1
|
Das D, Arava S, Khandpur S, Santosh KV, Akhtar S, Sharma A. Dominance and improved survivability of human γδT17 cell subset aggravates the immunopathogenesis of pemphigus vulgaris. Immunol Res 2024; 72:72-81. [PMID: 37620509 DOI: 10.1007/s12026-023-09413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Human γδ T cells are highly enriched in epithelial cell-dominated compartments like skin. Nonetheless, their function in the pathogenesis of pemphigus vulgaris (PV), an autoimmune skin disorder, is lacking. Therefore, we investigated the functional expression of human γδT cell subsets along with their homing chemokine receptor-ligand and inflammatory cytokines in the immunopathogenesis of PV. Estimation of the frequency of γδT cell subsets by flow cytometry revealed four major subsets of γδ T cells (γδT1, γδT2, γδT17, γδTreg) in both control and PV circulation. The elevated frequency of γδT17 cells producing IL17 and expressing CCR6 receptor suggests their inflammatory and migratory potential in PV. In vitro culture of γδ T cells from patients showed increased mRNA expression of inflammatory cytokines IL17, RORγt, IL23, IL1, and co-stimulatory markers, CD27 and CD70. These findings correlated the role of IL1 and IL23 cytokines that alleviate the Th17 population in PV. Cytotoxic activities of γδ T cells were higher and inflammatory γδT17 cells were localized in the skin of PV whereas γδTreg cells associated TGFβ and FOXP3 were lowered. Hyperinflammatory phenotype of the γδT17 cell subset and its migratory potential might be aiding in the pathogenesis of PV, whereas γδTreg cells fail to suppress these inflammatory responses. Hence, γδT17 cell-associated markers can be targeted for identifying novel therapeutics in PV.
Collapse
Affiliation(s)
- Dayasagar Das
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujay Khandpur
- Department of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - K V Santosh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shamima Akhtar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Manolios N, Pham S, Hou G, Du J, Quek C, Hibbs D. Non-Antigenic Modulation of Antigen Receptor (TCR) Cβ-FG Loop Modulates Signalling: Implications of External Factors Influencing T-Cell Responses. Int J Mol Sci 2023; 24:ijms24119334. [PMID: 37298286 DOI: 10.3390/ijms24119334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
T-cell recognition of antigens is complex, leading to biochemical and cellular events that impart both specific and targeted immune responses. The end result is an array of cytokines that facilitate the direction and intensity of the immune reaction-such as T-cell proliferation, differentiation, macrophage activation, and B-cell isotype switching-all of which may be necessary and appropriate to eliminate the antigen and induce adaptive immunity. Using in silico docking to identify small molecules that putatively bind to the T-cell Cβ-FG loop, we have shown in vitro using an antigen presentation assay that T-cell signalling is altered. The idea of modulating T-cell signalling independently of antigens by directly targeting the FG loop is novel and warrants further study.
Collapse
Affiliation(s)
- Nicholas Manolios
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Rheumatology, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Son Pham
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Guojiang Hou
- Department of Rheumatology, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Jonathan Du
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Camelia Quek
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - David Hibbs
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
A Distinctive γδ T Cell Repertoire in NOD Mice Weakens Immune Regulation and Favors Diabetic Disease. Biomolecules 2022; 12:biom12101406. [PMID: 36291615 PMCID: PMC9599391 DOI: 10.3390/biom12101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Previous studies in mice and humans suggesting that γδ T cells play a role in the development of type 1 diabetes have been inconsistent and contradictory. We attempted to resolve this for the type 1 diabetes-prone NOD mice by characterizing their γδ T cell populations, and by investigating the functional contributions of particular γδ T cells subsets, using Vγ-gene targeted NOD mice. We found evidence that NOD Vγ4+ γδ T cells inhibit the development of diabetes, and that the process by which they do so involves IL-17 production and/or promotion of regulatory CD4+ αβ T cells (Tregs) in the pancreatic lymph nodes. In contrast, the NOD Vγ1+ cells promote diabetes development. Enhanced Vγ1+ cell numbers in NOD mice, in particular those biased to produce IFNγ, appear to favor diabetic disease. Within NOD mice deficient in particular γδ T cell subsets, we noted that changes in the abundance of non-targeted T cell types also occurred, which varied depending upon the γδ T cells that were missing. Our results indicate that while certain γδ T cell subsets inhibit the development of spontaneous type 1 diabetes, others exacerbate it, and they may do so via mechanisms that include altering the levels of other T cells.
Collapse
|
4
|
Li C, Du X, Shen Z, Wei Y, Wang Y, Han X, Jin H, Zhang C, Li M, Zhang Z, Wang S, Zhang D, Sun G. The Critical and Diverse Roles of CD4 -CD8 - Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 13:1805-1827. [PMID: 35247631 PMCID: PMC9059101 DOI: 10.1016/j.jcmgh.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatic inflammation is a hallmark of nonalcoholic fatty liver disease (NAFLD). Double negative T (DNT) cells are a unique subset of T lymphocytes that do not express CD4, CD8, or natural killer cell markers, and studies have suggested that DNT cells play critical and diverse roles in the immune system. However, the role of intrahepatic DNT cells in NAFLD is largely unknown. METHODS The proportions and RNA transcription profiling of intrahepatic DNT cells were compared between C57BL/6 mice fed with control diet or methionine-choline-deficient diet for 5 weeks. The functions of DNT cells were tested in vitro and in vivo. RESULTS The proportion of intrahepatic DNT cells was significantly increased in mice with diet-induced NAFLD. In NAFLD mice, the proportion of intrahepatic TCRγδ+ DNT cells was increased along with elevated interleukin (IL) 17A; in contrast, the percentage of TCRαβ+ DNT cells was decreased, accompanied by reduced granzyme B (GZMB). TCRγδ+ DNT cell depletion resulted in lowered liver IL17A levels and significantly alleviated NAFLD. Adoptive transfer of intrahepatic TCRαβ+ DNT cells from control mice increased intrahepatic CD4 and CD8 T cell apoptosis and inhibited NAFLD progression. Furthermore, we revealed that adrenic acid and arachidonic acid, harmful fatty acids that were enriched in the liver of the mice with NAFLD, could induce apoptosis of TCRαβ+ DNT cells and inhibit their immunosuppressive function and nuclear factor kappa B (NF-κB) or AKT signaling pathway activity. However, arachidonic acid facilitated IL17A secretion by TCRγδ+ DNT cells, and the NF-κB signaling pathway was involved. Finally, we also confirmed the variation of intrahepatic TCRαβ+ DNT cells and TCRγδ+ DNT cells in humans. CONCLUSIONS During NAFLD progression, TCRγδ+ DNT cells enhance IL17A secretion and aggravate liver inflammation, whereas TCRαβ+ DNT cells decrease GZMB production and lead to weakened immunoregulatory function. Shifting of balance from TCRγδ+ DNT cell response to one that favors TCRαβ+ DNT regulation would be beneficial for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Changying Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaonan Du
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zongshan Shen
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Yunxiong Wei
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Yaning Wang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaotong Han
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Hua Jin
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Chunpan Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Dong Zhang, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China.
| | - Guangyong Sun
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Correspondence Address correspondence to: Guangyong Sun, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China. fax: (8610)63139421.
