of Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase that specifically removes oxidized bases, is one mechanism through which H. pylori infection may fuel the accumulation of DNA damage leading to GC. Using cultured cell lines, gastric biopsy specimens, primary cells, and human enteroid-derived monolayers from healthy human stomach, we show that H. pylori infection greatly reduces NEIL2 expression. The H. pylori infection-induced downregulation of NEIL2 was specific, as Campylobacter jejuni had no such effect. Using gastric organoids isolated from the murine stomach in coculture experiments with live bacteria mimicking the infected stomach lining, we found that H. pylori infection is associated with the production of various inflammatory cytokines. This response was more pronounced in Neil2 knockout (KO) mouse cells than in WT cells, suggesting that NEIL2 suppresses inflammation under physiological conditions. Notably, the H. pylori-infected Neil2-KO murine stomach exhibited more DNA damage than the WT. Furthermore, H. pylori-infected Neil2-KO mice had greater inflammation and more epithelial cell damage. Computational analysis of gene expression profiles of DNA glycosylases in gastric specimens linked the reduced Neil2 level to GC progression. Our results suggest that NEIL2 downregulation is a plausible mechanism by which H. pylori infection impairs DNA damage repair, amplifies the inflammatory response, and initiates GC.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Ayse Z Sahan
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Tatiana Venkova
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Ellen J Beswick
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Victor E Reyes
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Irina Pinchuk
- College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, San Diego, California, USA.,Department of Computer Science and Engineering, Jacob's School of Engineering, San Diego, California, USA
| | - Pradipta Ghosh
- Department of Medicine and Cellular and Molecular Medicine, John and Rebecca Moore Cancer Center, University of California San Diego, San Diego, California, USA
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
3
|
Blaser N, Backert S, Pachathundikandi SK. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:77-106. [PMID: 31049845 DOI: 10.1007/5584_2019_360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori represents a highly successful colonizer of the human stomach. Infections with this Gram-negative bacterium can persist lifelong, and although in the majority of cases colonization is asymptomatic, it can trigger pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The interaction of the bacteria with the human host modulates immune responses in different ways to enable bacterial survival and persistence. H. pylori uses various pathogenicity-associated factors such as VacA, NapA, CGT, GGT, lipopolysaccharide, peptidoglycan, heptose 1,7-bisphosphate, ADP-heptose, cholesterol glucosides, urease and a type IV secretion system for controlling immune signaling and cellular functions. It appears that H. pylori manipulates multiple extracellular immune receptors such as integrin-β2 (CD18), EGFR, CD74, CD300E, DC-SIGN, MINCLE, TRPM2, T-cell and Toll-like receptors as well as a number of intracellular receptors including NLRP3, NOD1, NOD2, TIFA and ALPK1. Consequently, downstream signaling pathways are hijacked, inducing tolerogenic dendritic cells, inhibiting effector T cell responses and changing the gastrointestinal microbiota. Here, we discuss in detail the interplay of bacterial factors with multiple immuno-regulatory cells and summarize the main immune evasion and persistence strategies employed by H. pylori.
Collapse
Affiliation(s)
- Nicole Blaser
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
4
|
The biological function and significance of CD74 in immune diseases. Inflamm Res 2016; 66:209-216. [DOI: 10.1007/s00011-016-0995-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022] Open
|
5
|
Kim BS, Stoppe C, Grieb G, Leng L, Sauler M, Assis D, Simons D, Boecker AH, Schulte W, Piecychna M, Hager S, Bernhagen J, Pallua N, Bucala R. The clinical significance of the MIF homolog d-dopachrome tautomerase (MIF-2) and its circulating receptor (sCD74) in burn. Burns 2016; 42:1265-76. [PMID: 27209369 DOI: 10.1016/j.burns.2016.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND We reported earlier that the cytokine macrophage migration inhibitory factor (MIF) is a potential biomarker in burn injury. In the present study, we investigated the clinical significance of the newly discovered MIF family member d-dopachrome tautomerase (DDT or MIF-2) and their common soluble receptor CD74 (sCD74) in severely burned patients. METHODS DDT and sCD74 serum levels were measured 20 severely burned patients and 20 controls. Serum levels were correlated to the abbreviated burn severity index (ABSI) and total body surface area (TBSA) followed by receiver operating characteristic (ROC) analysis. Data were supported by gene expression dataset analysis of 31 burn patients and 28 healthy controls. RESULTS CD74 and DDT were increased in burn patients. Furthermore, CD74 and DDT also were elevated in septic non-survivors when compared to survivors. Serum levels of DDT showed a positive correlation with the ABSI and TBSA in the early stage after burn, and the predictive character of DDT was strongest at 24h. Serum levels of CD74 only correlated with the ABSI 5 days after injury. CONCLUSIONS DDT may assist in the monitoring of clinical outcome and prediction of sepsis during the early post-burn period. Soluble CD74 and MIF, by contrast, have limited value as an early predictor of death due to their delayed response to burn.
