1
|
Gouttefangeas C, Klein R, Maia A. The good and the bad of T cell cross-reactivity: challenges and opportunities for novel therapeutics in autoimmunity and cancer. Front Immunol 2023; 14:1212546. [PMID: 37409132 PMCID: PMC10319254 DOI: 10.3389/fimmu.2023.1212546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
T cells are main actors of the immune system with an essential role in protection against pathogens and cancer. The molecular key event involved in this absolutely central task is the interaction of membrane-bound specific T cell receptors with peptide-MHC complexes which initiates T cell priming, activation and recall, and thus controls a range of downstream functions. While textbooks teach us that the repertoire of mature T cells is highly diverse, it is clear that this diversity cannot possibly cover all potential foreign peptides that might be encountered during life. TCR cross-reactivity, i.e. the ability of a single TCR to recognise different peptides, offers the best solution to this biological challenge. Reports have shown that indeed, TCR cross-reactivity is surprisingly high. Hence, the T cell dilemma is the following: be as specific as possible to target foreign danger and spare self, while being able to react to a large spectrum of body-threatening situations. This has major consequences for both autoimmune diseases and cancer, and significant implications for the development of T cell-based therapies. In this review, we will present essential experimental evidence of T cell cross-reactivity, implications for two opposite immune conditions, i.e. autoimmunity vs cancer, and how this can be differently exploited for immunotherapy approaches. Finally, we will discuss the tools available for predicting cross-reactivity and how improvements in this field might boost translational approaches.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ana Maia
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Pinilla C, Giulianotti MA, Santos RG, Houghten RA. Identification of B Cell and T Cell Epitopes Using Synthetic Peptide Combinatorial Libraries. Curr Protoc 2022; 2:e378. [PMID: 35263045 DOI: 10.1002/cpz1.378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article presents a combinatorial library method that consists of the synthesis and screening of mixture-based synthetic combinatorial libraries of peptide molecules to identify B and T cell epitopes. The protocols employ peptide libraries to identify peptides recognized by MAbs and T cells. The first protocol uses a positional scanning peptide library made up of hexapeptides to identify antigenic determinants recognized by MAbs. The 120 mixtures in the hexapeptide library are tested for their inhibitory activity in a competitive ELISA. The second protocol uses a decapeptide library to identify T cell peptide ligands. The 200 mixtures of the decapeptide library are tested for their ability to induce T cell activation. Support protocols cover optimization of the assay conditions for each MAb or T cell, to achieve the best level of sensitivity and reproducibility, and preparation of a hexapeptide library, along with deconvolution approaches. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Screening peptide library for antibody inhibition Basic Protocol 2: Screening a peptide library to identify CD4+ Or CD8+ T cell ligands Support Protocol 1: Optimizing antigen and antibody concentrations for screening assay Support Protocol 2: Preparing a positional scanning peptide library.
Collapse
Affiliation(s)
- Clemencia Pinilla
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| | - Marc A Giulianotti
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| | | | - Richard A Houghten
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| |
Collapse
|
3
|
Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 2014; 351:13-22. [PMID: 24836189 DOI: 10.1016/j.canlet.2014.05.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/31/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Conventional cancer therapies mainly focus on mass cell killing without high specificity and often cause severe side effects and toxicities. Peptides are a novel class of anticancer agents that could specifically target cancer cells with lower toxicity to normal tissues, which will offer new opportunities for cancer prevention and treatment. Anticancer peptides face several therapeutic challenges. In this review, we present the sources and mechanisms of anticancer peptides and further discuss modification strategies to improve the anticancer effects of bioactive peptides.
Collapse
Affiliation(s)
- Dongdong Wu
- College of Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Yanfeng Gao
- School of Life Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuanming Qi
- School of Life Science, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Lixiang Chen
- School of Life Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuanfang Ma
- College of Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Yanzhang Li
- College of Medicine, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
4
|
Wu B, Zhang Z, Noberini R, Barile E, Giulianotti M, Pinilla C, Houghten RA, Pasquale EB, Pellecchia M. HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery. ACTA ACUST UNITED AC 2013; 20:19-33. [PMID: 23352136 DOI: 10.1016/j.chembiol.2012.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
Abstract
Fragment-based ligand design (FBLD) approaches have become more widely used in drug discovery projects from both academia and industry, and are even often preferred to traditional high-throughput screening (HTS) of large collection of compounds (>10(5)). A key advantage of FBLD approaches is that these often rely on robust biophysical methods such as NMR spectroscopy for detection of ligand binding, hence are less prone to artifacts that too often plague the results from HTS campaigns. In this article, we introduce a screening strategy that takes advantage of both the robustness of protein NMR spectroscopy as the detection method, and the basic principles of combinatorial chemistry to enable the screening of large libraries of fragments (>10(5) compounds) preassembled on a common backbone. We used the method to identify compounds that target protein-protein interactions.