| |
Collapse
|
5
|
Cwykiel J, Jundzill A, Klimczak A, Madajka-Niemeyer M, Siemionow M. Donor Recipient Chimeric Cells Induce Chimerism and Extend Survival of Vascularized Composite Allografts. Arch Immunol Ther Exp (Warsz) 2021; 69:13. [PMID: 33970329 PMCID: PMC8110509 DOI: 10.1007/s00005-021-00614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022]
Abstract
This study evaluated the efficacy of donor recipient chimeric cell (DRCC) therapy created by fusion of donor and recipient derived bone marrow cells (BMC) in chimerism and tolerance induction in a rat vascularized composite allograft (VCA) model. Twenty-four VCA (groin flaps) from MHC-mismatched ACI (RT1a) donors were transplanted to Lewis (RT1l) recipients. Rats were randomly divided into (n = 6/group): Group 1—untreated controls, Groups 2—7-day immunosuppression controls, Group 3—DRCC, and Group 4—DRCC with 7-day anti-αβTCR monoclonal antibody and cyclosporine A protocol. DRCC created by polyethylene glycol-mediated fusion of ACI and Lewis BMC were cultured and transplanted (2–4 × 106) to VCA recipients via intraosseous delivery route. Flow cytometry assessed peripheral blood chimerism while fluorescent microscopy and PCR tested the presence of DRCC in the recipient’s blood, bone marrow (BM), and lymphoid organs at the study endpoint (VCA rejection). No complications were observed after DRCC intraosseous delivery. Group 4 presented the longest average VCA survival (79.3 ± 30.9 days) followed by Group 2 (53.3 ± 13.6 days), Group 3 (18 ± 7.5 days), and Group 1 (8.5 ± 1 days). The highest chimerism level was detected in Group 4 (57.9 ± 6.2%) at day 7 post-transplant. The chimerism declined at day 21 post-transplant and remained at 10% level during the entire follow-up period. Single dose of DRCC therapy induced long-term multilineage chimerism and extended VCA survival. DRCC introduces a novel concept of customized donor-recipient cell-based therapy supporting solid organ and VCA transplants.
Collapse
Affiliation(s)
- Joanna Cwykiel
- Department of Orthopaedics, University of Illinois At Chicago, Molecular Biology Research Building, 900 S. Ashland Ave. Room# 3356, Chicago, IL, 60607, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Arkadiusz Jundzill
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA.,Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland.,Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Aleksandra Klimczak
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA.,Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | - Maria Siemionow
- Department of Orthopaedics, University of Illinois At Chicago, Molecular Biology Research Building, 900 S. Ashland Ave. Room# 3356, Chicago, IL, 60607, USA. .,Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA. .,Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
6
|
Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020; 298:198-217. [PMID: 32840001 DOI: 10.1111/imr.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 08/17/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Liam Hayman
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
7
|
Ma H, Qiu Y, Yang H. Intestinal intraepithelial lymphocytes: Maintainers of intestinal immune tolerance and regulators of intestinal immunity. J Leukoc Biol 2020; 109:339-347. [PMID: 32678936 PMCID: PMC7891415 DOI: 10.1002/jlb.3ru0220-111] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Intestinal immune tolerance is essential for the immune system, as it prevents abnormal immune responses to large quantities of antigens from the intestinal lumen, such as antigens from commensal microorganisms, and avoids self‐injury. Intestinal intraepithelial lymphocytes (IELs), a special group of mucosal T lymphocytes, play a significant role in intestinal immune tolerance. To accomplish this, IELs exhibit a high threshold of activation and low reactivity to most antigens from the intestinal lumen. In particular, CD8αα+TCRαβ+ IELs, TCRγδ+ IELs, and CD4+CD8αα+ IELs show great potential for maintaining intestinal immune tolerance and regulating intestinal immunity. However, if the intestinal microenvironment becomes abnormal or intestinal tolerance is broken, IELs may be activated abnormally and become pathogenic.
Collapse
Affiliation(s)
- Haitao Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Yap YA, Mariño E. An Insight Into the Intestinal Web of Mucosal Immunity, Microbiota, and Diet in Inflammation. Front Immunol 2018; 9:2617. [PMID: 30532751 PMCID: PMC6266996 DOI: 10.3389/fimmu.2018.02617] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
The rising global incidence of autoimmune and inflammatory conditions can be attributed to changes in the large portion of the immune system that belongs to our gastrointestinal tract (GI). The intestinal immune system serves as a gatekeeper to prevent pathogenic invasions and to preserve a healthier gut microbiota. The gut microbiota has been increasingly studied as a fundamental contributor to the state of health and disease. From food fermentation, the gut microbiota releases metabolites or short chain fatty acids (SCFAs), which have anti-inflammatory properties and preserve gut homeostasis. Immune responses against food and microbial antigens can cause inflammatory disorders such as inflammatory bowel disease (IBD) and celiac disease. As such, many autoimmune and inflammatory diseases also have a “gut origin”. A large body of evidence in recent years by ourselves and others has uncovered the link between the immune system and the SCFAs in specific diseases such as autoimmune type 1 diabetes (T1D), obesity and type 2 diabetes (T2D), cardiovascular disease, infections, allergies, asthma, and IBD. Thus, the power of these three gut dynamic components—the mucosal immunity, the microbiota, and diet—can be harnessed in tandem for the prevention and treatment of many inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Yu Anne Yap
- Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Eliana Mariño
- Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Possible Prevention of Diabetes with a Gluten-Free Diet. Nutrients 2018; 10:nu10111746. [PMID: 30428550 PMCID: PMC6266002 DOI: 10.3390/nu10111746] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Gluten seems a potentially important determinant in type 1 diabetes (T1D) and type 2 diabetes (T2D). Intake of gluten, a major component of wheat, rye, and barley, affects the microbiota and increases the intestinal permeability. Moreover, studies have demonstrated that gluten peptides, after crossing the intestinal barrier, lead to a more inflammatory milieu. Gluten peptides enter the pancreas where they affect the morphology and might induce beta-cell stress by enhancing glucose- and palmitate-stimulated insulin secretion. Interestingly, animal studies and a human study have demonstrated that a gluten-free (GF) diet during pregnancy reduces the risk of T1D. Evidence regarding the role of a GF diet in T2D is less clear. Some studies have linked intake of a GF diet to reduced obesity and T2D and suggested a role in reducing leptin- and insulin-resistance and increasing beta-cell volume. The current knowledge indicates that gluten, among many environmental factors, may be an aetiopathogenic factors for development of T1D and T2D. However, human intervention trials are needed to confirm this and the proposed mechanisms.
Collapse
|
10
|
Jansen MAE, van den Heuvel D, Jaddoe VWV, van Zelm MC, Moll HA. Abnormalities in CD57+ cytotoxic T cells and Vδ1+ γδT cells in subclinical celiac disease in childhood are affected by cytomegalovirus. The Generation R Study. Clin Immunol 2017; 183:233-239. [PMID: 28456719 DOI: 10.1016/j.clim.2017.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/26/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023]
Abstract
Celiac disease (CD) is a digestive and autoimmune disorder driven by an immune response to modified gluten peptides. Affected intestines show infiltrates of various T-cell and NK-cell subsets. It is currently unclear if individuals with subclinical CD have systemic abnormalities in immune cells. We here studied whether subclinical CD is associated with changes in blood CD57-expressing and Vδ1-expressing lymphocytes in children, and whether cytomegalovirus (CMV) infection modifies this association. Included were 1068 children from the Generation R Study. Serum Immunoglobulin G (IgG) levels against CMV were measured by ELISA; Tissue transglutaminase type 2 antibody (TG2A) levels with fluorescence enzyme immunoassay (FEIA). Duodenal biopsies, additional Human Leukocyte Antigen (HLA) DQ 2.2, 2.5 and 8 and endomysial antibody (EMA) typing were performed in TG2A positive children. Subclinical CD cases (n=12) had 1.8 fold (95% CI 1.06; 3.1) fewer Vδ1+ T cells which was predominantly observed in CMV seronegative children (p-interaction 0.02), and 2.7 fold (95% CI 1.25; 5.99) more CD57+ T cells than HLA DQ2/-DQ8 positive controls (n=339). Hence, children with subclinical CD have alterations in specific blood T cell subsets that are linked to viral pathology. The observed interaction effect between subclinical CD and CMV may contribute to the understanding of disease pathogenesis.