Collapse
Affiliation(s)
- Bong-Sung Kim
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, 06520 New Haven, CT, USA; Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Christian Stoppe
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Department of Anesthesiology and Intensive Care Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Gerrit Grieb
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Lin Leng
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, 06520 New Haven, CT, USA
| | - Maor Sauler
- Pulmonary, Critical Care & Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, 06520 New Haven, CT, USA
| | - David Assis
- Digestive Diseases, Yale University School of Medicine, 300 Cedar Street, 06520 New Haven, CT, USA
| | - David Simons
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; German Cancer Research Center, Im Neuenheimer Feld 280, 69121 Heidelberg, Germany
| | - Arne Hendrick Boecker
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Wibke Schulte
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, 06520 New Haven, CT, USA
| | - Marta Piecychna
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, 06520 New Haven, CT, USA
| | - Stephan Hager
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Institute for Stroke and Dementia Research, Ludwig-Maximilians University Munich, Feodor-Lynen-Straße 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, 06520 New Haven, CT, USA
| |
Collapse
|
6
|
Valiño-Rivas L, Baeza-Bermejillo C, Gonzalez-Lafuente L, Sanz AB, Ortiz A, Sanchez-Niño MD. CD74 in Kidney Disease. Front Immunol 2015; 6:483. [PMID: 26441987 PMCID: PMC4585214 DOI: 10.3389/fimmu.2015.00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/05/2015] [Indexed: 12/17/2022] Open
Abstract
CD74 (invariant MHC class II) regulates protein trafficking and is a receptor for macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT/MIF-2). CD74 expression is increased in tubular cells and/or glomerular podocytes and parietal cells in human metabolic nephropathies, polycystic kidney disease, graft rejection and kidney cancer and in experimental diabetic nephropathy and glomerulonephritis. Stressors like abnormal metabolite (glucose, lyso-Gb3) levels and inflammatory cytokines increase kidney cell CD74. MIF activates CD74 to increase inflammatory cytokines in podocytes and tubular cells and proliferation in glomerular parietal epithelial cells and cyst cells. MIF overexpression promotes while MIF targeting protects from experimental glomerular injury and kidney cysts, and interference with MIF/CD74 signaling or CD74 deficiency protected from crescentic glomerulonephritis. However, CD74 may protect from interstitial kidney fibrosis. Furthermore, CD74 expression by stressed kidney cells raises questions about the kidney safety of cancer therapy strategies delivering lethal immunoconjugates to CD74-expressing cells. Thus, understanding CD74 biology in kidney cells is relevant for kidney therapeutics.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ciro Baeza-Bermejillo
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Laura Gonzalez-Lafuente
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ana Belen Sanz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain ; School of Medicine, Universidad Autónoma de Madrid , Madrid , Spain ; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN , Madrid , Spain
| | - Maria Dolores Sanchez-Niño
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| |
Collapse
|
7
|
Le Noury DA, Mosebi S, Papathanasopoulos MA, Hewer R. Functional roles of HIV-1 Vpu and CD74: Details and implications of the Vpu-CD74 interaction. Cell Immunol 2015; 298:25-32. [PMID: 26321123 DOI: 10.1016/j.cellimm.2015.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/22/2015] [Indexed: 01/24/2023]
Abstract
HIV-1 Vpu has a variety of functions, including CD4 degradation and the downregulation of MHCII. Downregulation of the MHCII occurs through Vpu binding to the cytoplasmic domain of CD74, the chaperone for antigen presentation. The CD74 cytoplasmic domain also plays a vital role in cell signaling through the activation of an NF-κB signal cascade for the maturation, proliferation and survival of B cells as well as by binding the macrophage inhibitory factor. In view of these functions, it follows that the Vpu-CD74 interaction has multiple downstream consequences for the immune system as it not only impairs foreign antigen presentation but may also have an effect on signal transduction cascades. It is thought that Vpu specifically targets intracellular CD74 while other HIV-1 proteins cannot. Therefore, this protein-protein interaction would be a potential drug target in order to reduce viral persistence. We review the functional importance and specific binding site of Vpu and CD74.
Collapse
Affiliation(s)
- Denise A Le Noury
- Centre for Metal-based Drug Discovery, Mintek, Private Bag X3015, Randburg 2125, South Africa; Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, Private Bag 3, WITS, 2050, South Africa.
| | - Salerwe Mosebi
- Centre for Metal-based Drug Discovery, Mintek, Private Bag X3015, Randburg 2125, South Africa.
| | - Maria A Papathanasopoulos
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand Medical School, Private Bag 3, WITS, 2050, South Africa.
| | - Raymond Hewer
- Centre for Metal-based Drug Discovery, Mintek, Private Bag X3015, Randburg 2125, South Africa.
