1
|
Canesso MCC, Castro TBR, Nakandakari-Higa S, Lockhart A, Luehr J, Bortolatto J, Parsa R, Esterházy D, Lyu M, Liu TT, Murphy KM, Sonnenberg GF, Reis BS, Victora GD, Mucida D. Identification of antigen-presenting cell-T cell interactions driving immune responses to food. Science 2024:eado5088. [PMID: 39700315 DOI: 10.1126/science.ado5088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/09/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
The intestinal immune system must concomitantly tolerate food and commensals and protect against pathogens. Antigen-presenting cells (APCs) orchestrate these immune responses by presenting luminal antigens to CD4+ T cells and inducing their differentiation into regulatory (pTreg) or inflammatory (Th) subsets. We used a proximity labeling method (LIPSTIC) to identify APCs that presented dietary antigens under tolerizing and inflammatory conditions and understand cellular mechanisms by which tolerance to food is induced and can be disrupted by infection. Helminth infections disrupted tolerance induction proportionally to the reduction in the ratio between tolerogenic APCs, including migratory dendritic cells (cDC1s) and Rorγt+ APCs, and inflammatory APCs, that were primarily cDC2s. These inflammatory cDC2s expanded by helminth infection did not present dietary antigens, thus avoiding diet-specific Th2 responses.
Collapse
Affiliation(s)
- Maria C C Canesso
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | | | - Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Julia Luehr
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daria Esterházy
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mengze Lyu
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
2
|
Kim HY, Jeong D, Kim JH, Chung DH. Innate Type-2 Cytokines: From Immune Regulation to Therapeutic Targets. Immune Netw 2024; 24:e6. [PMID: 38455467 PMCID: PMC10917574 DOI: 10.4110/in.2024.24.e6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
The intricate role of innate type-2 cytokines in immune responses is increasingly acknowledged for its dual nature, encompassing both protective and pathogenic dimensions. Ranging from defense against parasitic infections to contributing to inflammatory diseases like asthma, fibrosis, and obesity, these cytokines intricately engage with various innate immune cells. This review meticulously explores the cellular origins of innate type-2 cytokines and their intricate interactions, shedding light on factors that amplify the innate type-2 response, including TSLP, IL-25, and IL-33. Recent advancements in therapeutic strategies, specifically the utilization of biologics targeting pivotal cytokines (IL-4, IL-5, and IL-13), are discussed, offering insights into both challenges and opportunities. Acknowledging the pivotal role of innate type-2 cytokines in orchestrating immune responses positions them as promising therapeutic targets. The evolving landscape of research and development in this field not only propels immunological knowledge forward but also holds the promise of more effective treatments in the future.
Collapse
Affiliation(s)
- Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
| | - Dongjin Jeong
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
3
|
Zhang Y, Li J, Li H, Jiang J, Guo C, Zhou C, Zhou Z, Ming Y. Single-cell RNA sequencing to dissect the immunological network of liver fibrosis in Schistosoma japonicum-infected mice. Front Immunol 2022; 13:980872. [PMID: 36618421 PMCID: PMC9814160 DOI: 10.3389/fimmu.2022.980872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Liver fibrosis is a poor outcome of patients with schistosomiasis, impacting the quality of life and even survival. Eggs deposited in the liver were the main pathogenic factors of hepatic fibrosis in Schistosomiasis japonica. However, the mechanism of hepatic fibrosis in schistosomiasis remains not well defined and there is no effective measure to prevent and treat schistosome-induced hepatic fibrosis. Methods In this study, we applied single-cell sequencing to primarily explore the mechanism of hepatic fibrosis in murine schistosomiasis japonica (n=1) and normal mouse was served as control (n=1). Results A total of 10,403 cells were included in our analysis and grouped into 18 major cell clusters. Th2 cells and NKT cells were obviously increased and there was a close communication between NKT cells and FASLG signaling pathway. Flow cytometry analysis indicated that the expression of Fasl in NKT cells, CD8+ T cell and NK cell were higher in SJ groups. Arg1, Retnla and Chil3, marker genes of alternatively activated macrophages (M2), were mainly expressed in mononuclear phagocyte(1) (MP(1)), suggesting that Kupffer cells might undergo M2-like polarization in fibrotic liver of schistosomiasis. CXCL and CCL signaling pathway analysis with CellChat showed that Cxcl16-Cxcr6, Ccl6-Ccr2 and Ccl5-Ccr5 were the most dominant L-R and there were close interactions between T cells and MPs. Conclusion Our research profiled a preliminary immunological network of hepatic fibrosis in murine schistosomiasis japonica, which might contribute to a better understanding of the mechanisms of liver fibrosis in schistosomiasis. NKT cells and CXCL and CCL signaling pathway such as Cxcl16-Cxcr6, Ccl6-Ccr2 and Ccl5-Ccr5 might be potential targets to alleviate hepatic fibrosis of schistosomiasis.
Collapse
Affiliation(s)
- Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Jiang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Yingzi Ming,
| |
Collapse
|
4
|
Primary Infection by E. multilocularis Induces Distinct Patterns of Cross Talk between Hepatic Natural Killer T Cells and Regulatory T Cells in Mice. Infect Immun 2022; 90:e0017422. [PMID: 35862712 PMCID: PMC9387288 DOI: 10.1128/iai.00174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The larval stage of the helminthic cestode Echinococcus multilocularis can inflict tumor-like hepatic lesions that cause the parasitic disease alveolar echinococcosis in humans, with high mortality in untreated patients. Opportunistic properties of the disease have been established based on the increased incidence in immunocompromised patients and mouse models, indicating that an appropriate adaptive immune response is required for the control of the disease. However, cellular interactions and the kinetics of the local hepatic immune responses during the different stages of infection with E. multilocularis remain unknown. In a mouse model of oral infection that mimics the normal infection route in human patients, the networks of the hepatic immune response were assessed using single-cell RNA sequencing (scRNA-seq) of isolated hepatic CD3+ T cells at different infection stages. We observed an early and sustained significant increase in natural killer T (NKT) cells and regulatory T cells (Tregs). Early tumor necrosis factor (TNF)- and integrin-dependent interactions between these two cell types promote the formation of hepatic lesions. At late time points, downregulation of programmed cell death protein 1 (PD-1) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)-dependent signaling suppress the resolution of parasite-induced pathology. The obtained data provide fresh insight into the adaptive immune responses and local regulatory pathways at different infection stages of E. multilocularis in mice.