Collapse
Affiliation(s)
- M A E Jansen
- The Generation R Study Group, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - D van den Heuvel
- Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - V W V Jaddoe
- The Generation R Study Group, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - M C van Zelm
- Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - H A Moll
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Tafalla C, Leal E, Yamaguchi T, Fischer U. T cell immunity in the teleost digestive tract. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:167-177. [PMID: 26905634 DOI: 10.1016/j.dci.2016.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
Fish (along with cyclostomes) constitute the most ancient animal group in which an acquired immune system is present. As in higher vertebrates, both B and T lymphocytes cooperate in implementing an adequate response. Although there is still a debate on whether fish possess a true gut associated lymphoid tissue (GALT), the presence of diffuse B and T lymphocytes throughout all mucosal surfaces has been demonstrated in a wide variety of fish species. The lack of antibodies against T lymphocyte markers has hampered the performance of functional assays in both systemic and mucosal compartments. However, most components associated with T lymphocyte function have been identified in fish through extensive genomic research, suggesting similar functionalities for fish and mammalian T lymphocytes. Thus, the aim of this review is to briefly summarize what is known in teleost concerning the characteristics and functionalities of the different T cell subsets, to then focus on what is known to date regarding their presence and role in the gastrointestinal tract, through either direct functional assays or indirectly by conclusions drawn from transcriptomic analysis.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| | - Esther Leal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Takuya Yamaguchi
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model. Nutrients 2016; 8:242. [PMID: 27120615 PMCID: PMC4848710 DOI: 10.3390/nu8040242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/13/2016] [Indexed: 01/10/2023] Open
Abstract
Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA) and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.
Collapse
|
13
|
Ujiie H, Shevach EM. γδ T Cells Protect the Liver and Lungs of Mice from Autoimmunity Induced by Scurfy Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2016; 196:1517-28. [PMID: 26773142 DOI: 10.4049/jimmunol.1501774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
γδ T cells have been shown to have immunoregulatory functions in several experimental autoimmune models. A mutation of the Foxp3 gene leads to the absence of regulatory T cells (Tregs) and a fatal systemic autoimmune disease in scurfy mice. Transfer of scurfy lymphocytes to RAG deficient (RAG(-/-)) recipients reproduces the inflammatory phenotype of the scurfy donor, including hepatitis and pneumonitis. In this study, we show that TCRα(-/-) recipients, which lack αβ T cells but have γδ T cells and B cells, are significantly protected from the hepatitis and pneumonitis, but not the dermatitis, induced by adoptive transfer of scurfy lymphocytes. Cotransfer of γδ T cells, but not B cells, prevented hepatitis and pneumonitis in RAG(-/-) recipients of scurfy lymphocytes. γδ T cells in the TCRα(-/-) recipients of scurfy cells markedly expanded and expressed a highly activated (CD62L(lo)CD44(hi)) phenotype. The activated γδ T cells expressed high levels of CD39 and NKG2D on their cell surface. A high frequency of scurfy T cells in TCRα(-/-) recipients produced IL-10, suggesting that γδ T cells may enhance suppressor cytokine production from scurfy T cells in TCRα(-/-) recipients. This study indicates that γδ T cells may contribute to the maintenance of immunological homeostasis by suppressing autoreactive T cells in liver and lung.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
14
|
Clemente Ximenis A, Crespí Bestard C, Cambra Conejero A, Pallarés Ferreres L, Juan Mas A, Olea Vallejo JL, Julià Benique MR. In vitro evaluation of γδ T cells regulatory function in Behçet’s disease patients and healthy controls. Hum Immunol 2016; 77:20-28. [DOI: 10.1016/j.humimm.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/11/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
|
15
|
Daft JG, Lorenz RG. Role of the gastrointestinal ecosystem in the development of type 1 diabetes. Pediatr Diabetes 2015; 16:407-18. [PMID: 25952017 PMCID: PMC4534320 DOI: 10.1111/pedi.12282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared with healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation.
Collapse
Affiliation(s)
| | - Robin G. Lorenz
- Corresponding Author: Dr. Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd., SHEL 602, Birmingham, AL 35294-2182. Phone: 205-934-0676. Fax. 205-996-9113.
| |
Collapse
|
16
|
Intra-day and inter-day biological variations of peripheral blood lymphocytes. Clin Chim Acta 2015; 438:166-70. [DOI: 10.1016/j.cca.2014.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 01/16/2023]
|
17
|
Rombout JHWM, Yang G, Kiron V. Adaptive immune responses at mucosal surfaces of teleost fish. FISH & SHELLFISH IMMUNOLOGY 2014; 40:634-43. [PMID: 25150451 DOI: 10.1016/j.fsi.2014.08.020] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 05/13/2023]
Abstract
This review describes the extant knowledge on the teleostean mucosal adaptive immune mechanisms, which is relevant for the development of oral or mucosal vaccines. In the last decade, a number of studies have shed light on the presence of new key components of mucosal immunity: a distinct immunoglobulin class (IgT or IgZ) and the polymeric Ig receptor (pIgR). In addition, intestinal T cells and their putative functions, antigen uptake mechanisms at mucosal surfaces and new mucosal vaccination strategies have been reported. New information on pIgR of Atlantic cod and common carp and comparison of natural and specific cell-mediated cytotoxicity in the gut of common carp and European seabass, is also included in this review. Based on the known facts about intestinal immunology and mucosal vaccination, suggestions are made for the advancement of fish vaccines.
Collapse
Affiliation(s)
- Jan H W M Rombout
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway; Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Guiwen Yang
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands; Shandong Provincial Key Laboratory of Animal Resistance Biology, School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway.
| |
Collapse
|
18
|
The role of the γ δ T cell in allergic diseases. J Immunol Res 2014; 2014:963484. [PMID: 24995350 PMCID: PMC4065764 DOI: 10.1155/2014/963484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/11/2014] [Indexed: 11/17/2022] Open
Abstract
The predominant distribution of γδ T cells in the mucosal and epithelial tissues makes these unconventional lymphocytes the “guards” to contact external environment (like allergens) and to contribute to immune surveillance, as well as “vanguards” to participate in initiating mucosal inflammation. Therefore, γδ T cells have been considered to bridge the innate and adaptive immunity. The role these cells play in allergy seems to be complicated and meaningful, so it makes sense to review the characteristics and role of γδ T cells in allergic diseases.
Collapse
|
19
|
Funda DP, Fundova P, Hansen AK, Buschard K. Prevention or early cure of type 1 diabetes by intranasal administration of gliadin in NOD mice. PLoS One 2014; 9:e94530. [PMID: 24728138 PMCID: PMC3984166 DOI: 10.1371/journal.pone.0094530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/17/2014] [Indexed: 12/13/2022] Open
Abstract
Induction of long-term tolerance to β-cell autoantigens has been investigated both in animal models and in human type 1 diabetes (T1D) in order to prevent the disease. As regards external compounds, the dietary plant protein fraction has been associated with high penetrance of the disease, whereas gluten-free diets prevent T1D in animal models. Herewith we investigated whether intranasal (i.n.) administration of gliadin or gluten may arrest the diabetogenic process. I.n. administration of gliadin to 4-week-old NOD mice significantly reduced the diabetes incidence. Similarly, the insulitis was lowered. Intranasal gliadin also rescued a fraction of prediabetic 13-week-old NOD mice from progressing to clinical onset of diabetes compared to OVA-treated controls. Vaccination with i.n. gliadin led to an induction of CD4+Foxp3+ T cells and even more significant induction of γδ T cells in mucosal, but not in non-mucosal lymphoid compartments. This prevention strategy was characterized by an increased proportion of IL-10 and a decreased proportion of IL-2, IL-4 and IFN-γ-positive CD4+Foxp3+ T cells, and IFN-γ-positive γδ T cells, preferentially in mucosal lymphoid organs. In conclusion, i.n. vaccination with gliadin, an environmental antigen with possible etiological influence in T1D, may represent a novel, safer strategy for prevention or even early cure of T1D.