| |
Collapse
|
8
|
Lina TT, Alzahrani S, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. Immune evasion strategies used by Helicobacter pylori. World J Gastroenterol 2014; 20:12753-12766. [PMID: 25278676 PMCID: PMC4177461 DOI: 10.3748/wjg.v20.i36.12753] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/07/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during childhood. Once infected, people carry the bacteria for decades or even for life, if not treated. Persistent infection with this pathogen causes gastritis, peptic ulcer disease and is also strongly associated with the development of gastric cancer. Despite induction of innate and adaptive immune responses in the infected individual, the host is unable to clear the bacteria. One widely accepted hallmark of H. pylori is that it successfully and stealthily evades host defense mechanisms. Though the gastric mucosa is well protected against infection, H. pylori is able to reside under the mucus, attach to gastric epithelial cells and cause persistent infection by evading immune responses mediated by host. In this review, we discuss how H. pylori avoids innate and acquired immune response elements, uses gastric epithelial cells as mediators to manipulate host T cell responses and uses virulence factors to avoid adaptive immune responses by T cells to establish a persistent infection. We also discuss in this review how the genetic diversity of this pathogen helps for its survival.
Collapse
|
9
|
Porcine CD74 is involved in the inflammatory response activated by nuclear factor kappa B during porcine circovirus type 2 (PCV-2) infection. Arch Virol 2013; 158:2285-95. [PMID: 23736979 DOI: 10.1007/s00705-013-1750-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
Human CD74 induces a signalling cascade that results in the activation of nuclear factor kappa B (NF-κB); however, porcine CD74 has not been widely studied. In this study, we show that porcine CD74 is mainly expressed in cells of the macrophage lineage and can be induced by lipopolysaccharide (LPS), polyinosinic acid-polycytidylic acid [Poly(I:C)], and infection with porcine circovirus type 2 (PCV2) in vitro. In addition, we confirmed that porcine CD74 can activate NF-κB by promoting IκBα degradation and nuclear translocation of p65. Furthermore, the transcription of NF-κB-regulated genes [Interleukin-6 (IL-6), Interleukin-8 (IL-8), and COX-2] was upregulated in response to the overexpression of porcine CD74. In general, porcine CD74 significantly enhanced the inflammatory response by regulating the NF-κB signalling pathway during PCV2 infection, which suggests that porcine CD74 may be implicated in the pathogenesis of PCV2 infection.
Collapse
|
10
|
Sanchez-Niño MD, Sanz AB, Ruiz-Andres O, Poveda J, Izquierdo MC, Selgas R, Egido J, Ortiz A. MIF, CD74 and other partners in kidney disease: tales of a promiscuous couple. Cytokine Growth Factor Rev 2012; 24:23-40. [PMID: 22959722 DOI: 10.1016/j.cytogfr.2012.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is increased in kidney and urine during kidney disease. MIF binds to and activates CD74 and chemokine receptors CXCR2 and CXCR4. CD74 is a protein trafficking regulator and a cell membrane receptor for MIF, D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. MIF signaling through CD74 requires CD44. CD74, CD44 and CXCR4 are upregulated in renal cells in diseased kidneys and MIF activation of CD74 in kidney cells promotes an inflammatory response. MIF or CXCR2 targeting protects from experimental kidney injury, CD44 deficiency modulates kidney injury and CXCR4 activation promotes glomerular injury. However, the contribution of MIF or MIF-2 to these actions of MIF receptors has not been explored. The safety and efficacy of strategies targeting MIF, CD74, CD44 and CXCR4 are under study in humans.
Collapse
|
11
|
Verbeke H, Geboes K, Van Damme J, Struyf S. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta Rev Cancer 2011; 1825:117-29. [PMID: 22079531 DOI: 10.1016/j.bbcan.2011.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 12/12/2022]
Abstract
Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile.
Collapse
Affiliation(s)
- Hannelien Verbeke
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven (K.U.Leuven), Belgium
| | | | | | | |
Collapse
|
12
|
Zaidi T, Reidy T, D'Ortona S, Fichorova R, Pier G, Gadjeva M. CD74 deficiency ameliorates Pseudomonas aeruginosa-induced ocular infection. Sci Rep 2011; 1:58. [PMID: 22355577 PMCID: PMC3216545 DOI: 10.1038/srep00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/11/2011] [Indexed: 02/02/2023] Open
Abstract
Eye trauma and contact lens wear are the main factors that predispose to the development of infectious keratitis. The existing therapies fail to control the inflammation-driven tissue damage that occurs during Pseudomonas aeruginosa infection. Antibiotic treatment reduces bacterial burdens, but better interventions are needed to alleviate tissue damage resulting from local inflammation. We have previously documented that inhibition of macrophage migration inhibitory factor (MIF) reduces the bacterial levels and the inflammatory damage during keratitis. Here, we report that mice deficient for CD74, the putative MIF receptor, developed milder Pseudomonas aeruginosa-induced disease, characterized by decreased proinflammatory mediators and reduced bacterial presence in the cornea. However, topical inhibition of MIF using antibodies applied to the cornea further promoted recovery from disease, suggesting that in addition to MIF-dependent signaling events, MIF-triggered CD74-independent signaling pathways regulate sensitization to P. aeruginosa-induced infection.