Collapse
Affiliation(s)
- Bainan Wu
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
BACKGROUND Autoantibodies targeted against a variety of self-antigens are detected in autoimmune diseases and cancer. Emerging evidence has suggested the involvement of environmental factors such as infections and xenobiotics, and some dietary proteins and their antibodies in the pathogenesis of many autoimmune diseases. These antibodies appear in the blood years before presentation of symptoms in various disorders. Therefore, these antibodies may be used as biomarkers for early detection of various diseases. OBJECTIVE To provide an overview of antibody arrays that are measured against different human tissue antigens, crossreactive epitopes of infectious agents, dietary proteins, and haptenic chemicals in autoimmune diseases and cancer. METHOD Microarray analysis of antigen-antibody reaction. CONCLUSION The application of these antibody arrays to human autoimmune disease is expanding and is allowing for the identification of patterns or antibody signatures, thus establishing the premises for increased sensitivity and specificity of prediction, as well as positive predictive values. The presence of these antibodies would not necessarily mean that a patient would definitely become sick but may give a percentage of risk for different conditions that may develop over future months or years. Using this high-throughput microarray method, it is possible to screen rapidly for dozens of autoantibodies at low cost. This is an important factor in the implementation of autoantibody testing as a routine part of medical examinations.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 8693 Wilshire Blvd, Ste. 200, Beverly Hills, CA 90211, USA +1 310 657 1077 ; +1 310 657 1053 ;
| |
Collapse
|
6
|
Pinilla C, Appel JR, Judkowski V, Houghten RA. Identification of B cell and T cell epitopes using synthetic peptide combinatorial libraries. CURRENT PROTOCOLS IN IMMUNOLOGY 2012; Chapter 9:9.5.1-9.5.16. [PMID: 23129156 PMCID: PMC3511046 DOI: 10.1002/0471142735.im0905s99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit presents a combinatorial library method that consists of the synthesis and screening of mixture-based synthetic combinatorial libraries of peptide molecules. The protocols employ peptide libraries to identify peptides recognized by MAbs and T cells. The first protocol uses a positional scanning peptide library made up of hexapeptides to identify antigenic determinants recognized by MAbs. The 120 mixtures in the hexapeptide library are tested for their inhibitory activity in a competitive ELISA. The second protocol uses a decapeptide library to identify T cell peptide ligands. The 200 mixtures of the decapeptide library are tested for their ability to induce T cell activation. Support protocols cover optimization of the assay conditions for each MAb or T cell, to achieve the best level of sensitivity and reproducibility, and preparation of a hexapeptide library, along with deconvolution approaches.
Collapse
Affiliation(s)
| | - Jon R Appel
- Torrey Pines Institute for Molecular Studies, San Diego, California
| | | | | |
Collapse
|
7
|
Kemmler CB, Clambey ET, Kedl RM, Slansky JE. Elevated tumor-associated antigen expression suppresses variant peptide vaccine responses. THE JOURNAL OF IMMUNOLOGY 2011; 187:4431-9. [PMID: 21940675 DOI: 10.4049/jimmunol.1101555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Variant peptide vaccines are used clinically to expand T cells that cross-react with tumor-associated Ags (TAA). To investigate the effects of elevated endogenous TAA expression on variant peptide-induced responses, we used the GP70 TAA model. Although young BALB/c mice display T cell tolerance to the TAA GP70(423-431) (AH1), expression of GP70 and suppression of AH1-specific responses increases with age. We hypothesized that as TAA expression increases, the AH1 cross-reactivity of variant peptide-elicited T cell responses diminishes. Controlling for immunosenescence, we showed that elevated GP70 expression suppressed AH1 cross-reactive responses elicited by two AH1 peptide variants. A variant that elicited almost exclusively AH1 cross-reactive T cells in young mice elicited few or no T cells in aging mice with Ab-detectable GP70 expression. In contrast, a variant that elicited a less AH1 cross-reactive T cell response in young mice successfully expanded AH1 cross-reactive T cells in all aging mice tested. However, these T cells bound the AH1/MHC complex with a relatively short half-life and responded poorly to ex vivo stimulation with the AH1 peptide. Variant peptide vaccine responses were also suppressed when AH1 peptide is administered tolerogenically to young mice before vaccination. Analyses of variant-specific precursor T cells from naive mice with Ab-detectable GP70 expression determined that these T cells expressed PD-1 and had downregulated IL-7Rα expression, suggesting they were anergic or undergoing deletion. Although variant peptide vaccines were less effective as TAA expression increases, data presented in this article also suggest that complementary immunotherapies may induce the expansion of T cells with functional TAA recognition.