Collapse
Affiliation(s)
- David P. Funda
- The Bartholin Instituttet, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Gnotobiology, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| | - Petra Fundova
- The Bartholin Instituttet, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Gnotobiology, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
- ENT Department of the 3rd Faculty of Medicine, Charles University and the Central Military Hospital, Prague, Czech Republic
| | - Axel Kornerup Hansen
- Section of Biomedicine, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
20
|
TCRγδ(+)CD4(-)CD8(-) T cells suppress the CD8(+) T-cell response to hepatitis B virus peptides, and are associated with viral control in chronic hepatitis B. PLoS One 2014; 9:e88475. [PMID: 24551107 PMCID: PMC3925121 DOI: 10.1371/journal.pone.0088475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022] Open
Abstract
The immune mechanisms underlying failure to achieve hepatitis B e antigen (HBeAg) seroconversion associated with viral control in chronic hepatitis B (CHB) remain unclear. Here we investigated the role of CD4(-)CD8(-) T (double-negative T; DNT) cells including TCRαβ(+) DNT (αβ DNT) and TCRγδ(+) DNT (γδ DNT) cells. Frequencies of circulating DNT cell subsets were measured by flow cytometry in a retrospective cohort of 51 telbivudine-treated HBeAg-positive CHB patients, 25 immune tolerant carriers (IT), 33 inactive carriers (IC), and 37 healthy controls (HC). We found that γδ DNT cell frequencies did not significantly change during treatment, being lower at baseline (P = 0.019) in patients with HBeAg seroconversion after 52 weeks of antiviral therapy (n = 20) than in those without (n = 31), and higher in the total CHB and IT than IC and HC groups (P<0.001). αβ DNT cell frequencies were similar for all groups. In vitro, γδ DNT cells suppressed HBV core peptide-stimulated interferon-γ and tumor necrosis factor-α production in TCRαβ(+)CD8(+) T cells, which may require cell-cell contact, and could be partially reversed by anti-NKG2A. These findings suggest that γδ DNT cells limit CD8(+) T cell response to HBV, and may impede HBeAg seroconversion in CHB.
Collapse
|
21
|
Coppieters KT, Harrison LC, von Herrath MG. Trials in type 1 diabetes: Antigen-specific therapies. Clin Immunol 2013; 149:345-55. [PMID: 23490422 PMCID: PMC5777514 DOI: 10.1016/j.clim.2013.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) results from an aberrant immunological response against the insulin-producing beta cells in the islets of the pancreas. The ideal therapy would restore immune balance in a safe and lasting fashion, stopping the process of beta cell decay. The efficacy of immune suppressive agents such as cyclosporin underscores the notion that T1D can in principle be prevented, albeit at an unacceptable long-term safety risk. Immune modulatory drugs such as monoclonal anti-CD3 antibody, on the other hand, have recently had rather disappointing results in phase 3 trials, possibly due to inadequate dosing or choice of inappropriate endpoints. Therefore, it is argued that striking the right balance between safety and efficacy, together with careful trial design, will be paramount in preventing T1D. Here we outline the concept of antigen-specific tolerization as a strategy to safely induce long-term protection against T1D, focusing on available clinical trial data, key knowledge gaps and potential future directions.
Collapse
Affiliation(s)
| | - Leonard C. Harrison
- The Walter and Eliza Hall Institute of Medical Research and Department of Clinical Immunology and Burnet Clinical Research Unit, The Royal Melbourne Hospital, Melbourne, Australia
| | - Matthias G. von Herrath
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
22
|
Hu M, Wu J, Zhang GY, Wang YM, Watson D, Yi S, Hawthorne WJ, O'connell PJ, Alexander SI. Selective Depletion of Alloreactive T Cells Leads to Long-Term Islet Allograft Survival across a Major Histocompatibility Complex Mismatch in Diabetic Mice. Cell Transplant 2013; 22:1929-41. [DOI: 10.3727/096368912x658025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Islet cell transplantation as a therapy for type 1 diabetes has been limited by progressive graft loss. Significant immunosuppression including T-cell ablation has been used in an attempt to limit islet rejection. Here, we show that CD3+ lymphocytes depleted of alloreactive T cells selected from a mixed lymphocyte reaction (MLR), where responder BALB/c splenocytes stained with carboxyfluorescein succinimidyl ester (CFSE) were stimulated with irradiated C57BL/6 splenocytes for 5 days, infused into diabetic immunodeficient mice are capable of restoring a broad T-cell repertoire and specifically do not reject islet transplants from the strain (C57BL/6) used in the original depletion. These mice demonstrate reconstitution with CD4+ and CD8+ T cells, the capacity to reject third-party grafts (CBA), and restoration of interferon-γ (IFN-γ) responses to third-party alloantigens. Over time, both forkhead box P3-positive (Foxp3+) T regulatory cells (Tregs) and γδ T cells expand, suggesting a role for peripheral tolerance, in addition to the initial depletion of alloreactive T cells, in long-term islet graft survival. Our results suggest that immune restoration with CD3+ lymphocytes where alloreactive T cells are removed can restore cognate immunity without islet allograft loss and recurrence of diabetes.
Collapse
Affiliation(s)
- M. Hu
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - J. Wu
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - G. Y. Zhang
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
| | - Y. M. Wang
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
| | - D. Watson
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
- Centre for Medical Bioscience, University of Wollongong, NSW, Australia
| | - S. Yi
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - W. J. Hawthorne
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - P. J. O'connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, the University of Sydney, NSW, Australia
| | - S. I. Alexander
- Centre for Kidney Research, the Children's Hospital at Westmead, the University of Sydney, NSW, Australia
| |
Collapse
|
23
|
Ye J, Ma C, Wang F, Hsueh EC, Toth K, Huang Y, Mo W, Liu S, Han B, Varvares MA, Hoft DF, Peng G. Specific recruitment of γδ regulatory T cells in human breast cancer. Cancer Res 2013; 73:6137-48. [PMID: 23959855 DOI: 10.1158/0008-5472.can-13-0348] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the role of different subtypes of tumor-infiltrating lymphocytes (TIL) in the immunosuppressive tumor microenvironment is essential for improving cancer treatment. Enriched γδ1 T-cell populations in TILs suppress T-cell responses and dendritic cell maturation in breast cancer, where their presence is correlated negatively with clinical outcomes. However, mechanism(s) that explain the increase in this class of regulatory T cells (γδ Treg) in patients with breast cancer have yet to be elucidated. In this study, we show that IP-10 secreted by breast cancer cells attracted γδ Tregs. Using neutralizing antibodies against chemokines secreted by breast cancer cells, we found that IP-10 was the only functional chemokine that causes γδ Tregs to migrate toward breast cancer cells. In a humanized NOD-scid IL-2Rγ(null) (NSG) mouse model, human breast cancer cells attracted γδ Tregs as revealed by a live cell imaging system. IP-10 neutralization in vivo inhibited migration and trafficking of γδ Tregs into breast tumor sites, enhancing tumor immunity mediated by tumor-specific T cells. Together, our studies show how γδ Tregs accumulate in breast tumors, providing a rationale for their immunologic targeting to relieve immunosuppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Jian Ye
- Authors' Affiliations: Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Departments of Surgery, Molecular Microbiology and Immunology, and Otolaryngology-Head and Neck Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri; Department of Immunology and Microbiology, Shandong Medical College, Linyi; and Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Penno MAS, Couper JJ, Craig ME, Colman PG, Rawlinson WD, Cotterill AM, Jones TW, Harrison LC. Environmental determinants of islet autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes. BMC Pediatr 2013; 13:124. [PMID: 23941366 PMCID: PMC3751791 DOI: 10.1186/1471-2431-13-124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The incidence of type 1 diabetes has increased worldwide, particularly in younger children and those with lower genetic susceptibility. These observations suggest factors in the modern environment promote pancreatic islet autoimmunity and destruction of insulin-producing beta cells. The Environmental Determinants of Islet Autoimmunity (ENDIA) Study is investigating candidate environmental exposures and gene-environment interactions that may contribute to the development of islet autoimmunity and type 1 diabetes. METHODS/DESIGN ENDIA is the only prospective pregnancy/birth cohort study in the Southern Hemisphere investigating the determinants of type 1 diabetes in at-risk children. The study will recruit 1,400 unborn infants or infants less than six months of age with a first-degree relative (i.e. mother, father or sibling) with type 1 diabetes, across five Australian states. Pregnant mothers/infants will be followed prospectively from early pregnancy through childhood to investigate relationships between genotype, the development of islet autoimmunity (and subsequently type 1 diabetes), and prenatal and postnatal environmental factors. ENDIA will evaluate the microbiome, nutrition, bodyweight/composition, metabolome-lipidome, insulin resistance, innate and adaptive immune function and viral infections. A systems biology approach will be used to integrate these data. Investigation will be by 3-monthly assessments of the mother during pregnancy, then 3-monthly assessments of the child until 24 months of age and 6-monthly thereafter. The primary outcome measure is persistent islet autoimmunity, defined as the presence of autoantibodies to one or more islet autoantigens on consecutive tests. DISCUSSION Defining gene-environment interactions that initiate and/or promote destruction of the insulin-producing beta cells in early life will inform approaches to primary prevention of type 1 diabetes. The strength of ENDIA is the prospective, comprehensive and frequent systems-wide profiling from early pregnancy through to early childhood, to capture dynamic environmental exposures that may shape the development of islet autoimmunity. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry ACTRN12613000794707.