Collapse
Affiliation(s)
- Tanweer Zaidi
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Feng Y, Wang Y, Li L, Wu L, Hoffmann S, Gretz N, Hammes HP. Gene expression profiling of vasoregression in the retina--involvement of microglial cells. PLoS One 2011; 6:e16865. [PMID: 21379381 PMCID: PMC3040753 DOI: 10.1371/journal.pone.0016865] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 01/17/2011] [Indexed: 11/18/2022] Open
Abstract
Vasoregression is a hallmark of vascular eye diseases but the mechanisms involved are still largely unknown. We have recently characterized a rat ciliopathy model which develops primary photoreceptor degeneration and secondary vasoregression. To improve the understanding of secondary vasoregression in retinal neurodegeneration, we used microarray techniques to compare gene expression profiles in this new model before and after retinal vasoregression. Differential gene expression was validated by quantitative RT-PCR, Western blot and immunofluorescence. Of the 157 genes regulated more than twofold, the MHC class II invariant chain CD74 yielded the strongest upregulation, and was allocated to activated microglial cells close to the vessels undergoing vasoregression. Pathway clustering identified genes of the immune system including inflammatory signaling, and components of the complement cascade upregulated during vasoregression. Together, our data suggest that microglial cells involved in retinal immune response participate in the initiation of vasoregression in the retina.
Collapse
Affiliation(s)
- Yuxi Feng
- 5 Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yumei Wang
- 5 Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Li Li
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Liang Wu
- 5 Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5 Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
14
|
Borghese F, Clanchy FIL. CD74: an emerging opportunity as a therapeutic target in cancer and autoimmune disease. Expert Opin Ther Targets 2011; 15:237-51. [PMID: 21208136 DOI: 10.1517/14728222.2011.550879] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION CD74, also known as the invariant chain, participates in several key processes of the immune system, including antigen presentation, B-cell differentiation and inflammatory signaling. Despite being described more than 3 decades ago, new functions and novel interactions for this evolutionarily conserved molecule are still being unraveled. As a participant in several immunological processes and an indicator of disease in some conditions, it has potential as a therapeutic target. AREAS COVERED The relationship between the structure of CD74 variants and their physiological functions is detailed in this review. The function of CD74 in several cell lineages is examined with a focus on the interactions with cathepsins and, in an inflammatory milieu, the pro-inflammatory cytokine macrophage migratory inhibitory factor. The role of CD74 signaling in inflammatory and carcinogenic processes is outlined as is the use of CD74 as a therapeutic target (in cancer) and tool (as a vaccine). EXPERT OPINION CD74 has several roles within the cell and throughout the immune system. Most prominent amongst these are the complex relationships with MIF and cathepsins. Modulation of CD74 function shows promise for the effective amelioration of disease.
Collapse
Affiliation(s)
- Federica Borghese
- Sapienza University of Rome, Department of Clinical Medicine, Clinical Immunology Unit, Umberto I Policlinico di Roma, 155 Viale del Policlinico, Rome, IT 00161
| | | |
Collapse
|
15
|
Suppression of CD74 expression and Helicobacter pylori adhesion by auraptene targeting serum starvation-activated ERK1/2 in NCI-N87 gastric carcinoma cells. Biosci Biotechnol Biochem 2010; 74:1018-24. [PMID: 20460732 DOI: 10.1271/bbb.90910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Helicobacter pylori (H. pylori) is a major human pathogen and plays a central role in chronic gastritis and gastric cancer. Since the adhesion of H. pylori to the human gastric epithelium is the initial and critical step of its infection, anti-H. pylori adhesion agents may be effective for the prevention and therapy of H. pylori-associated diseases. CD74 has recently been identified as a new receptor for H. pylori urease, and we have previously reported that several citrus components strongly suppressed CD74 expression in NCI-N87 gastric carcinoma cells. We found in this present study that auraptene (citrus coumarin) disrupted serum starvation-induced extracellular signaling-regulated kinase (ERK) 1/2 activation and attenuated H. pylori adhesion and IL-8 production in a co-culture system. In addition, the knockdown of CD74 expression led to a significant decrease of H. pylori adhesion, but unexpectedly increased IL-8 production. However, PD98059 (a MEK1/2 inhibitor) dramatically down-regulated this cytokine, suggesting MEK/ERK-dependent IL-8 production. Our results suggest that auraptene suppressed H. pylori adhesion and resulting chemokine production by disrupting ERK1/2 activation.