Collapse
|
5
|
Abdel Aziz N, Musaigwa F, Mosala P, Berkiks I, Brombacher F. Type 2 immunity: a two-edged sword in schistosomiasis immunopathology. Trends Immunol 2022; 43:657-673. [PMID: 35835714 DOI: 10.1016/j.it.2022.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease globally after malaria, with no available therapy to control disease-driven immunopathology. Although schistosomiasis induces a markedly heterogenous immune response, type 2 immunity is the dominating immune response following oviposition. While type 2 immunity has a crucial role in granuloma formation and host survival during the acute stage of disease, its chronic activation can result in tissue scarring, fibrosis, and organ impairment. Here, we discuss recent advances in schistosomiasis, demonstrating how different immune and non-immune cells and signaling pathways are involved in the induction, maintenance, and regulation of type 2 immunity. A better understanding of these immune responses during schistosomiasis is essential to inform the potential development of candidate therapeutic strategies that fine-tune type 2 immunity to ideally modulate schistosomiasis immunopathology.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biotechnology/Biomolecular Chemistry Program, Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| | - Fungai Musaigwa
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Paballo Mosala
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Inssaf Berkiks
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
6
|
Deslyper G, Murphy DM, Sowemimo OA, Holland CV, Doherty DG. Distinct hepatic myeloid and lymphoid cell repertoires are associated with susceptibility and resistance to Ascaris infection. Parasitology 2021; 148:539-549. [PMID: 33431071 PMCID: PMC10090783 DOI: 10.1017/s0031182021000020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023]
Abstract
The soil-transmitted helminth Ascaris lumbricoides infects ~800 million people worldwide. Some people are heavily infected, harbouring many worms, whereas others are only lightly infected. The mechanisms behind this difference are unknown. We used a mouse model of hepatic resistance to Ascaris, with C57BL/6J mice as a model for heavy infection and CBA/Ca mice as a model for light infection. The mice were infected with the porcine ascarid, Ascaris suum or the human ascarid, A. lumbricoides and immune cells in their livers and spleens were enumerated using flow cytometry. Compared to uninfected C57BL/6J mice, uninfected CBA/Ca mice had higher splenic CD4+ and γδ T cell counts and lower hepatic eosinophil, Kupffer cell and B cell counts. Infection with A. suum led to expansions of eosinophils, Kupffer cells, monocytes and dendritic cells in the livers of both mouse strains and depletions of hepatic natural killer (NK) cells in CBA/Ca mice only. Infection with A. lumbricoides led to expansions of hepatic eosinophils, monocytes and dendritic cells and depletions of CD8+, αβ, NK and NK T cells in CBA/Ca mice, but not in C57BL/6J mice where only monocytes expanded. Thus, susceptibility and resistance to Ascaris infection are governed, in part, by the hepatic immune system.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Dearbhla M. Murphy
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Derek G. Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Lei Z, Tang R, Qi Q, Gu P, Wang J, Xu L, Wei C, Pu Y, Qi X, Chen Y, Yu B, Yu Y, Chen X, Zhu J, Li Y, Zhou S, Su C. Hepatocyte CD1d protects against liver immunopathology in mice with schistosomiasis japonica. Immunology 2020; 162:328-338. [PMID: 33283278 DOI: 10.1111/imm.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease with over 250 million people infected worldwide. The main clinically important species Schistosoma mansoni (S. mansoni) and Schistosoma japonicum (S. japonicum) cause inflammatory responses against tissue-trapped eggs, resulting in formation of granulomas mainly in host liver. Persistent granulomatous response results in severe fibrosis in the liver, leading to irreversible impairment of the liver and even death of the host. CD1d, a highly conserved MHC class I-like molecule, is expressed by both haematopoietic and non-haematopoietic cells. CD1d on antigen-presenting cells (APCs) of haematopoietic origin presents pathogen-derived lipid antigens to natural killer T (NKT) cells, which enables them to rapidly produce large amounts of various cytokines and facilitate CD4+ T helper (Th) cell differentiation upon invading pathogens. Noteworthy, hepatocytes of non-haematopoietic origin have recently been shown to be involved in maintaining liver NKT cell homeostasis through a CD1d-dependent manner. However, whether hepatocyte CD1d-dependent regulation of NKT cell homeostasis also modulates CD4+ Th cell responses and liver immunopathology in murine schistosomiasis remains to be addressed. Here, we show in mice that CD1d expression on hepatocytes was decreased dramatically upon S. japonicum infection, accompanied by increased NKT cells, as well as upregulated Th1 and Th2 responses. Overexpression of CD1d in hepatocytes significantly decreased local NKT numbers and cytokines (IFN-γ, IL-4, IL-13), concomitantly with downregulation of both Th1 and Th2 responses and alleviation in pathological damage in livers of S. japonicum-infected mice. These findings highlight the potential of hepatocyte CD1d-targeted therapies for liver immunopathology control in schistosomiasis.
Collapse
Affiliation(s)
- Zhigang Lei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianqian Qi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pan Gu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junling Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanan Pu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Beibei Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanxiong Yu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sha Zhou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Tripathi P, Sedimbi SK, Singh AK, Löfbom L, Issazadeh-Navikas S, Weiss S, Förster I, Karlsson MCI, Yrlid U, Kadri N, Cardell SL. Innate and adaptive stimulation of murine diverse NKT cells result in distinct cellular responses. Eur J Immunol 2018; 49:443-453. [PMID: 30427069 PMCID: PMC6587840 DOI: 10.1002/eji.201847647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Natural killer T (NKT) cells recognize glycolipids presented on CD1d. They share features of adaptive T lymphocytes and innate NK cells, and mediate immunoregulatory functions via rapid production of cytokines. Invariant (iNKT) and diverse (dNKT) NKT cell subsets are defined by their TCR. The immunological role of dNKT cells, that do not express the invariant TCRα‐chain used by iNKT cells, is less well explored than that of iNKT cells. Here, we investigated signals driving Toll‐like receptor (TLR) ligand activation of TCR‐transgenic murine dNKT cells. IFN‐γ production by dNKT cells required dendritic cells (DC), cell‐to‐cell contact and presence of TLR ligands. TLR‐stimulated DC activated dNKT cells to secrete IFN‐γ in a CD1d‐, CD80/86‐ and type I IFN‐independent manner. In contrast, a requirement for IL‐12p40, and a TLR ligand‐selective dependence on IL‐18 or IL‐15 was observed. TLR ligand/DC stimulation provoked early secretion of pro‐inflammatory cytokines by both CD62L+ and CD62L− dNKT cells. However, proliferation was limited. In contrast, TCR/co‐receptor‐mediated activation resulted in proliferation and delayed production of a broader cytokine spectrum preferentially in CD62L− dNKT cells. Thus, innate (TLR ligand/DC) and adaptive (TCR/co‐receptor) stimulation of dNKT cells resulted in distinct cellular responses that may contribute differently to the formation of immune memory.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Saikiran K Sedimbi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linda Löfbom
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, Copenhagen Biocentre, University of Copenhagen, Copenhagen, Denmark
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Irmgard Förster
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nadir Kadri