Collapse
|
25
|
Prinz I, Silva-Santos B, Pennington DJ. Functional development of γδ T cells. Eur J Immunol 2013; 43:1988-94. [DOI: 10.1002/eji.201343759] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/05/2013] [Accepted: 07/05/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Immo Prinz
- Institute for Immunology; Hannover Medical School; Germany
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon; Portugal
| | - Daniel J. Pennington
- Blizard Institute; Barts and The London School of Medicine; Queen Mary University of London; London; UK
| |
Collapse
|
26
|
Markle JG, Mortin-Toth S, Wong AS, Geng L, Hayday A, Danska JS. γδ T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5392-401. [PMID: 23626013 PMCID: PMC3836168 DOI: 10.4049/jimmunol.1203502] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γδ T cells, a lineage of innate-like lymphocytes, are distinguished from conventional αβ T cells in their Ag recognition, cell activation requirements, and effector functions. γδ T cells have been implicated in the pathology of several human autoimmune and inflammatory diseases and their corresponding mouse models, but their specific roles in these diseases have not been elucidated. We report that γδ TCR(+) cells, including both the CD27(-)CD44(hi) and CD27(+)CD44(lo) subsets, infiltrate islets of prediabetic NOD mice. Moreover, NOD CD27(-)CD44(hi) and CD27(+)CD44(lo) γδ T cells were preprogrammed to secrete IL-17, or IFN-γ upon activation. Adoptive transfer of type 1 diabetes (T1D) to T and B lymphocyte-deficient NOD recipients was greatly potentiated when γδ T cells, and specifically the CD27(-) γδ T cell subset, were included compared with transfer of αβ T cells alone. Ab-mediated blockade of IL-17 prevented T1D transfer in this setting. Moreover, introgression of genetic Tcrd deficiency onto the NOD background provided robust T1D protection, supporting a nonredundant, pathogenic role of γδ T cells in this model. The potent contributions of CD27(-) γδ T cells and IL-17 to islet inflammation and diabetes reported in this study suggest that these mechanisms may also underlie human T1D.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Female
- Gene Dosage
- Genotype
- Humans
- Hyaluronan Receptors/metabolism
- Interleukin-17/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
Collapse
Affiliation(s)
- Janet G.M. Markle
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
- Department of Immunology, University of Toronto
| | - Steve Mortin-Toth
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
| | - Andrea S.L. Wong
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
- Department of Immunology, University of Toronto
| | - Liping Geng
- Peter Gorer Department of Immunobiology, King’s College London at Guy’s Hospital, London, UK, SE1 9RT
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King’s College London at Guy’s Hospital, London, UK, SE1 9RT
- Immune Surveillance Laboratory; London Research Institute, Cancer Research UK, London, WC2, UK
| | - Jayne S. Danska
- Programme in Genetics and Genome Biology, Hospital for Sick Children, Toronto Canada
- Department of Immunology, University of Toronto
- Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
27
|
Abstract
γδ T cells account for approximately 5% of peripheral blood T cells but are more abundant in mucosal tissue. Based on the recognized ligands and their general lack of MHC restriction, γδ T cells are considered as unconventional T cells that link innate and adaptive immunity. γδ T cells produce a diverse range of cytokines, exert cytotoxic effector function, can act as antigen-presenting cells, and display regulatory activity. Here we review the current knowledge on the regulatory functions of murine and human γδ T cells. Some γδ T cells produce inhibitory cytokines such as transforming growth factor-β but γδ T cells can utilize additional regulatory mechanisms. By subverting regulatory T cells (Treg) through induction of Treg apoptosis or cytokine-dependent reversal of Treg activity, however, γδ T cells can also enhance effector T cell activity and thereby contribute to autoimmunity. A more precise understanding of the plasticity of regulatory γδ T cells is required to specifically identify strategies for intentional modulation of their beneficial or detrimental regulatory activity.
Collapse
|
28
|
Wong FS, Wen L. Type 1 diabetes therapy beyond T cell targeting: monocytes, B cells, and innate lymphocytes. Rev Diabet Stud 2012; 9:289-304. [PMID: 23804267 DOI: 10.1900/rds.2012.9.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent clinical trials, investigating type 1 diabetes (T1D), have focused mainly on newly diagnosed individuals who have developed diabetes. We need to continue our efforts to understand disease processes and to rationally design interventions that will be safe and specific for disease, but at the same time not induce undesirable immunosuppression. T cells are clearly involved in the pathogenesis of T1D, and have been a major focus for both antigen-specific and non-antigen-specific therapy, but thus far no single strategy has emerged as superior. As T1D is a multifactorial disease, in which multiple cell types are involved, some of these pathogenic and regulatory cell pathways may be important to consider. In this review, we examine evidence for whether monocytes, B cells, and innate lymphocytes, including natural killer cells, may be suitable targets for intervention.
Collapse
Affiliation(s)
- F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
29
|
Defining the nature of human γδ T cells: a biographical sketch of the highly empathetic. Cell Mol Immunol 2012; 10:21-9. [PMID: 23085947 DOI: 10.1038/cmi.2012.44] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The elusive task of defining the character of γδ T cells has been an evolving process for immunologists since stumbling upon their existence during the molecular characterization of the α and β T cell receptor genes of their better understood brethren. Defying the categorical rules used to distinctly characterize lymphocytes as either innate or adaptive in nature, γδ T cells inhabit a hybrid world of their own. At opposing ends of the simplified spectrum of modes of antigen recognition used by lymphocytes, natural killer and αβ T cells are particularly well equipped to respond to the 'missing self' and the 'dangerous non-self', respectively. However, between these two reductive extremes, we are chronically faced with the challenge of making peace with the 'safe non-self' and dealing with the inevitable 'distressed self', and it is within this more complex realm γδ T cells excel thanks to their highly empathetic nature. This review gives an overview of the latest insights revealing the unfolding story of human γδ T cells, providing a biographical sketch of these unique lymphocytes in an attempt to capture the essence of their fundamental nature and events that influence their life trajectory. What hangs in their balance is their nuanced ability to differentiate the friends from the foe and the pathological from the benign to help us adapt swiftly and efficiently to life's many stresses.