Collapse
|
16
|
Koch KS, Leffert HL. Hypothesis: Targeted Ikkβ deletion upregulates MIF signaling responsiveness and MHC class II expression in mouse hepatocytes. Hepat Med 2010; 2010:39-47. [PMID: 23997575 PMCID: PMC3756905 DOI: 10.2147/hmer.s7208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is causally related to the pathogenesis of chronic liver disease but its hepatocellular mechanisms of action are largely unknown. Scattered reports in the literature hint at functional connections between the expression of MIF and major histocompatibility complex (MHC) Class II molecules. Not surprisingly, these relationships have not yet been explored in hepatocytes because MIF and MHC Class II cell surface receptors are commonly expressed by other cell types including various antigen presenting cells of the immune system. On the other hand, mounting evidence suggests that heteromeric MIF receptors share a common molecule with intracellular MHC Class II complexes, viz., CD74, which also serves as the MHC Class II chaperone; and, while it is unclear what cancer-related role(s) MHC Class II receptors might play, increasing evidence suggests that MIF and CD74 are also implicated in the biology of hepatocellular carcinoma. These reports are provocative for two reasons: firstly, IkkβΔhep mice carrying hepatocyte-targeted deletions of Ikkβ, an IκB kinase complex subunit required for the activation of the transcription factor NF-κB (nuclear factor-κB), have been shown to display heightened susceptibilities to hepatotoxins and chemical hepatocarcinogens; secondly, microarray profiling observations indicate that IkkβΔhep hepatocytes constitutively and “ectopically” overexpress genes, particularly CD74, CD44 (a MIF-receptor subunit) and MHC Class II I-A/E β and I-A α chains, and gene families that regulate host immune process and immune defense responses. These findings together suggest that IkkβΔhep mice might express functional MIF and MHC Class II receptors, leading to increased hepatocellular sensitivity to MIF signaling as well as to the unusual property of antigen presentation; both functions might contribute to the heightened liver disease phenotypes of IkkβΔhep mice. The findings raise questions about the potential existence of cohorts of human patients with genetic abnormalities of Ikkβ that might confer heightened susceptibility to liver disease including hepatocellular carcinoma.
Collapse
Affiliation(s)
- Katherine S Koch
- Hepatocyte Growth Control and Stem Cell Laboratory, Department of Pharmacology, School of Medicine, University of California, San Diego, CA, USA
| | | |
Collapse
|
17
|
Tang B, Xiao B, Liu Z, Li N, Zhu ED, Li BS, Xie QH, Zhuang Y, Zou QM, Mao XH. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori
-induced inflammation. FEBS Lett 2010; 584:1481-6. [DOI: 10.1016/j.febslet.2010.02.063] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/06/2010] [Accepted: 02/23/2010] [Indexed: 12/12/2022]
|
18
|
Beswick EJ, Reyes VE. CD74 in antigen presentation, inflammation, and cancers of the gastrointestinal tract. World J Gastroenterol 2009; 15:2855-61. [PMID: 19533806 PMCID: PMC2699002 DOI: 10.3748/wjg.15.2855] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CD74 is a protein whose initial role in antigen presentation was recognized two decades ago. Recent studies have revealed that it has additional functions as a receptor for macrophage migration inhibitory factor and as a receptor for an important human pathogen, Helicobacter pylori (H pylori). The role of CD74 as a receptor is important because after binding of migration inhibitory factor or H pylori, NF-κB and Erk1/2 activation occurs, along with the induction of proinflammatory cytokine secretion. This review provides an up-to-date account of the functions of CD74 and how it might be involved in inflammation and cancer within the gastrointestinal tract.
Collapse
|
19
|
Martin-Ventura JL, Madrigal-Matute J, Munoz-Garcia B, Blanco-Colio LM, Van Oostrom M, Zalba G, Fortuno A, Gomez-Guerrero C, Ortega L, Ortiz A, Diez J, Egido J. Increased CD74 expression in human atherosclerotic plaques: contribution to inflammatory responses in vascular cells. Cardiovasc Res 2009; 83:586-94. [DOI: 10.1093/cvr/cvp141] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Wong BLW, Zhu SL, Huang XR, Ma J, Xia HHX, Bucala R, Wong BCY, Lan HY. Essential role for macrophage migration inhibitory factor in gastritis induced by Helicobacter pylori. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1319-28. [PMID: 19286569 PMCID: PMC2671363 DOI: 10.2353/ajpath.2009.080708] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of immune and inflammatory responses; however, its role in Helicobacter pylori (HP)-associated gastritis remains unknown. We infected MIF knockout (KO) and wild-type mice with SS1 HP and found that 2 weeks after infection, MIF and its receptor CD74 were markedly up-regulated in wild-type mice. This up-regulation preceded the up-regulation of both tumor necrosis factor-alpha and intercellular adhesion molecule-1, as well as the development of moderate gastritis at 8 weeks, as determined by a significant infiltration of neutrophils, T cells, and macrophages. In contrast, KO mice were protected against HP-induced gastritis by preventing the up-regulation of CD74 and Th1-mediated immune injury, including a reduction in the Th1 transcriptional factor T-bet and the expression of interferon-gamma. Additionally, inhibition of skin delayed type hypersensitivity reactions to HP antigens in KO mice also suggested a critical role for MIF in cell-mediated injury. A regulatory role for MIF in Th1-immune responses was further demonstrated by the finding that antigen-primed CD4(+) T cells lacking MIF failed to differentiate into the Th1 phenotype; these cells were instead promoted to Th2 differentiation after challenge with HP antigen in vitro. Results from this study indicated that inhibition of HP-induced innate immune responses and Th1-mediated immune injury may be the key mechanisms by which KO mice failed to develop gastritis after HP infection.