- Center of Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Singh AK, Tripathi P, Cardell SL. Type II NKT Cells: An Elusive Population With Immunoregulatory Properties. Front Immunol 2018; 9:1969. [PMID: 30210505 PMCID: PMC6120993 DOI: 10.3389/fimmu.2018.01969] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Natural killer T (NKT) cells are unique unconventional T cells that are reactive to lipid antigens presented on the non-polymorphic major histocompatibility class (MHC) I-like molecule CD1d. They have characteristics of both innate and adaptive immune cells, and have potent immunoregulatory roles in tumor immunity, autoimmunity, and infectious diseases. Based on their T cell receptor (TCR) expression, NKT cells are divided into two subsets, type I NKT cells with an invariant TCRα-chain (Vα24 in humans, Vα14 in mice) and type II NKT cells with diverse TCRs. While type I NKT cells are well-studied, knowledge about type II NKT cells is still limited, and it is to date only possible to identify subsets of this population. However, recent advances have shown that both type I and type II NKT cells play important roles in many inflammatory situations, and can sometimes regulate the functions of each other. Type II NKT cells can be both protective and pathogenic. Here, we review current knowledge on type II NKT cells and their functions in different disease settings and how these cells can influence immunological outcomes.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Prabhanshu Tripathi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Torina A, Guggino G, La Manna MP, Sireci G. The Janus Face of NKT Cell Function in Autoimmunity and Infectious Diseases. Int J Mol Sci 2018; 19:ijms19020440. [PMID: 29389901 PMCID: PMC5855662 DOI: 10.3390/ijms19020440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Natural killer T cells (NKT) are a subset of T lymphocytes bridging innate and adaptive immunity. These cells recognize self and microbial glycolipids bound to non-polymorphic and highly conserved CD1d molecules. Three NKT cell subsets, type I, II, and NKT-like expressing different antigen receptors (TCR) were described and TCR activation promotes intracellular events leading to specific functional activities. NKT can exhibit different functions depending on the secretion of soluble molecules and the interaction with other cell types. NKT cells act as regulatory cells in the defense against infections but, on the other hand, their effector functions can be involved in the pathogenesis of several inflammatory disorders due to their exposure to different microbial or self-antigens, respectively. A deep understanding of the biology and functions of type I, II, and NKT-like cells as well as their interplay with cell types acting in innate (neuthrophils, innate lymphoid cells, machrophages, and dendritic cells) and adaptive immunity (CD4⁺,CD8⁺, and double negative T cells) should be important to design potential immunotherapies for infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Torina
- Experimental Zooprophylactic Institute of Sicily, Via Marinuzzi 3, 90100 Palermo, Italy.
| | - Giuliana Guggino
- Biomedical Department of Internal and Specialized Medicine, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90100 Palermo, Italy.
| | - Marco Pio La Manna
- Department of Biopathology and Medical Biotechnology, Section of General Pathology, University of Palermo, Via del Vespro 129, 90100 Palermo, Italy.
- Central Laboratory Advanced Diagnostic and Biological Research, University Hospital, Via del Vespro 129, 90100 Palermo, Italy.
| | - Guido Sireci
- Department of Biopathology and Medical Biotechnology, Section of General Pathology, University of Palermo, Via del Vespro 129, 90100 Palermo, Italy.
- Central Laboratory Advanced Diagnostic and Biological Research, University Hospital, Via del Vespro 129, 90100 Palermo, Italy.
| |
Collapse
|
11
|
Aravindhan V, Anand G. Cell Type-Specific Immunomodulation Induced by Helminthes: Effect on Metainflammation, Insulin Resistance and Type-2 Diabetes. Am J Trop Med Hyg 2017; 97:1650-1661. [PMID: 29141759 DOI: 10.4269/ajtmh.17-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent epidemiological studies have documented an inverse relationship between the decreasing prevalence of helminth infections and the increasing prevalence of metabolic diseases ("metabolic hygiene hypothesis"). Chronic inflammation leading to insulin resistance (IR) has now been identified as a major etiological factor for a variety of metabolic diseases other than obesity and Type-2 diabetes (metainflammation). One way by which helminth infections such as filariasis can modulate IR is by inducing a chronic, nonspecific, low-grade, immune suppression mediated by modified T-helper 2 (Th2) response (induction of both Th2 and regulatory T cells) which can in turn suppress the proinflammatory responses and promote insulin sensitivity (IS). This article provides evidence on how the cross talk between the innate and adaptive arms of the immune responses can modulate IR/sensitivity. The cross talk between innate (macrophages, dendritic cells, natural killer cells, natural killer T cells, myeloid derived suppressor cells, innate lymphoid cells, basophils, eosinophils, and neutrophils) and adaptive (helper T [CD4+] cells, cytotoxic T [CD8+] cells and B cells) immune cells forms two opposing circuits, one associated with IR and the other associated with IS under the conditions of metabolic syndrome and helminth-mediated immunomodulation, respectively.
Collapse
|
12
|
Dhodapkar MV, Kumar V. Type II NKT Cells and Their Emerging Role in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:1015-1021. [PMID: 28115591 DOI: 10.4049/jimmunol.1601399] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
NKT cells recognize lipid Ags presented by a class I MHC-like molecule CD1d, a member of the CD1 family. Although most initial studies on NKT cells focused on a subset with semi-invariant TCR termed invariant NKT cells, the majority of CD1d-restricted lipid-reactive human T cells express diverse TCRs and are termed type II NKT cells. These cells constitute a distinct population of circulating and tissue-resident effector T cells with immune-regulatory properties. They react to a growing list of self- as well as non-self-lipid ligands, and share some properties with both invariant NKT and conventional T cells. An emerging body of evidence points to their role in the regulation of immunity to pathogens/tumors and in autoimmune/metabolic disorders. An improved understanding of the biology of these cells and the ability to manipulate their function may be of therapeutic benefit in diverse disease conditions.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Section of Hematology, Department of Medicine, Yale School of Medicine, Yale University, New Haven CT 06510; .,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven CT 06510.,Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06510; and
| | - Vipin Kumar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
13
|
Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice. Parasitol Res 2016; 116:559-567. [PMID: 27904959 DOI: 10.1007/s00436-016-5320-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
Natural killer cells (NK cells) and natural killer T cells (NKT cells) play a role in anti-infection, anti-tumor, transplantation immunity, and autoimmune regulation. However, the role of NK and NKT cells during Schistosoma japonicum (S. japonicum) infection has not been widely reported, especially regarding lung infections. The aim of this study was to research the NK and NKT cell response to S. japonicum infection in the lungs of mice. Using immunofluorescent histological analysis, NK and NKT cells were found near pulmonary granulomas. Moreover, flow cytometry revealed that the percentage and number of pulmonic NK cells in S. japonicum-infected mice were significantly increased (P < 0.05). However, the percentage and cell number of NKT cells were decreased compared to those of normal mice (P < 0.05). The expression of CD69 on pulmonic NK and NKT cells was increased after infection (P < 0.05), and CD25 expression increased only on NKT cells (P < 0.05). Intracellular cytokine staining showed a higher percentage of IFN-γ+ and lower percentage of IL-5+ pulmonic NK cells (P < 0.05) compared to controls. However, the percentage of IL-17+, IL-10+, and IL-5+ pulmonic NKT cells significantly increased (P < 0.05). Additionally, there was a significant decrease in NKG2A/C/E (CD94) expression and an increase of NKG2D (CD314) expression on pulmonic NKT cells (P < 0.05), which might serve as a mechanism for NKT cell activation during S. japonicum infection.