Collapse
|
30
|
The effect of oral tolerance on the roles of small intestinal intraepithelial lymphocytes in murine colitis induced by dextran sodium sulfate. Int J Colorectal Dis 2012; 27:583-93. [PMID: 22246420 DOI: 10.1007/s00384-011-1354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUNDS AND AIMS There is increasing evidence that gut-derived intraepithelial lymphocytes have potent cytolytic and immunoregulatory functions, which they use to sustain epithelial integrity. The aims of this study were to investigate the roles of small intestinal intraepithelial lymphocytes (SI-IELs) in oral tolerance and dextran sodium sulfate (DSS)-induced colitis. METHODS SI-IELs or sorted γδ T cells from untreated, colitis, and colitis-extracted protein (CEP)-fed colitis mice were adoptively transferred to BALB/c mice; colitis was then induced with DSS. Cytokines were analyzed in sera from mice and culture supernatants. RESULTS Transfer of SI-IELs or sorted γδ T cells from untreated and colitis mice all alleviated experimental colitis. Mice orally administered with five low doses of CEP showed less severe symptoms and histological injury. SI-IELs from CEP-fed colitis mice more significantly ameliorated colitis than those from control mice (weight, 94.1 ± 2.5% vs. 89.8 ± 2.6%, p < 0.05; disease activity index, 7.2 ± 1.2 vs. 8.7 ± 1.9, p < 0.05; histological scores, 22.1 ± 2.8 vs. 25.7 ± 2.1, p < 0.05, n = 8 per group); however, not did SI-γδ IELs from CEP-fed colitis mice. Alleviation of colitis was accompanied by an increase of TGF-β1 secretion and no change of IFN-γ in sera and culture supernatants. The level of serum TGF-β1 was negatively related to the severity of colitis. CONCLUSIONS The protective effects of SI-IELs in DSS-induced colitis were partly accomplished by γδ T cells and could be mediated by TGF-β but were not associated with IFN-γ. Oral tolerance strengthens the suppressive effects of regulatory subsets in SI-IELs.
Collapse
|
31
|
Impact of dietary gluten on regulatory T cells and Th17 cells in BALB/c mice. PLoS One 2012; 7:e33315. [PMID: 22428018 PMCID: PMC3302844 DOI: 10.1371/journal.pone.0033315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/07/2012] [Indexed: 02/07/2023] Open
Abstract
Dietary gluten influences the development of type 1 diabetes (T1D) and a gluten-free (GF) diet has a protective effect on the development of T1D. Gluten may influence T1D due to its direct effect on intestinal immunity; however, these mechanisms have not been adequately studied. We studied the effect of a GF diet compared to a gluten-containing standard (STD) diet on selected T cell subsets, associated with regulatory functions as well as proinflammatory Th17 cells, in BALB/c mice. Furthermore, we assessed diet-induced changes in the expression of various T cell markers, and determined if changes were confined to intestinal or non-intestinal lymphoid compartments. The gluten-containing STD diet led to a significantly decreased proportion of γδ T cells in all lymphoid compartments studied, although an increase was detected in some γδ T cell subsets (CD8+, CD103+). Further, it decreased the proportion of CD4+CD62L+ T cells in Peyer's patches. Interestingly, no diet-induced changes were found among CD4+Foxp3+ T cells or CD3+CD49b+cells (NKT cells) and CD3−CD49b+ (NK) cells. Mice fed the STD diet showed increased proportions of CD4+CD45RBhigh+ and CD103+ T cells and a lower proportion of CD4+CD45RBlow+ T cells in both mucosal and non-mucosal compartments. The Th17 cell population, associated with the development of autoimmunity, was substantially increased in pancreatic lymph nodes of mice fed the STD diet. Collectively, our data indicate that dietary gluten influences multiple regulatory T cell subsets as well as Th17 cells in mucosal lymphoid tissue while fewer differences were observed in non-mucosal lymphoid compartments.
Collapse
|
32
|
Hocker TL, Wada DA, el-Azhary R, Gibson LE. Expression of T-cell receptor-γδ in normal human skin, inflammatory dermatoses and mycosis fungoides. J Cutan Pathol 2012; 39:419-24. [DOI: 10.1111/j.1600-0560.2011.01859.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Getts DR, Shankar S, Chastain EML, Martin A, Getts MT, Wood K, Miller SD. Current landscape for T-cell targeting in autoimmunity and transplantation. Immunotherapy 2012; 3:853-70. [PMID: 21751954 DOI: 10.2217/imt.11.61] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In recent years, substantial advances in T-cell immunosuppressive strategies and their translation to routine clinical practice have revolutionized management and outcomes in autoimmune disease and solid organ transplantation. More than 80 diseases have been considered to have an autoimmune etiology, such that autoimmune-associated morbidity and mortality rank as third highest in developed countries, after cardiovascular diseases and cancer. Solid organ transplantation has become the therapy of choice for many end-stage organ diseases. Short-term outcomes such as patient and allograft survival at 1 year, acute rejection rates, as well as time course of disease progression and symptom control have steadily improved. However, despite the use of newer immunosuppressive drug combinations, improvements in long-term allograft survival and complete resolution of autoimmunity remain elusive. In addition, the chronic use of nonspecifically targeted immunosuppressive drugs is associated with significant adverse effects and increased morbidity and mortality. In this article, we discuss the current clinical tools for immune suppression and attempts to induce long-term T-cell tolerance induction as well as much-needed future approaches to produce more short-acting, antigen-specific agents, which may optimize outcomes in the clinic.
Collapse
Affiliation(s)
- Daniel R Getts
- Tolera Therapeutics Inc, 350 E Michigan Ave Ste 205, Kalamazoo, MI 49007, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Level of double negative T cells, which produce TGF-β and IL-10, predicts CD8 T-cell activation in primary HIV-1 infection. AIDS 2012; 26:139-48. [PMID: 22045342 DOI: 10.1097/qad.0b013e32834e1484] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Persistent immune activation plays a central role in the pathogenesis of HIV disease. Besides natural regulatory T cells (nTregs), 'double negative' T cells shown to exhibit regulatory properties could be involved in the control of harmful immune activation. The aim of this study was to analyze, in patients with primary HIV infection (PHI), the relationship between CD4(+)CD25(+)CD127(low)FoxP3(+) nTregs or CD3(+)CD4(-)CD8(-) double negative T cells and systemic immune activation. DESIGN A prospective longitudinal study of patients with early PHI. METHODS Twenty-five patients were included. Relationships between frequency of Treg subsets and T-cell activation, assessed on fresh peripheral blood mononuclear cells, were analyzed using nonparametric tests. Cytokine production by double negative T cells was assessed following anti-CD3/anti-CD28 stimulation. RESULTS No relationship was found between T-cell activation and frequencies of nTregs. In contrast, a strong negative relationship was found at baseline between the proportion of double negative T cells and the proportion of activated CD8 T cells coexpressing CD38 and HLA-DR (P = 0.005) or expressing Ki-67 (P = 0.002). In addition, the frequency of double negative T cells at baseline negatively correlated with the frequency of HLA-DR(+)CD38(+)CD8(+) T cells at month 6, defining the immune activation set point (P = 0.031). High proportions of stimulated double negative T cells were found to produce the immunosuppressive cytokines transforming growth factor-β1 and/or IL-10. CONCLUSION The proportion of double negative T cells at baseline was found to be predictive of the immune activation set point. Our data strongly suggest that double negative T cells may control immune activation in PHI. This effect might be mediated through the production of TGF-β1/IL-10 known to downmodulate immune activation.