Collapse
Affiliation(s)
- Benny L W Wong
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rokka S, Myllykangas S, Joutsjoki V. Effect of specific colostral antibodies and selected lactobacilli on the adhesion of Helicobacter pylori on AGS cells and the Helicobacter-induced IL-8 production. Scand J Immunol 2008; 68:280-6. [PMID: 18627549 DOI: 10.1111/j.1365-3083.2008.02138.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Helicobacter pylori infection is the most common cause of gastritis, gastric ulcer and adenocarcinoma. It has proven difficult to cure because of its capability to develop strains resistant to antibiotics. The effect of three strains of lactic acid bacteria (LAB) and bovine colostral preparations on the adhesion of H. pylori NCTC 11637 on gastric adenocarcinoma (AGS) cells and on the interleukin (IL)-8 production was studied. Before infection, H. pylori were pretreated with Lactobacillus plantarum MLBPL1, Lactobacillus rhamnosus GG, Lactococcus lactis, or with a colostral preparation with or without specific H. pylori antibodies. The relative number of H. pylori adhered on AGS cells was determined by urease test. IL-8 produced by the cells was studied by enzyme-linked immunosorbent assay. Colostral preparations with and without specific antibodies reduced the adhesion of H. pylori on AGS cells in a dose-dependent manner. Live LAB at a concentration of 10(10) CFU/ml reduced the adhesion by approximately 50% (P < 0.05). After the infection of AGS cells by H. pylori, the IL-8 level rose up to about 10-fold (5500 +/- 1600 pg/ml). Pretreatment of H. pylori with colostral preparations or high concentrations of LAB prevented this IL-8 rise. Similar effect was seen with live and heat-killed LAB, the live LAB being more effective. Heat-killed LAB at a concentration of 10(10) CFU/ml rose the IL-8 level of non-infected cells significantly. Suppression of IL-8 production by LAB or colostral products could have a suppressive effect on inflammation in Helicobacter infection.
Collapse
Affiliation(s)
- S Rokka
- MTT Agrifood Research Finland, Biotechnology and Food Research, Jokioinen, Finland.
| | | | | |
Collapse
|
22
|
Ye L, Liu X, Rout SN, Li Z, Yan Y, Lu L, Kamala T, Nanda NK, Song W, Samal SK, Zhu X. The MHC class II-associated invariant chain interacts with the neonatal Fc gamma receptor and modulates its trafficking to endosomal/lysosomal compartments. THE JOURNAL OF IMMUNOLOGY 2008; 181:2572-85. [PMID: 18684948 DOI: 10.4049/jimmunol.181.4.2572] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neonatal Fc receptor for IgG (FcRn) transfers maternal IgG to the offspring and protects IgG from degradation. The FcRn resides in an acidic intracellular compartment, allowing it to bind IgG. In this study, we found the association of FcRn and invariant chain (Ii). The interaction was initiated within the endoplasmic reticulum by Ii binding to either the FcRn H chain alone or FcRn H chain-beta(2)-microglobulin complex and appeared to be maintained throughout the endocytic pathway. The CLIP in Ii was not required for FcRn-Ii association. The interaction was also detected in IFN-gamma-treated THP-1, epithelial and endothelial cells, and immature mouse DCs. A truncated FcRn without the cytoplasmic tail was unable to traffic to early endosomes; however, its location in early endosomes was restored by Ii expression. FcRn was also detected in the late endosome/lysosome only in the presence of Ii or on exposure to IFN-gamma. In immature human or mouse DCs, FcRn was barely detected in the late endosome/lysosome in the absence of Ii. Furthermore, the cytoplasmic tail of Ii conferred tailless FcRn to route to both the early endosome and late endosome/lysosome in a hybrid molecule. Because the FcRn is expressed in macrophages and DCs or epithelial and endothelial cells where Ii is induced under inflammation and infection, these results reveal the complexity of FcRn trafficking in which Ii is capable of expanding the boundary of FcRn trafficking. Taken together, the intracellular trafficking of FcRn is regulated by its intrinsic sorting information and/or an interaction with Ii chain.