Collapse
|
14
|
Effects of Invariant NKT Cells on Parasite Infections and Hygiene Hypothesis. J Immunol Res 2016; 2016:2395645. [PMID: 27563682 PMCID: PMC4987483 DOI: 10.1155/2016/2395645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are unique subset of innate-like T cells recognizing glycolipids. iNKT cells can rapidly produce copious amounts of cytokines upon antigen stimulation and exert potent immunomodulatory activities for a wide variety of immune responses and diseases. We have revealed the regulatory effect of iNKT cells on autoimmunity with a serial of publications. On the other hand, the role of iNKT cells in parasitic infections, especially in recently attractive topic “hygiene hypothesis,” has not been clearly defined yet. Bacterial and parasitic cell wall is a cellular structure highly enriched in a variety of glycolipids and lipoproteins, some of which may serve as natural ligands of iNKT cells. In this review, we mainly summarized the recent findings on the roles and underlying mechanisms of iNKT cells in parasite infections and their cross-talk with Th1, Th2, Th17, Treg, and innate lymphoid cells. In most cases, iNKT cells exert regulatory or direct cytotoxic roles to protect hosts against parasite infections. We put particular emphasis as well on the identification of the natural ligands from parasites and the involvement of iNKT cells in the hygiene hypothesis.
Collapse
|
15
|
Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 2016; 13:337-46. [PMID: 26972772 PMCID: PMC4856801 DOI: 10.1038/cmi.2015.115] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/19/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance. It is becoming clear that two different subsets of NKT cells-type I and type II-have different modes of antigen recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Idania Marrero
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Vipin Kumar
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Szabo PA, Anantha RV, Shaler CR, McCormick JK, Haeryfar SMM. CD1d- and MR1-Restricted T Cells in Sepsis. Front Immunol 2015; 6:401. [PMID: 26322041 PMCID: PMC4533011 DOI: 10.3389/fimmu.2015.00401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/22/2015] [Indexed: 12/23/2022] Open
Abstract
Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area.
Collapse
Affiliation(s)
- Peter A Szabo
- Department of Microbiology and Immunology, Western University , London, ON , Canada
| | - Ram V Anantha
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Division of General Surgery, Department of Medicine, Western University , London, ON , Canada
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University , London, ON , Canada
| | - John K McCormick
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Centre for Human Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada ; Division of Clinical Immunology and Allergy, Department of Medicine, Western University , London, ON , Canada
| |
Collapse
|
17
|
Marrero I, Ware R, Kumar V. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer. Front Immunol 2015; 6:316. [PMID: 26136748 PMCID: PMC4470258 DOI: 10.3389/fimmu.2015.00316] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022] Open
Abstract
Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer.
Collapse
Affiliation(s)
- Idania Marrero
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Randle Ware
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Vipin Kumar
- Laboratory of Immune Regulation, Department of Medicine, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
18
|
Odegaard JI, Hsieh MH. Immune responses to Schistosoma haematobium infection. Parasite Immunol 2014; 36:428-38. [PMID: 25201406 DOI: 10.1111/pim.12084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/20/2013] [Indexed: 02/02/2023]
Abstract
Urogenital schistosomiasis is one of the greatest single infectious sources of human morbidity and mortality known. Through a complex cycle of infection, migration and eventual maturation and mating, S. haematobium (the aetiological agent of urogenital schistosomiasis) deposits highly immunogenic eggs within the bladder and other pelvic organs, activating a wide range of immune programs that determine both infection outcome as well as downstream immunopathology. In this review, we discuss the experimental and observational bases for our current understanding of these immune programs, focusing specifically on how the balance of type 1 and type 2 responses governs subsequent immunopathology and clinical outcome.
Collapse
Affiliation(s)
- J I Odegaard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
19
|
Adachi K, Nakamura R, Osada Y, Senba M, Tamada K, Hamano S. Involvement of IL-18 in the expansion of unique hepatic T cells with unconventional cytokine profiles during Schistosoma mansoni infection. PLoS One 2014; 9:e96042. [PMID: 24824897 PMCID: PMC4019514 DOI: 10.1371/journal.pone.0096042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 04/02/2014] [Indexed: 12/31/2022] Open
Abstract
Infection with schistosomes invokes severe fibrotic granulomatous responses in the liver of the host. Schistosoma mansoni infection induces dramatic fluctuations in Th1 or Th2 cytokine responses systemically; Th1 reactions are provoked in the early phase, whilst Th2 responses become dominant after oviposition begins. In the liver, various unique immune cells distinct from those of conventional immune competent organs or tissues exist, resulting in a unique immunological environment. Recently, we demonstrated that S. mansoni infection induces unique CD4+ T cell populations exhibiting unconventional cytokine profiles in the liver of mice during the period between Th1- and Th2-phases, which we term the transition phase. They produce both IFN-γ and IL-4 or both IFN-γ and IL-13 simultaneously. Moreover, T cells secreting triple cytokines IFN-γ, IL-13 and IL-4 were also induced. We term these cells Multiple Cytokine Producing Hepatic T cells (MCPHT cells). During the transition phase, when MCPHT cells increase, IL-18 secretion was up-regulated in the liver and sera. In S. mansoni-infected IL-18-deficient mice, expansion of MCPHT cells was curtailed. Thus our data suggest that IL-18 produced during S. mansoni infection play a role in the expansion of MCPHT cells.