Collapse
|
35
|
Boerner BP, Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci 2011; 1243:103-18. [DOI: 10.1111/j.1749-6632.2011.06340.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Rombout JHWM, Abelli L, Picchietti S, Scapigliati G, Kiron V. Teleost intestinal immunology. FISH & SHELLFISH IMMUNOLOGY 2011; 31:616-26. [PMID: 20832474 DOI: 10.1016/j.fsi.2010.09.001] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/24/2010] [Accepted: 09/02/2010] [Indexed: 05/12/2023]
Abstract
Teleosts clearly have a more diffuse gut associated lymphoid system, which is morphological and functional clearly different from the mammalian GALT. All immune cells necessary for a local immune response are abundantly present in the gut mucosa of the species studied and local immune responses can be monitored after intestinal immunization. Fish do not produce IgA, but a special mucosal IgM isotype seems to be secreted and may (partly) be the recently described IgZ/IgT. Fish produce a pIgR in their mucosal tissues but it is smaller (2 ILD) than the 4-5 ILD pIgR of higher vertebrates. Whether teleost pIgR is transcytosed and cleaved off in the same way needs further investigation, especially because a secretory component (SC) is only reported in one species. Teleosts also have high numbers of IEL, most of them are CD3-ɛ+/CD8-α+ and have cytotoxic and/or regulatory function. Possibly many of these cells are TCRγδ cells and they may be involved in the oral tolerance induction observed in fish. Innate immune cells can be observed in the teleost gut from first feeding onwards, but B cells appear much later in mucosal compartments compared to systemic sites. Conspicuous is the very early presence of putative T cells or their precursors in the fish gut, which together with the rag-1 expression of intestinal lymphoid cells may be an indication for an extra-thymic development of certain T cells. Teleosts can develop enteritis in their antigen transporting second gut segment and epithelial cells, IEL and eosinophils/basophils seem to play a crucial role in this intestinal inflammation model. Teleost intestine can be exploited for oral vaccination strategies and probiotic immune stimulation. A variety of encapsulation methods, to protect vaccines against degradation in the foregut, are reported with promising results but in most cases they appear not to be cost effective yet. Microbiota in fish are clearly different from terrestrial animals. In the past decade a fast increasing number of papers is dedicated to the oral administration of a variety of probiotics that can have a strong health beneficial effect, but much more attention has to be paid to the immune mechanisms behind these effects. The recent development of gnotobiotic fish models may be very helpful to study the immune effects of microbiota and probiotics in teleosts.
Collapse
Affiliation(s)
- Jan H W M Rombout
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Peaudecerf L, Rocha B. Role of the gut as a primary lymphoid organ. Immunol Lett 2011; 140:1-6. [DOI: 10.1016/j.imlet.2011.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/11/2011] [Accepted: 05/23/2011] [Indexed: 12/21/2022]
|
38
|
Miron N, Miron MM. Staphylococcal enterotoxin A: a candidate for the amplification of physiological immunoregulatory responses in the gut. Microbiol Immunol 2011; 54:769-77. [PMID: 21091986 DOI: 10.1111/j.1348-0421.2010.00280.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcal enterotoxin A (SEA) is one of the bacterial products tested for modulation of unwanted immune responses. Of all the staphylococcal enterotoxins, SEA is the most potent stimulator of T cells. When administered orally, SEA acts as a superantigen (SA), producing unspecific stimulation of intra-epithelial lymphocytes (IELs) in the intestinal mucosa. This stimulation results in amplification of the normal local immunologic responses, which are mainly regulatory. This amplification is based on increased local production of IFN-γ by IELs, which acts on the nearby enterocytes. As a result, the enterocytes produce large amounts of tolerosomes, cellular corpuscles which detach themselves from the basal poles of the enterocytes and contain antigenic peptides that are conditioned to be interpreted as tolerogenic by the gut immune system. Tolerosomes are physiologically produced as a response to dietary peptides; it is already known that enterocytes posses the molecular mechanisms for processing peptides in a similar manner to lymphocytes. The fate of tolerosomes is not precisely known, but it seems that they merge with intestinal dendritic cells, conveying to them the information that orally administered peptides must be interpreted as tolerogens. SEA can stimulate this mechanism, thus favoring the development of tolerance to peptides/proteins administered subsequently via the oral route. This characteristic of SEA might be useful in therapy for regulating immune responses. The present paper reviews the current status of research regarding the impact of SEA on the enteric immune system and its potential use in the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Nicolae Miron
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj, Romania.
| | | |
Collapse
|
39
|
Merims S, Dokouhaki P, Joe B, Zhang L. Human Vδ1-T cells regulate immune responses by targeting autologous immature dendritic cells. Hum Immunol 2011; 72:32-6. [DOI: 10.1016/j.humimm.2010.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 11/30/2022]
|
40
|
Feng N, Vegh P, Rothenberg EV, Yui MA. Lineage divergence at the first TCR-dependent checkpoint: preferential γδ and impaired αβ T cell development in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2010; 186:826-37. [PMID: 21148803 DOI: 10.4049/jimmunol.1002630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first TCR-dependent checkpoint in the thymus determines αβ versus γδ T lineage fate and sets the stage for later T cell differentiation decisions. We had previously shown that early T cells in NOD mice that are unable to rearrange a TCR exhibit a defect in checkpoint enforcement at this stage. To determine if T cell progenitors from wild-type NOD mice also exhibit cell-autonomous defects in development, we investigated their differentiation in the Notch-ligand-presenting OP9-DL1 coculture system, as well as by analysis of T cell development in vivo. Cultured CD4 and CD8 double-negative cells from NOD mice exhibited major defects in the generation of CD4 and CD8 double-positive αβ T cells, whereas γδ T cell development from bipotent precursors was enhanced. Limiting dilution and single-cell experiments show that the divergent effects on αβ and γδ T cell development did not spring from biased lineage choice but from increased proliferation of γδ T cells and impaired accumulation of αβ T lineage double-positive cells. In vivo, NOD early T cell subsets in the thymus also show characteristics indicative of defective β-selection, and peripheral αβ T cells are poorly established in mixed bone marrow chimeras, contrasting with strong γδ T as well as B cell repopulation. Thus, NOD T cell precursors reveal divergent, lineage-specific differentiation abnormalities in vitro and in vivo from the first TCR-dependent developmental choice point, which may have consequences for subsequent lineage decisions and effector functions.
Collapse
Affiliation(s)
- Ni Feng
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
41
|
Chennupati V, Worbs T, Liu X, Malinarich FH, Schmitz S, Haas JD, Malissen B, Förster R, Prinz I. Intra- and Intercompartmental Movement of γδ T Cells: Intestinal Intraepithelial and Peripheral γδ T Cells Represent Exclusive Nonoverlapping Populations with Distinct Migration Characteristics. THE JOURNAL OF IMMUNOLOGY 2010; 185:5160-8. [DOI: 10.4049/jimmunol.1001652] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
The protective effect of oral colitis-derived proteins in a murine model of inflammatory bowel disease is associated with an increase in gammadelta T cells in large intestinal mucosa. Int J Colorectal Dis 2010; 25:1055-62. [PMID: 20571813 DOI: 10.1007/s00384-010-0975-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUNDS AND AIMS Oral tolerance has previously been shown effective in preventing several immune-mediated disorders in animal models. The aims of this study were to investigate the effect of oral colitis-extracted proteins (CEP) on dextran sulfate sodium (DSS)-induced colitis in BALB/c mice and to explore the relative role of the intestinal mucosal gammadelta T cells. METHODS The effect of five low oral doses of CEP on colitis was evaluated by clinical manifestation and histological lesions. Serum cytokines were measured by enzyme-linked immunosorbent assay. The percentages of the intestinal mucosal gammadelta T cells were evaluated by flow cytometry. RESULTS CEP-fed colitis mice showed less severe symptoms and histological injury than bovine serum albumin (BSA)-fed control mice. Tolerized mice developed an increase in TGF-beta1 and no change in IFN-gamma serum levels. Increases in TCRgammadelta(+) T cells and CD8alpha(+)TCRgammadelta(+) T cells in small intestinal mucosal lymphocytes and no quantitative change in large intestinal mucosal lymphocytes were demonstrated in colitis mice compared to untreated mice. The proportions of TCRgammadelta(+) T cells and CD8alpha(+)TCRgammadelta(+) T cells in large intestinal mucosal lymphocytes from CEP-fed colitis mice were significantly higher compared to BSA-fed controls. The disease activity index negatively correlated with the percentages of large intestinal mucosal gammadelta T cells. Furthermore, mucosal repair in repair-period mice was also accompanied by increases in TCRgammadelta(+) T cells and CD8alpha(+)TCRgammadelta(+) T cells in large intestinal mucosal lymphocytes. CONCLUSION Improvement of DSS-induced colitis that resulted from oral administration of colitis-extracted proteins is associated with an increase in gammadelta T cells in large intestinal mucosa.