Collapse
Affiliation(s)
- Charles B Kemmler
- Integrated Department of Immunology, School of Medicine, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
8
|
Lustgarten J. Cancer immunotherapy: focusing on the young, neglecting the old. Future Oncol 2010; 6:873-6. [PMID: 20528222 DOI: 10.2217/fon.10.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
9
|
Rolla S, Ria F, Occhipinti S, Di Sante G, Iezzi M, Spadaro M, Nicolò C, Ambrosino E, Merighi IF, Musiani P, Forni G, Cavallo F. Erbb2 DNA vaccine combined with regulatory T cell deletion enhances antibody response and reveals latent low-avidity T cells: potential and limits of its therapeutic efficacy. THE JOURNAL OF IMMUNOLOGY 2010; 184:6124-32. [PMID: 20435927 DOI: 10.4049/jimmunol.0901215] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rat (r)Erbb2 transgenic BALB-neuT mice genetically predestined to develop multiple invasive carcinomas allow an assessment of the potential of a vaccine against the stages of cancer progression. Because of rErbb2 expression in the thymus and its overexpression in the mammary gland, CD8(+) T cell clones reacting at high avidity with dominant rErbb2 epitopes are deleted in these mice. In BALB-neuT mice with diffuse and invasive in situ lesions and almost palpable carcinomas, a temporary regulatory T cells depletion combined with anti-rErbb2 vaccine markedly enhanced the anti-rErbb2 Ab response and allowed the expansion of latent pools of low-avidity CD8(+) T cells bearing TCRs repertoire reacting with the rErbb2 dominant peptide. This combination of a higher Ab response and activation of a low-avidity cytotoxic response persistently blocked tumor progression at stages in which the vaccine alone was ineffective. However, when diffuse and invasive microscopic cancers become almost palpable, this combination was no longer able to secure a significant extension of mice survival.
Collapse
Affiliation(s)
- Simona Rolla
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lustgarten J. Cancer, aging and immunotherapy: lessons learned from animal models. Cancer Immunol Immunother 2009; 58:1979-89. [PMID: 19238382 PMCID: PMC11030962 DOI: 10.1007/s00262-009-0677-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/30/2009] [Indexed: 01/06/2023]
Abstract
Aging of the immune system is associated with a dramatic reduction in responsiveness as well as functional dysregulation. This deterioration of immune function with advancing age is associated with an increased incidence of cancer. Although there is a plethora of reports evaluating the effect of immunotherapy in stimulating antitumor immune responses, the majority of these studies do not pay attention to the effect aging has on the immune system. Studies from our group and others indicate that immunotherapies could be effective in the young, are not necessarily effective in the old. To optimally stimulate an antitumor immune response in the old, it is necessary to (1) identify and understand the intrinsic defects of the old immune system and (2) use relevant models that closely reflect those of cancer patients, where self-tolerance and aging are present simultaneously. The present review summarizes some defects found in the old immune system affecting the activation of antitumor immune responses, the strategies used to activate stronger antitumor immune response in the old and the use of a tolerant animal tumor model to target a self-tumor antigen for the optimization of immunotherapeutic interventions in the old.