Collapse
Affiliation(s)
- Keishi Adachi
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, The University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Koji Tamada
- Department of Immunology and Cell Signaling Analysis, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
20
|
Holzapfel KL, Tyznik AJ, Kronenberg M, Hogquist KA. Antigen-dependent versus -independent activation of invariant NKT cells during infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:5490-8. [PMID: 24813205 DOI: 10.4049/jimmunol.1400722] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD1d-reactive invariant NKT cells (iNKT) play a vital role in determining the characteristics of immune responses to infectious agents. Previous reports suggest that iNKT cell activation during infection can be: 1) solely driven by cytokines from innate immune cells, 2) require microbial Ag, or 3) require self-Ag. In this study, we examined the role of Ag receptor stimulation in iNKT cells during several bacterial and viral infections. To test for Ag receptor signaling, Nur77(gfp) BAC transgenic mice, which upregulate GFP in response to Ag receptor but not inflammatory signals, were analyzed. iNKT cells in the reporter mice infected with mouse CMV produced IFN-γ but did not upregulate GFP, consistent with their reported CD1d-independent activation. However, two bacteria known to produce lipid Ags for iNKT cells induced GFP expression and cytokine production. In contrast, although Salmonella typhimurium was proposed to induce the presentation of a self-lipid, iNKT cells produced IFN-γ but did not upregulate GFP postinfection in vivo. Even in CD1d-deficient hosts, iNKT cells were still able to produce IFN-γ after S. typhimurium infection. Furthermore, although it has been proposed that endogenous lipid presentation is a result of TLR stimulation of APCs, injection of different TLR agonists led to iNKT cell IFN-γ but not increased GFP expression. These data indicate that robust iNKT cell responses to bacteria, as well as viruses, can be obtained in the absence of antigenic stimulation.
Collapse
Affiliation(s)
- Keli L Holzapfel
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Aaron J Tyznik
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
21
|
Helminth-induced interleukin-4 abrogates invariant natural killer T cell activation-associated clearance of bacterial infection. Infect Immun 2014; 82:2087-97. [PMID: 24643536 DOI: 10.1128/iai.01578-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Helminth infections affect 1 billion people worldwide and render these individuals susceptible to bacterial coinfection through incompletely understood mechanisms. This includes urinary tract coinfection by bacteria and Schistosoma haematobium worms, the etiologic agent of urogenital schistosomiasis. To study the mechanisms of S. haematobium-bacterial urinary tract coinfections, we combined the first tractable model of urogenital schistosomiasis with an established mouse model of bacterial urinary tract infection (UTI). A single bladder exposure to S. haematobium eggs triggers interleukin-4 (IL-4) production and makes BALB/c mice susceptible to bacterial UTI when they are otherwise resistant. Ablation of IL-4 receptor alpha (IL-4Rα) signaling restored the baseline resistance of BALB/c mice to bacterial UTI despite prior exposure to S. haematobium eggs. Interestingly, numbers of NKT cells were decreased in coexposed versus bacterially monoinfected bladders. Given that schistosome-induced, non-natural killer T (NKT) cell leukocyte infiltration may dilute NKT cell numbers in the bladders of coexposed mice without exerting a specific functional effect on these cells, we next examined NKT cell biology on a per-cell basis. Invariant NKT (iNKT) cells from coexposed mice expressed less gamma interferon (IFN-γ) per cell than did those from mice with UTI alone. Moreover, coexposure resulted in lower CD1d expression in bladder antigen-presenting cells (APC) than did bacterial UTI alone in an IL-4Rα-dependent fashion. Finally, coexposed mice were protected from prolonged bacterial infection by administration of α-galactosylceramide, an iNKT cell agonist. Our findings point to a previously unappreciated role for helminth-induced IL-4 in impairment of iNKT cell-mediated clearance of bacterial coexposure.
Collapse
|
22
|
Cruz-Rivera M, Vaughan G, Mendlovic F, Vergara-Castañeda A, Romero-Valdovinos M, Leon-Cabrera S, Alonso M, Avila G, Flisser A. Cytokine expression at the anchor site in experimental Taenia solium infection in hamsters. Vet Parasitol 2014; 200:299-302. [DOI: 10.1016/j.vetpar.2013.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/17/2013] [Accepted: 12/22/2013] [Indexed: 12/28/2022]
|
23
|
Araujo JM, Melo TTD, Sena ICD, Alves CC, Araujo N, Durães FDV, Oliveira SC, Fonseca CT. Schistosoma mansoni schistosomula tegument (Smteg) immunization in absence of adjuvant induce IL-10 production by CD4+ cells and failed to protect mice against challenge infection. Acta Trop 2012; 124:140-6. [PMID: 22842304 DOI: 10.1016/j.actatropica.2012.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
The Schistosoma mansoni tegument interaction with the immune system plays a key role in disease establishment or elimination. We have recently demonstrated that S. mansoni schistosomula tegument (Smteg) is able to activate innate immune response and to induce protective immunity in a vaccine formulation with Freunds adjuvant. In this work, we evaluated the ability of Smteg to elicit protection in the absence of adjuvant. Smteg mice immunization resulted in significant antibody production, increased percentage of CD4+IFN-g+ and CD4+IL-10+ cells in spleen and increased production of IFN-g and IL-10 by spleen cells, but failed to reduce parasite burden, female fecundity and morbidity. We also demonstrated that BMDC stimulation with Smteg resulted in significant IL-10 production. Our results demonstrate that Smteg has immune modulatory proprieties.
Collapse
|
24
|
Lawson V. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells. Immunology 2012; 137:20-7. [PMID: 22734667 DOI: 10.1111/j.1365-2567.2012.03612.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)-antigen-CD1d complex show how docking between CD1d-antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand-CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR-self-antigen-CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity.
Collapse
|
25
|
Rhost S, Sedimbi S, Kadri N, Cardell SL. Immunomodulatory type II natural killer T lymphocytes in health and disease. Scand J Immunol 2012; 76:246-55. [PMID: 22724893 DOI: 10.1111/j.1365-3083.2012.02750.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Natural killer T (NKT) lymphocytes are αβ T cells activated by lipid-based ligands presented on the non-polymorphic CD1d-molecule. Type I NKT cells that carry an invariant Vα14 (in the mouse) or Vα24 (in humans) T cell receptor α-chain rearrangement have received significant attention for their involvement in a diversity of immune reactions. Their sister population, CD1d-restricted type II NKT cells, has been more difficult to study because of the lack of molecular markers that specify these cells. In the last few years, however, significant progress has been made, demonstrating that type II NKT cells have unique functions in immune responses to tumours and infections, in autoimmunity, obesity and graft-versus-host disease. Type II NKT cells appear more frequent than type I NKT cells in humans and accumulate in certain diseases such as ulcerative colitis, hepatitis and multiple myeloma. Recently, novel type II NKT cell ligands have been identified, and it is becoming clear that the type II NKT cell population may be oligoclonal. Here, we review the recent progress in the study of type II NKT cells, supporting the view that type II NKT cells may be attractive targets for immunotherapy.