Collapse
|
43
|
Clemente A, Cambra A, Munoz-Saá I, Crespí C, Pallarés L, Juan A, Matamoros N, Julià MR. Phenotype markers and cytokine intracellular production by CD8+ γδ T lymphocytes do not support a regulatory T profile in Behçet's disease patients and healthy controls. Immunol Lett 2010; 129:57-63. [DOI: 10.1016/j.imlet.2010.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 01/10/2023]
|
44
|
Sonier B, Patrick C, Ajjikuttira P, Scott FW. Intestinal Immune Regulation as a Potential Diet-Modifiable Feature of Gut Inflammation and Autoimmunity. Int Rev Immunol 2009; 28:414-45. [DOI: 10.3109/08830180903208329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Oswald E, Fisch P, Jakob T, Bruckner-Tuderman L, Martin SF, Rensing-Ehl A. Reduced numbers of circulating γδ T cells in patients with bullous pemphigoid. Exp Dermatol 2009; 18:991-3. [DOI: 10.1111/j.1600-0625.2009.00875.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Kühl AA, Pawlowski NN, Grollich K, Blessenohl M, Westermann J, Zeitz M, Loddenkemper C, Hoffmann JC. Human peripheral gammadelta T cells possess regulatory potential. Immunology 2009; 128:580-8. [PMID: 19807790 DOI: 10.1111/j.1365-2567.2009.03162.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Deficiency in gammadelta T cells aggravates colitis in animal models suggesting that gammadelta T cells have regulatory properties. Therefore, proliferation, suppression and cytokine secretion of human gammadelta T cells were determined in vitro. Human peripheral gammadelta T cells were isolated from the whole blood of healthy donors by magnetic antibody cell sorting technology. The proliferation after CD3/CD28 stimulation was measured by (3)[H]thymidine incorporation. Interferon-gamma (IFN-gamma), interleukin-2 (IL-2), transforming growth factor-beta (TGF-beta) and IL-10 concentrations were measured by enzyme-linked immunosorbent assay; TGF-beta messenger RNA was also measured by reverse transcription-polymerase chain reaction. The expression of latency associated peptide (LAP), a TGF-beta complex component, intracellular cytokine content and T helper cell proliferation were measured by flow cytometry. Human gammadelta T cells showed poor proliferation upon CD3/CD28 stimulation and suppressed T helper cell growth stronger than CD4(+) CD25(+) T cells, although gammadelta T cells were FOXP3 negative. They secreted little IL-2 but high concentrations of IFN-gamma, IL-10 and TGF-beta. When looking at LAP expression the Vdelta1 subset was found to be the main TGF-beta producer compared to Vdelta2 T cells. Taken together, peripheral gammadelta T cells have in vitro a more potent regulatory potential than CD4(+) CD25(+) cells regarding T helper cell suppression. This is most likely the result of strong TGF-beta secretion, particularly by the Vdelta1 subset.
Collapse
Affiliation(s)
- Anja A Kühl
- Medizinische Klinik I, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Han G, Wang R, Chen G, Wang J, Xu R, Wang L, Feng J, Li X, Guo R, Fu L, Shen B, Li Y. Interleukin-17-producing gammadelta+ T cells protect NOD mice from type 1 diabetes through a mechanism involving transforming growth factor-beta. Immunology 2009; 129:197-206. [PMID: 19824917 DOI: 10.1111/j.1365-2567.2009.03166.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Whether interleukin (IL)-17 promotes a diabetogenic response remains unclear. Here we examined the effects of neutralization of IL-17 on the progress of adoptively transferred diabetes. IL-17-producing cells in non-obese diabetic (NOD) mice were identified and their role in the pathogenesis of diabetes examined using transfer and co-transfer assays. Unexpectedly, we found that in vivo neutralization of IL-17 did not protect NOD-severe combined immunodeficiency (SCID) mice against diabetes transferred by diabetic splenocytes. In NOD mice, gammadelta(+) T cells were dominated by IL-17-producing cells and were found to be the major source of IL-17. Interestingly, these IL-17-producing gammadelta T cells did not exacerbate diabetes in an adoptive transfer model, but had a regulatory effect, protecting NOD mice from diabetes by up-regulating transforming growth factor (TGF)-beta production. Our data suggest that the presence of IL-17 did not increase the chance of the development of diabetes; gammadelta T cells protected NOD mice from diabetes in a TGF-beta-dependent manner, irrespective of their role as major IL-17 producers.
Collapse
Affiliation(s)
- Gencheng Han
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Immune regulation and the eye. Trends Immunol 2009; 29:548-54. [PMID: 18838303 DOI: 10.1016/j.it.2008.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 11/21/2022]
Abstract
The eye is an immune privileged site that is styled to maintain the visual pathway while at the same time provide defense against invading organisms. The eye does this by selecting immune responses that function in the absence of inflammation. Immune regulation by the eye takes the form of several active processes including a local immunosuppressive environment, the contribution of soluble factors, Fas-FasL-induced apoptosis and unique suppressive mechanisms used by pigment epithelial cells in the eye. These processes are so effective that antigens encountered in the eye result in specific systemic tolerization; a phenomenon akin to gut-induced oral tolerance. This review discusses the cellular and molecular basis of tolerance induction by the eye and notes the parallels to gut-induced peripheral tolerance.
Collapse
|
49
|
Abstract
In the intestinal tract, only a single layer of epithelial cells separates innate and adaptive immune effector cells from a vast amount of antigens. Here, the immune system faces a considerable challenge in tolerating commensal flora and dietary antigens while preventing the dissemination of potential pathogens. Failure to tightly control immune reactions may result in detrimental inflammation. In this respect, 'conventional' regulatory CD4(+) T cells, including naturally occurring and adaptive CD4(+) CD25(+) Foxp3(+) T cells, Th3 and Tr1 cells, have recently been the focus of considerable attention. However, regulatory mechanisms in the intestinal mucosa are highly complex, including adaptations of nonhaematopoietic cells and innate immune cells as well as the presence of unconventional T cells with regulatory properties such as resident TCRgammadelta or TCRalphabeta CD8(+) intraepithelial lymphocytes. This review aims to summarize the currently available knowledge on conventional and unconventional regulatory T cell subsets (Tregs), with special emphasis on clinical data and the potential role or malfunctioning of Tregs in four major human gastrointestinal diseases, i.e. inflammatory bowel diseases, coeliac disease, food allergy and colorectal cancer. We conclude that the clinical data confirms some but not all of the findings derived from experimental animal models.
Collapse
Affiliation(s)
- L Saurer
- Institute of Pathology, University of Bern, Switzerland
| | | |
Collapse
|
50
|
Vaarala O, Atkinson MA, Neu J. The "perfect storm" for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 2008; 57:2555-62. [PMID: 18820210 PMCID: PMC2551660 DOI: 10.2337/db08-0331] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 07/11/2008] [Indexed: 12/28/2022]
Abstract
It is often stated that type 1 diabetes results from a complex interplay between varying degrees of genetic susceptibility and environmental factors. While agreeing with this principal, our desire is that this Perspectives article will highlight another complex interplay potentially associated with this disease involving facets related to the gut, one where individual factors that, upon their interaction with each another, form a "perfect storm" critical to the development of type 1 diabetes. This trio of factors includes an aberrant intestinal microbiota, a "leaky" intestinal mucosal barrier, and altered intestinal immune responsiveness. Studies examining the microecology of the gastrointestinal tract have identified specific microorganisms whose presence appears related (either quantitatively or qualitatively) to disease; in type 1 diabetes, a role for microflora in the pathogenesis of disease has recently been suggested. Increased intestinal permeability has also been observed in animal models of type 1 diabetes as well as in humans with or at increased-risk for the disease. Finally, an altered mucosal immune system has been associated with the disease and is likely a major contributor to the failure to form tolerance, resulting in the autoimmunity that underlies type 1 diabetes. Herein, we discuss the complex interplay between these factors and raise testable hypotheses that form a fertile area for future investigations as to the role of the gut in the pathogenesis and prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Outi Vaarala
- Laboratory for Immunobiology, Department of Viral Diseases and Immunology, National Public Health Institute, Helsinki, Finland.
| | | | | |
Collapse
|