Collapse
Affiliation(s)
- Lilin Ye
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Macrophage migration inhibitory factor and interleukin-8 produced by gastric epithelial cells during Helicobacter pylori exposure induce expression and activation of the epidermal growth factor receptor. Infect Immun 2008; 76:3233-40. [PMID: 18474653 DOI: 10.1128/iai.01534-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While a link between Helicobacter pylori exposure and gastric cancer has been established, the underlying mechanisms remain unclear. H. pylori induces a chronic inflammatory response in infected individuals. A link between chronic inflammation and carcinogenesis has long been suggested but never elucidated. Epidermal growth factor receptor (EGFR) signaling plays an important role in both proinflammatory and procarcinogenic mechanisms and is upregulated on gastric epithelial cells (GECs) during H. pylori exposure. The aim of this study was to examine the effects of two important proinflammatory cytokines released during H. pylori infection, macrophage migration inhibitory factor (MIF) and interleukin-8 (IL-8), on the expression and transactivation of EGFR and on the proliferation of GECs during H. pylori exposure. The expression of EGFR by GECs was increased by exposure to either H. pylori, recombinant MIF, or recombinant IL-8. However, cag pathogenicity island knockout strains of H. pylori had very little effect on expression. MIF and IL-8 also induced phosphorylation of EGFR, signaling events, and proliferation during H. pylori exposure, all of which were decreased when they were neutralized by these cytokines or were blocked from their receptors. The overall role of EGFR in these responses to H. pylori exposure was assessed by knocking down EGFR expression by small interfering RNA.
Collapse
|
24
|
Reyes VE, Beswick EJ. Helicobacter pylorineutrophil activating protein's potential as tool in therapeutic immune modulation. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.10.1315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Lu H, Wu JY, Beswick EJ, Ohno T, Odenbreit S, Haas R, Reyes VE, Kita M, Graham DY, Yamaoka Y. Functional and intracellular signaling differences associated with the Helicobacter pylori AlpAB adhesin from Western and East Asian strains. J Biol Chem 2007; 282:6242-54. [PMID: 17202133 PMCID: PMC3130062 DOI: 10.1074/jbc.m611178200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Following adhesion of Helicobacter pylori to gastric epithelial cells, intracellular signaling leads to cytokine production, which causes H. pylori-related gastric injury. Two adjacent homologous genes (alpA and alpB), which encode H. pylori outer membrane proteins, are thought to be associated with adhesion and cytokine induction. We co-cultured gastric epithelial cells with wild type H. pylori strains and their corresponding alpA/alpB-deleted mutants (DeltaalpAB). Results were confirmed by complementation. Flow cytometry confirmed that AlpAB was involved in cellular adhesion. Deletion of alpAB reduced interleukin (IL)-6 induction in gastric epithelial cells. Deletion of alpAB reduced IL-8 induction with East Asian but not with Western strains. All AlpAB-positive strains tested activated the extracellular signal-regulated kinase, c-Fos, and cAMP-responsive element-binding protein. Activation of the Jun-N-terminal kinase, c-Jun, and NF-kappaB was exclusive to AlpAB from East Asian strains. DeltaalpAB mutants poorly colonized the stomachs of C57BL/6 mice and were associated with lower mucosal levels of KC and IL-6. Our results suggest that AlpAB may induce gastric injury by mediating adherence to gastric epithelial cells and by modulating proinflammatory intracellular signaling cascades. Known geographical differences in H. pylori-related clinical outcomes may relate to differential effects of East Asian and Western types of AlpAB on NF-kappaB-related proinflammatory signaling pathways.
Collapse
Affiliation(s)
- Hong Lu
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030
- Department of Gastroenterology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Jeng Yih Wu
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ellen J. Beswick
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Tomoyuki Ohno
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030
| | - Stefan Odenbreit
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich D-80336, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich D-80336, Germany
| | - Victor E. Reyes
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Masakazu Kita
- Department of Microbiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - David Y. Graham
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030
| | - Yoshio Yamaoka
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030
- To whom correspondence should be addressed: Dept. of Medicine/Gastroenterology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd., Houston, TX 77030. Tel.: 713-794-7597; Fax: 713-795-4471;
| |
Collapse
|
26
|
Abstract
The reason why some individuals remain Helicobacter pylori infected for life but without any symptoms while others develop severe diseases is only partially clarified. Presumably, it depends on multifactorial interactions among host immunologic and physiologic factors, bacterial virulence determinants, and environmental influences modulating the host response. Much effort has been made to identify host genetic factors that may explain an individual susceptibility of the host to H. pylori infection. The identification of H. pylori determinants and the elucidation of their role in modifying the host immune responses were further delineated. The ability of H. pylori to overcome the defense mechanisms on mucosal surfaces as well as to modulate the immune response by interfering with host recognition and transduction systems has been shown. Also new bacterial anti-inflammatory defense systems have been described. Findings in experimental animal models and humans with natural H. pylori infection suggested a double role of regulatory T cells in the course of H. pylori infection: protecting the infected host against excessive gastric inflammation and, in contrast, promoting bacterial colonization.
Collapse
Affiliation(s)
- Magdalena Chmiela
- Department of Immunology and Infectious Biology, University of Lodz, Lodz, Poland.
| | | |
Collapse
|
27
|
Abstract
H pylori is probably the most prevalent human pathogen worldwide. Since it was initially suggested in 1983 by Marshall and Warren to be implicated in gastritis and peptic ulcer disease, H pylori has also been implicated in gastric carcinoma and was classified as a class I carcinogen. In the last two decades, a noteworthy body of research has revealed the multiple processes that this gram negative bacterium activates to cause gastroduodenal disease in humans. Most infections are acquired early in life and may persist for the life of the individual. While infected individuals mount an inflammatory response that becomes chronic, along with a detectable adaptive immune response, these responses are ineffective in clearing the infection. H pylori has unique features that allow it to reside within the harsh conditions of the gastric environment, and also to evade the host immune response. In this review, we discuss the various virulence factors expressed by this bacterium and how they interact with the host epithelium to influence pathogenesis.