Collapse
Affiliation(s)
- Joseph Lustgarten
- Department of Immunology, Mayo Clinic Arizona, Mayo Clinic College of Medicine, Scottsdale, AZ 85259, USA.
| |
Collapse
|
11
|
Shang X, Wang L, Niu W, Meng G, Fu X, Ni B, Lin Z, Yang Z, Chen X, Wu Y. Rational optimization of tumor epitopes using in silico
analysis-assisted substitution of TCR contact residues. Eur J Immunol 2009; 39:2248-58. [DOI: 10.1002/eji.200939338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Sharma S, Dominguez AL, Manrique SZ, Cavallo F, Sakaguchi S, Lustgarten J. Systemic targeting of CpG-ODN to the tumor microenvironment with anti-neu-CpG hybrid molecule and T regulatory cell depletion induces memory responses in BALB-neuT tolerant mice. Cancer Res 2008; 68:7530-40. [PMID: 18794141 PMCID: PMC2596586 DOI: 10.1158/0008-5472.can-08-1635] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have shown that neu transgenic mice are immunotolerant and that immunizations with dendritic cells (DC) pulsed with neu-derived antigens were not able to control tumor growth in these animals. We tested whether, by modulating the tumor microenvironment with Toll-like receptor ligands, it could be possible to induce the activation of antitumor responses in neu mice. Our results indicate that only intratumoral (i.t.) injections of CpG-ODN induce an antitumor response in neu mice. To target the CpG-ODN to the tumor site anywhere within the body, we chemically conjugated an anti-Her-2/neu monoclonal antibody (mAb) with CpG-ODN. The anti-neu-CpG hybrid molecule retained its ability to bind to Her-2/neu(+) tumors, activate DCs, and induce antitumor responses. Our results indicated that injections of anti-neu-CpG induced the rejection of primary tumors in 100% of BALB/c mice and only in approximately 30% of BALB-neuT mice. After challenging the BALB/c and BALB-neuT mice, we observed that BALB/c mice developed a protective memory response; in contrast, BALB-neuT mice succumbed to the challenge. After injections of anti-neu-CpG, T regulatory cells (T-reg) were drastically reduced at the tumor site, but a large number were still present in the lymphoid organs. When BALB-neuT mice were treated with anti-neu-CpG plus anti-GITR mAb, but not with anti-CD25 mAb, 100% of the BALB-neuT mice rejected the primary tumor and developed a protective memory response indicating the critical role of T-regs in regulating the repertoire against self antigens. Taken together, these results indicate that CpG-ODN-targeted therapy and depletion of T-regs optimally activate a primary response and generate a protective memory response against self-tumor antigens.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Drug Delivery Systems
- Female
- Immunoconjugates/administration & dosage
- Immunoconjugates/genetics
- Immunoconjugates/immunology
- Immunologic Memory
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/genetics
- Oligodeoxyribonucleotides/immunology
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Sanjay Sharma
- Mayo Clinic College of Medicine, Department of Immunology, Mayo Clinic Arizona
| | - Ana Lucia Dominguez
- Mayo Clinic College of Medicine, Department of Immunology, Mayo Clinic Arizona
| | | | - Federica Cavallo
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Shimon Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Joseph Lustgarten
- Mayo Clinic College of Medicine, Department of Immunology, Mayo Clinic Arizona
| |
Collapse
|
13
|
Dominguez AL, Lustgarten J. Implications of aging and self-tolerance on the generation of immune and antitumor immune responses. Cancer Res 2008; 68:5423-31. [PMID: 18593945 DOI: 10.1158/0008-5472.can-07-6436] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer statistics show a disproportionately higher burden of tumors in the old. Most of the studies evaluating vaccination strategies have not taken into consideration the effect that aging has on the immune system. For the first time, we describe an animal tumor model in which self-tolerance and aging are present at the same time. FVB-Her-2/neu mice which are tolerant to neu antigens crossed with HLA-A2/Kb mice (A2xneu) develop spontaneous tumors when they are more than 22 months old. Analysis of CD8(+) T-cell-specific responses in A2xneu mice indicated that the priming activity of old A2xneu mice to induce an immune response was diminished compared with young animals. Following intratumoral injections of CpG-ODN, approximately 30% of young A2xneu mice rejected the tumor; however, no antitumor effect was observed in old A2xneu mice. Analysis of T regulatory cells (Treg) indicated that there are significantly more Tregs in old animals. After CpG-ODN vaccination plus Treg depletion, 70% of young A2xneu mice rejected the tumor. The same treatment prolonged survival in old A2xneu mice, but none of the animals rejected the tumor. Even though CpG-ODN injections plus Treg depletion could rescue the antitumor responses against self-tumor antigens in young tolerant mice, the same therapy is not as effective in old tolerant hosts. Relevant tumor models such as the A2xneu mice in which self-tolerance and aging are present at the same time are critical to allow the optimization of vaccination strategies to effectively stimulate immune responses against self-tumor antigens in the young and the old.