Collapse
Affiliation(s)
- S Rhost
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
26
|
Modulatory function of invariant natural killer T cells in systemic lupus erythematosus. Clin Dev Immunol 2012; 2012:478429. [PMID: 22761630 PMCID: PMC3385970 DOI: 10.1155/2012/478429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/10/2012] [Indexed: 11/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease with complex immunological and clinical manifestations. Multiple organ failure in SLE can be caused by immune dysfunction and deposition of autoantibodies. Studies of SLE-susceptible loci and the cellular and humoral immune responses reveal variable aberrations associated with this systemic disease. Invariant natural killer T (iNKT) cells are a unique subset of lymphocytes that control peripheral tolerance. Mounting evidence showing reductions in the proportion and activity of iNKT cells in SLE patients suggests the suppressive role of iNKT cells. Studies using murine lupus models demonstrate that iNKT cells participate in SLE progression by sensing apoptotic cells, regulating immunoglobulin production, and altering the cytokine profile upon activation. However, the dichotomy of iNKT cell actions in murine models implies complicated interactions within the body's milieu. Therefore, application of potential therapy for SLE using glycolipids to regulate iNKT cells should be undertaken cautiously.
Collapse
|
27
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Hou X, Yu F, Man S, Huang D, Zhang Y, Liu M, Ren C, Shen J. Negative regulation of Schistosoma japonicum egg-induced liver fibrosis by natural killer cells. PLoS Negl Trop Dis 2012; 6:e1456. [PMID: 22235358 PMCID: PMC3250498 DOI: 10.1371/journal.pntd.0001456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/17/2011] [Indexed: 01/01/2023] Open
Abstract
The role of natural killer (NK) cells in infection-induced liver fibrosis remains obscure. In this study, we elucidated the effect of NK cells on Schistosoma japonicum (S. japonicum) egg-induced liver fibrosis. Liver fibrosis was induced by infecting C57BL/6 mice with 18–20 cercariae of S. japonicum. Anti-ASGM1 antibody was used to deplete NK cells. Toll-like receptor 3 ligand, polyinosinic-polycytidylic acid (poly I∶C) was used to enhance the activation of NK cells. Results showed that NK cells were accumulated and activated after S. japonicum infection, as evidenced by the elevation of CD69 expression and IFN-γ production. Depletion of NK cells markedly enhanced S. japonicum egg-induced liver fibrosis. Administration of poly I∶C further activated NK cells to produce IFN-γ and attenuated S. japonicum egg-induced liver fibrosis. The observed protective effect of poly I∶C on liver fibrosis was diminished through depletion of NK cells. Disruption of IFN-γ gene enhanced liver fibrosis and partially abolished the suppression of liver fibrosis by poly I∶C. Moreover, expression of retinoic acid early inducible 1 (RAE 1), the NKG2D ligand, was detectable at high levels on activated hepatic stellate cells derived from S. japonicum-infected mice, which made them more susceptible to hepatic NK cell killing. In conclusion, our findings suggest that the activated NK cells in the liver after S. japonicum infection negatively regulate egg-induced liver fibrosis via producing IFN-γ, and killing activated stellate cells. Schistosomiasis continues to be a major public health problem in the developing world. Parasite egg-induced liver fibrosis is the principal cause of morbidity and mortality in human infected with schistosoma. Thus, elucidating the mechanisms that restrict tissue fibrosis may lead to more effective strategies for immunological intervention in this and a variety of chronic diseases. NK cells have been demonstrated to play an important role in suppressing carbon tetrachloride (CCl4)-induced liver fibrosis. However, little is known about the role of NK cells in an infection-based model of fibrosis. In the current study, we determined, for the first time, the role of NK cells in S. japonicum egg-induced liver fibrosis. Our findings suggest that the activated NK cells in the liver after S. japonicum infection negatively regulate egg-induced liver fibrosis via producing IFN-γ, and killing activated stellate cells. These results further our understanding of the innate immune cells that regulate the development of S. japonicum-induced fibrosis and aid in the development of potential strategies to enhance immunity against this and other chronic inflammatory diseases of the liver where fibrosis is a common feature.
Collapse
Affiliation(s)
- Xin Hou
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fazhi Yu
- College of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Suqin Man
- College of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Dake Huang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yuxia Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Cuiping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- * E-mail:
| |
Collapse
|
29
|
Gruden-Movsesijan A, Ilic N, Colic M, Majstorovic I, Vasilev S, Radovic I, Sofronic-Milosavljevic L. The impact of Trichinella spiralis excretory-secretory products on dendritic cells. Comp Immunol Microbiol Infect Dis 2011; 34:429-39. [PMID: 21903269 DOI: 10.1016/j.cimid.2011.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/17/2011] [Indexed: 01/26/2023]
Abstract
Parasitic nematode Trichinella spiralis exert immunomodulatory effect on the host immune response through excretory-secretory products (ES L1) released from the encysted muscle larvae. Rat bone-marrow derived dendritic cells (DCs) stimulated with ES L1 antigens acquire semi-matured status and induce Th2 and regulatory responses in vitro and in vivo. Priming naïve T cells in vitro with ES L1 pulsed DCs caused strong Th2 polarization, accompanied by elevated production of regulatory cytokines IL-10 and TGF-β and no increase in the proportion of CD4+CD25+Foxp3+ among the effector T cell population. In vivo T cell priming resulted in mixed Th1/Th2 cytokine response, with the dominance of the Th2 type and elevated levels of regulatory cytokines. Significant increase in the proportion of CD4+CD25+Foxp3+ cells was found among recipient's spleen cells. We have achieved to create immune status characteristic for the live infection by in vivo application of DCs educated with ES L1 antigens.
Collapse
Affiliation(s)
- A Gruden-Movsesijan
- Institute for the Application of Nuclear Energy-INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Zaccone P, Burton OT, Gibbs SE, Miller N, Jones FM, Schramm G, Haas H, Doenhoff MJ, Dunne DW, Cooke A. The S. mansoni glycoprotein ω-1 induces Foxp3 expression in NOD mouse CD4⁺ T cells. Eur J Immunol 2011; 41:2709-18. [PMID: 21710488 DOI: 10.1002/eji.201141429] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/18/2011] [Accepted: 06/10/2011] [Indexed: 11/08/2022]
Abstract
Immunization with Schistosoma mansoni soluble antigen preparations protects non-obese diabetic (NOD) mice against the development of type 1 diabetes. These preparations have long been known to induce Th2 responses in vitro and in vivo. Recently, two separate groups have reported that ω-1, a well-characterized glycoprotein in S. mansoni soluble egg antigens (SEA), which with IL-4 inducing principle of S. mansoni eggs (IPSE/α-1) is one of the two major glycoproteins secreted by live eggs, is a major SEA component responsible for this effect. We found that ω-1 induces Foxp3 as well as IL-4 expression when injected in vivo. We confirmed that ω-1 conditions DCs to drive Th2 responses and further demonstrated that ω-1 induces Foxp3(+) T cells from NOD mouse naïve T cells. In contrast, IPSE/α-1 did not drive Foxp3 responses. The in vitro development of Foxp3-expressing T cells by ω-1 was TGF-β- and retinoic acid-dependent. Our work, therefore, identifies ω-1 as an important factor for the induction of Foxp3(+) T cells by SEA in NOD mice.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The vertebrate immune system has evolved in concert with a broad range of infectious agents, including ubiquitous helminth (worm) parasites. The constant pressure of helminth infections has been a powerful force in shaping not only how immunity is initiated and maintained, but also how the body self-regulates and controls untoward immune responses to minimize overall harm. In this Review, we discuss recent advances in defining the immune cell types and molecules that are mobilized in response to helminth infection. Finally, we more broadly consider how these immunological players are blended and regulated in order to accommodate persistent infection or to mount a vigorous protective response and achieve sterile immunity.