Collapse
|
28
|
Abstract
The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer, attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium.
Collapse
|
29
|
Beswick EJ, Pinchuk IV, Suarez G, Sierra JC, Reyes VE. Helicobacter pylori CagA-dependent macrophage migration inhibitory factor produced by gastric epithelial cells binds to CD74 and stimulates procarcinogenic events. THE JOURNAL OF IMMUNOLOGY 2006; 176:6794-801. [PMID: 16709839 DOI: 10.4049/jimmunol.176.11.6794] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that has recently been implicated in carcinogenesis. Helicobacter pylori, which is closely linked to gastric cancer, induces the gastric epithelium to produce proinflammatory cytokines, including MIF. MIF can bind to CD74, which we have previously shown to be highly expressed on the surface of gastric epithelial cells (GEC) during H. pylori infection. In this study, we sought to investigate the role of the H. pylori-induced MIF on epithelial proliferation and procarcinogenic events. Upon establishing a role for the H. pylori CagA virulence factor in MIF production, MIF binding to CD74 on GEC was confirmed. rMIF and H. pylori were shown to increase GEC proliferation, which was decreased when cagA- strains were used and when CD74 was blocked by mAbs. Apoptosis was also decreased by MIF, but increased by cagA- strains that induced much lower amounts of MIF than the wild-type bacteria. Furthermore, MIF binding to CD74 was also shown to decrease p53 phosphorylation and up-regulate Bcl-2 expression. This data describes a novel system in which an H. pylori virulence factor contributes to the production of a host factor that in turn up-regulates procarcinogenic events by the gastric epithelium.
Collapse
Affiliation(s)
- Ellen J Beswick
- Department of Pediatrics, University of Texas, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
30
|
Beswick EJ, Pinchuk IV, Minch K, Suarez G, Sierra JC, Yamaoka Y, Reyes VE. The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production. Infect Immun 2006; 74:1148-55. [PMID: 16428763 PMCID: PMC1360328 DOI: 10.1128/iai.74.2.1148-1155.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis associated with Helicobacter pylori infection is the result of both bacterial factors and the host response. We have previously shown that H. pylori binds to CD74 on gastric epithelial cells. In this study, we sought to identify the bacterial protein responsible for this interaction. H. pylori urease from a pool of bacterial surface proteins was found to coprecipitate with CD74. To determine how urease binds to CD74, we used recombinant urease A and B subunits. Recombinant urease B was found to bind directly to CD74 in immunoprecipitation and flow cytometry studies. By utilizing both recombinant urease subunits and urease B knockout bacteria, the urease B-CD74 interaction was shown to induce NF-kappaB activation and interleukin-8 (IL-8) production. This response was decreased by blocking CD74 with monoclonal antibodies. Further confirmation of the interaction of urease B with CD74 was obtained using a fibroblast cell line transfected with CD74 that also responded with NF-kappaB activation and IL-8 production. The binding of the H. pylori urease B subunit to CD74 expressed on gastric epithelial cells presents a novel insight into a previously unrecognized H. pylori interaction that may contribute to the proinflammatory immune response seen during infection.
Collapse
Affiliation(s)
- Ellen J Beswick
- Department of Pediatrics, Children's Hospital, Room 2.300, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ernst PB, Peura DA, Crowe SE. The translation of Helicobacter pylori basic research to patient care. Gastroenterology 2006; 130:188-206; quiz 212-3. [PMID: 16401482 DOI: 10.1053/j.gastro.2005.06.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 06/09/2005] [Indexed: 12/14/2022]
Abstract
In 1984, Barry Marshall and Robin Warren proposed a role for bacterial infections in the pathogenesis of gastroduodenal disease, which triggered an avalanche of research intended to prove or disprove their theory. The result has been a series of advances that have enhanced our understanding of these diseases and completely modernized the clinical approach to their management. In just over 20 years, many aspects of the immunopathogenesis of these diseases have been dissected at the molecular level, with key pathogenic mechanisms being validated by the identification of genes that are associated with the development of gastric cancer. There has been particular emphasis on understanding the molecular structures associated with Helicobacter pylori and their role in modifying the host responses. Gastric immune and inflammatory responses have emerged as key elements in the pathogenesis of gastritis and epithelial cell damage. This review summarizes important findings emanating from basic research primarily related to the immunopathogenesis of H pylori that have advanced the practice of medicine or our understanding of gastroduodenal disease.
Collapse
Affiliation(s)
- Peter B Ernst
- Digestive Health Center of Excellence, Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia 22908-0708, USA.
| | | | | |
Collapse
|
32
|
|