Collapse
Affiliation(s)
- Ana Lucia Dominguez
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | | |
Collapse
|
14
|
Conrad H, Gebhard K, Krönig H, Neudorfer J, Busch DH, Peschel C, Bernhard H. CTLs Directed against HER2 Specifically Cross-React with HER3 and HER4. THE JOURNAL OF IMMUNOLOGY 2008; 180:8135-45. [DOI: 10.4049/jimmunol.180.12.8135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nährig J, Fend F, Weber W, Busch DH, Peschel C. Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother 2008; 57:271-80. [PMID: 17646988 PMCID: PMC11030865 DOI: 10.1007/s00262-007-0355-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
The human epidermal growth factor receptor 2 (HER2) has been targeted as a breast cancer-associated antigen by immunotherapeutical approaches based on HER2-directed monoclonal antibodies and cancer vaccines. We describe the adoptive transfer of autologous HER2-specific T-lymphocyte clones to a patient with metastatic HER2-overexpressing breast cancer. The HLA/multimer-based monitoring of the transferred T lymphocytes revealed that the T cells rapidly disappeared from the peripheral blood. The imaging studies indicated that the T cells accumulated in the bone marrow (BM) and migrated to the liver, but were unable to penetrate into the solid metastases. The disseminated tumor cells in the BM disappeared after the completion of adoptive T-cell therapy. This study suggests the therapeutic potential for HER2-specific T cells for eliminating disseminated HER2-positive tumor cells and proposes the combination of T cell-based therapies with strategies targeting the tumor stroma to improve T-cell infiltration into solid tumors.
Collapse
Affiliation(s)
- Helga Bernhard
- Department of Hematology/Oncology, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Houghten RA, Pinilla C, Giulianotti MA, Appel JR, Dooley CT, Nefzi A, Ostresh JM, Yu Y, Maggiora GM, Medina-Franco JL, Brunner D, Schneider J. Strategies for the use of mixture-based synthetic combinatorial libraries: scaffold ranking, direct testing in vivo, and enhanced deconvolution by computational methods. ACTA ACUST UNITED AC 2007; 10:3-19. [PMID: 18067268 DOI: 10.1021/cc7001205] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Richard A Houghten
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McMahan RH, Slansky JE. Mobilizing the low-avidity T cell repertoire to kill tumors. Semin Cancer Biol 2007; 17:317-29. [PMID: 17651986 PMCID: PMC2040124 DOI: 10.1016/j.semcancer.2007.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/08/2007] [Accepted: 06/07/2007] [Indexed: 01/09/2023]
Abstract
Optimally, T cells destroy infected and transformed cells of the host. To be effective the T cell repertoire must have a sufficiently diverse number of T cell receptors (TCRs) to recognize the abundance of foreign and tumor antigens presented by MHC molecules. The T cell repertoire must also not be reactive toward self-antigens on healthy cells to prevent autoimmunity. Unlike antigens derived from pathogens, most tumor-associated antigens (TAA) are also self-antigens. Therefore, central and peripheral tolerance mechanisms delete or inhibit tumor-reactive T cells. Although there are T cells within the peripheral repertoire that recognize TAA, these T cells are not sufficient to prevent growth of clinically relevant tumors. We will discuss how this dysfunction results, in part, from the low functional avidity of T cells for tumor, or antigen presenting cells (APC) displaying TAA. We discuss the limitations of these low-avidity tumor-reactive T cells and review current immunotherapies aimed at enhancing the avidity and antitumor activity of the tumor-specific T cell repertoire.