Collapse
|
32
|
Moreira-Teixeira L, Resende M, Coffre M, Devergne O, Herbeuval JP, Hermine O, Schneider E, Rogge L, Ruemmele FM, Dy M, Cordeiro-da-Silva A, Leite-de-Moraes MC. Proinflammatory environment dictates the IL-17-producing capacity of human invariant NKT cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5758-65. [PMID: 21478400 DOI: 10.4049/jimmunol.1003043] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD1d-reactive invariant NKT (iNKT) cells have been implicated in a number of experimental models of human pathologies. Given the scope of their immunoregulatory activities mediated through distinct cytokine patterns, it has been proposed that this functional diversity originates from distinct iNKT subpopulations. In this study, we report that human CD161(+) iNKT cells are intrinsically endowed with the capacity to generate IL-17, but require TGF-β, IL-1β, and IL-23 to carry out this potential. IL-17-producing iNKT cells are already present in cord blood but, in contrast to peripheral blood iNKT cells, they cannot generate IFN-γ. These IL-17 producers respond to aryl hydrocarbon receptor stimulation and express IL-23 receptor and retinoic acid-related orphan receptor C, similar to conventional T helper 17 cells, from which they differ by their restricted ability to coproduce IL-22. In conclusion, IL-17 production by human iNKT cells depends on two critical parameters, namely an intrinsic program and a proinflammatory environment.
Collapse
Affiliation(s)
- Lúcia Moreira-Teixeira
- Université Paris Descartes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Hôpital Necker Enfants Malades, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jedlina L, Kozak-Ljunggren M, Wedrychowicz H. In vivo studies of the early, peritoneal, cellular and free radical response in rats infected with Fasciola hepatica by flow cytometric analysis. Exp Parasitol 2011; 128:291-7. [PMID: 21354145 DOI: 10.1016/j.exppara.2011.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 01/09/2023]
Abstract
Early recruitment of the peritoneal cell population was observed during migration of newly excysted juvenile flukes. The peritoneal lavages were examined for T cells, cytotoxic NK cells (CNK) and free radicals production of rats at an early stage of infection by Fasciola hepatica. Male Sprague-Dawley rats were infected with 50 metacercariae of F. hepatica and non-infected controls were euthanized 2, 4 and 7 days post infection (d.p.i.), respectively. The peritoneal fluid of experimental animals was analyzed by flow cytometry to estimate cell phenotypes. The peritoneal areas were infiltrated by inflammatory cells, particularly from numerous neutrophils, eosinophils and CD4+ lymphocytes, which were significantly higher for infected rats than non-infected. CNK cells dominated in the peritoneal fluid of infected rats as early as 2d.p.i. However, after 4d.p.i. there was a decreased level of CNK cells which may indicate a change from a cytotoxic natural killer (NK) to a regulatory NK response. The challenged group generated very high in vivo levels of inducible nitric oxide (NO) from eosinophils. Superoxide expression was very high in macrophages and neutrophils compared to the uninfected control. In conclusion, our studies suggest that early F. hepatica infection could directly affect lymphoid cells and generate a high in vivo NO production by eosinophils in the peritoneal cavity. Moreover juvenile flukes could stimulate the macrophages and neutrophils to generate H(2)O(2) radicals. The host parasite interactions resulting from immune response regulation by effector cells and immune evasion are discussed.
Collapse
Affiliation(s)
- L Jedlina
- W. Stefanski Institute of Parasitology, PAS, Warsaw, Poland.
| | | | | |
Collapse
|
34
|
Fukunaga A, Khaskhely NM, Ma Y, Sreevidya CS, Taguchi K, Nishigori C, Ullrich SE. Langerhans cells serve as immunoregulatory cells by activating NKT cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4633-40. [PMID: 20844203 DOI: 10.4049/jimmunol.1000246] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ultraviolet exposure alters the morphology and function of epidermal Langerhans cells (LCs), which play a role in UV-induced immune suppression. It is generally believed that UV exposure triggers the migration of immature LCs from the skin to the draining lymph nodes (LNs), where they induce tolerance. However, because most of the previous studies employed in vitro UV-irradiated LCs, the data generated may not adequately reflect what is happening in vivo. In this study, we isolated migrating LCs from the LNs of UV-irradiated mice and studied their function. We found prolonged LC survival in the LNs of UV-irradiated mice. LCs were necessary for UV-induced immune suppression because no immune suppression was observed in LC-deficient mice. Transferring LCs from UV-irradiated mice into normal recipient animals transferred immune suppression and induced tolerance. We found that LCs colocalized with LN NKT cells. No immune suppression was observed when LCs were transferred from UV-irradiated mice into NKT cell-deficient mice. NKT cells isolated from the LNs of UV-irradiated mice secreted significantly more IL-4 than NKT cells isolated from nonirradiated controls. Injecting the wild-type mice with anti-IL-4 blocked the induction of immune suppression. Our findings indicate that UV exposure activates the migration of mature LC to the skin draining LNs, where they induce immune regulation in vivo by activating NKT cells.
Collapse
Affiliation(s)
- Atsushi Fukunaga
- Department of Immunology, Center for Cancer Immunology Research, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res 2010; 343:43-55. [PMID: 20734065 DOI: 10.1007/s00441-010-1023-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 02/08/2023]
Abstract
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Ave. South, Nashville, TN 37232-2363, USA.
| | | | | |
Collapse
|
36
|
Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A, Fallon PG. Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J Allergy Clin Immunol 2010; 125:1114-1124.e8. [PMID: 20304473 DOI: 10.1016/j.jaci.2010.01.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/23/2009] [Accepted: 01/09/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parasitic helminth infections of humans have been shown to suppress the immune response to allergens. Experimentally, infection of mice with the helminth Schistosoma mansoni prevents allergic airway inflammation and anaphylaxis via IL-10 and B cells. OBJECTIVE To identify and characterize the specific helminth-induced regulatory B-cell subpopulation and determine the mechanism by which these regulatory B cells suppress allergic airway inflammation. METHODS IL-10-producing B cells from the spleens of helminth-infected mice were phenotyped, isolated, and transferred to ovalbumin-sensitized mice, and their ability to modulate allergic airway inflammation was analyzed. RESULTS S mansoni infection induced IL-10-producing CD1d(high) regulatory B cells that could prevent ovalbumin-induced allergic airway inflammation following passive transfer to ovalbumin-sensitized recipients. The capacity of regulatory B cells to suppress allergic airway inflammation was dependent on the expression of CD1d, and they functioned via an IL-10-mediated mechanism. Regulatory B cells induced pulmonary infiltration of CD4(+)CD25(+) forkhead box protein 3(+) regulatory T cells, independent of TGF-beta, thereby suppressing allergic airway inflammation. Regulatory B cells that were generated ex vivo also suppressed the development of allergic airway inflammation. Furthermore, the transfer of regulatory B cells reversed established airway inflammation in ovalbumin-sensitized mice. CONCLUSION We have generated in vivo and ex vivo a regulatory B cell that can prevent or reverse allergen-induced airway inflammation via regulatory T cells.