Collapse
Affiliation(s)
- Rachel H. McMahan
- Integrated Department of Immunology, University of Colorado at Denver and Health Sciences Center, Denver, CO 80206, USA
| | - Jill E. Slansky
- Integrated Department of Immunology, University of Colorado at Denver and Health Sciences Center, Denver, CO 80206, USA
| |
Collapse
|
18
|
Singh R, Paterson Y. In the FVB/N HER-2/neu transgenic mouse both peripheral and central tolerance limit the immune response targeting HER-2/neu induced by Listeria monocytogenes-based vaccines. Cancer Immunol Immunother 2007; 56:927-38. [PMID: 17131121 PMCID: PMC11030683 DOI: 10.1007/s00262-006-0237-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
Listeria monocytogenes-based vaccines for HER-2/neu are capable of breaking tolerance in FVB/N rat HER-2/neu transgenic mice. The growth of implanted NT-2 tumors, derived from a spontaneously occurring tumor in the FVB/N HER-2/neu transgenic mouse, was significantly slower in these mice following vaccination with a series of L. monocytogenes-based vaccines for HER-2/neu. Mechanisms of T cell tolerance that exist in these transgenic mice include the absence of functional high avidity anti-HER-2/neu CD8(+) T cells and the presence of CD4(+)CD25(+) regulatory T cells. The in vivo depletion of these regulatory T cells resulted in the slowing in growth of tumors even without the treatment of mice with an anti-HER-2/neu vaccine. The average avidities of responsive CD8(+) T cells to six of the nine epitopes in HER-2/neu we examined, four of which were identified in this study, are shown here to be of a lower average avidity in the transgenic mice versus wild type FVB/N mice. In contrast, the average avidity of CD8(+) T cells to three epitopes that showed the lowest avidity in the wild-type mice did not differ between wild type and transgenic mice. This study demonstrates the ability of L. monocytogenes-based vaccines to impact upon tolerance to HER-2/neu in FVB/N HER-2/neu transgenic mice and further defines some of the aspects of tolerance in these mice.
Collapse
Affiliation(s)
- Reshma Singh
- Department of Microbiology, School of Medicine, University of Pennsylvania, 323 Johnson Pavilion, 36th St. and Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Yvonne Paterson
- Department of Microbiology, School of Medicine, University of Pennsylvania, 323 Johnson Pavilion, 36th St. and Hamilton Walk, Philadelphia, PA 19104-6076 USA
| |
Collapse
|
19
|
Abstract
Cancer vaccines need to be designed to effectively induce tumor-specific CD8(+) T cells, the key effector cells in immune responses against tumors. These T cells recognize peptides generated from cellular proteins by limited proteolysis, and bound and presented at cell surfaces by MHC class I molecules. Mimotopes, mimetics of T cell epitopes, have been derived from known epitopes by sequence modification, or developed de novo using combinatorial peptide libraries to scan the entire sequence space for peptides that induce the desired T cell responses. Mimotopes of both types have been tested in clinical vaccination trials for treatment of cancer.
Collapse
Affiliation(s)
- Tumenjargal Sharav
- Department of Dermatology, Venerology and Allergy, Clinical Research Group Tumor Immunology, Charité - Universitätsmedizin Berlin, Humboldt University, D-10098 Berlin, Germany
| | | | | |
Collapse
|
20
|
Abstract
With increasing knowledge of tumor-associated antigens and T cell epitopes, and the mechanisms of induction and regulation of T-cellular immune responses, therapeutic vaccination is increasingly being explored as a treatment option for cancer. Several clinical cancer vaccination trials, the majority of them with melanoma patients, have demonstrated efficient induction of tumor-specific cellular immune responses in patients. However, these immune responses, in most cases, do not translate into clinical responses. The clinical response rates in these trials are relatively low. The most likely causes for the lack of correlation of immunological and clinical responsiveness are loss of antigenicity and immune suppression. Nonetheless, many patients in the vaccination trials have experienced extended survival compared to clinical experience. Therapeutic vaccination thus appears suited for maintenance therapy where cure is not possible and is an interesting option for adjuvant therapy after surgical tumor resection. While the clinical efficacy of vaccination is expected to be better for early-stage cancer, advancement of the treatment of advanced-stage disease will require combination with other therapeutic principles.
Collapse
Affiliation(s)
- Peter Walden
- Department of Dermatology, Venerology and Allergy, Clinical Research Group Tumor Immunology, Berlin, Germany
| |
Collapse
|