Collapse
Affiliation(s)
- Sylvie Amu
- Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
37
|
Activation state and intracellular trafficking contribute to the repertoire of endogenous glycosphingolipids presented by CD1d [corrected]. Proc Natl Acad Sci U S A 2010; 107:3052-7. [PMID: 20133624 DOI: 10.1073/pnas.0915056107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Myeloid antigen-presenting cells (APC) express CD1d molecules that present exogenous and endogenous lipid antigens that activate CD1d-restricted T cells, natural killer T (NKT) cells. NKT cell activation has been shown to mediate the potent downstream activation of other immune cells through cell-cell interactions and rapid, prolific cytokine production. Foreign antigens are not required for NKT cell activation. The endogenous lipids bound to CD1d are sufficient for activation of NKT cells in the setting of Toll-like receptor-induced cytokines. The most potent NKT cell antigens identified are glycosphingolipids (GSL). The GSL repertoire of endogenous ligands bound to CD1d molecules that are expressed in myeloid APC at steady state and in the setting of activation has not been delineated. This report identifies the range of GSL bound to soluble murine CD1d (mCD1d) molecules that sample the endoplasmic reticulum/secretory routes and cell surface-cleaved mCD1d that also samples the endocytic system. Specific GSL species are preferentially bound by mCD1d and do not solely reflect cellular GSL. GM1a and GD1a are prominent CD1d ligands for molecules following both the ER/secretory and lysosomal trafficking routes, whereas GM2 was eluted from soluble CD1d but not lysosomal trafficking CD1d. Further, after LPS activation, the quantities of soluble CD1d-bound GM3 and GM1a markedly increased. A unique alpha-galactose-terminating GSL was also found to be preferentially bound to mCD1d at steady state, and it increased with APC activation. Together, these studies identify the range of GSL presented by CD1d and how presentation varies based on CD1d intracellular trafficking and microbial activation.
Collapse
|
38
|
How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin Immunol 2009; 22:79-86. [PMID: 19948416 DOI: 10.1016/j.smim.2009.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/26/2009] [Indexed: 12/12/2022]
Abstract
Invariant natural killer T (iNKT) cells have evolved to recognize CD1d-presented lipid antigens and are known to play important roles during infection with bacterial, viral, protozoan, and fungal pathogens. The limited antigen specificity and reactivity to self- and foreign antigens distinguish iNKT cells from MHC-restricted T cells and bear similarity to innate-like lymphocytes, such as NK cells, gammadelta T cells, MZB and B1-B cells. This review summarizes how direct recognition of microbial lipids or synergistic stimulation by self-lipids and pro-inflammatory cytokines results in activation of these innate-like iNKT cell during infection. iNKT cell activation in the absence of foreign antigen recognition is unique for cells bearing TCRs and underscores that not only the function but also the activation mechanism of iNKT cells is innate-like, and distinct from adaptive T cells. The different pathways of activation endow iNKT cells with the ability to respond rapidly to a wide variety of infectious agents and to contribute effectively to the early immune response during infection.
Collapse
|
39
|
Regulation of type 1 diabetes, tuberculosis, and asthma by parasites. J Mol Med (Berl) 2009; 88:27-38. [PMID: 19844667 DOI: 10.1007/s00109-009-0546-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 07/27/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Helminth infection is a worldwide health problem. In addition to directly causing disease, helminthic infection also affects the incidence and progression of other diseases by exerting immune modulatory effects. In animal models, infection with helminthic parasites can prevent autoimmune diseases and allergic inflammatory diseases, but worsens protective immunity to certain infectious pathogens. In this review, we summarize current findings regarding the effects of helminth infection on type 1 diabetes, tuberculosis, and asthma and discuss possible mechanisms through which helminthic parasites modulate host immunity. Investigating these mechanisms could lead to treatment strategies that specifically modulate the immune response as well as address fundamental questions in immunobiology.
Collapse
|
40
|
Bialecki E, Paget C, Fontaine J, Capron M, Trottein F, Faveeuw C. Role of marginal zone B lymphocytes in invariant NKT cell activation. THE JOURNAL OF IMMUNOLOGY 2009; 182:6105-13. [PMID: 19414762 DOI: 10.4049/jimmunol.0802273] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Splenic marginal zone B (MZB) lymphocytes represent, along with dendritic cells (DC) a first line of defense against blood-borne pathogens. MZB cells express high levels of MHC class II and CD1d molecules but so far their ability to activate and orientate conventional and innate-like T lymphocytes, such as invariant NKT (iNKT) cells, is still elusive. In the present study, we show that murine MZB cells proliferate, mature phenotypically, and secrete cytokines in response to TLR (except TLR3) agonists. When pulsed with OVA peptide (but not whole OVA), MZB cells promote the release of IFN-gamma and IL-4 by Ag-specific CD4(+) T lymphocytes and their stimulation with the TLR9 agonist CpG oligodeoxynucleotide (ODN), a potent MZB cell activator, biases them toward more Th1 inducers. Unlike DC, CpG ODN-stimulated MZB cells fail to stimulate iNKT cells. Although able to activate iNKT hybridomas, MZB cells sensitized with free alpha-galactosylceramide (alpha-GalCer), a CD1d-restricted glycolipid Ag, do not directly activate ex vivo sorted iNKT cells unless DC are added to the culture system. Interestingly, MZB cells amplify the DC-mediated activation of iNKT cells and depletion of MZB cells from total splenocytes strongly reduces iNKT cell activation (cytokine production) in response to alpha-GalCer. Thus, DC and MZB cells provide help to each other to optimize iNKT cell stimulation. Finally, in vivo transfer of alpha-GalCer-loaded MZB cells potently activates iNKT and NK cells. This study confirms and extends the concept that MZB cells are important players in immune responses, a property that might be exploited.
Collapse
Affiliation(s)
- Emilie Bialecki
- Institut National de la Santé et de la Recherche Médicale, Unité 547, Université de Lille 2, Lille, France
| | | | | | | | | | | |
Collapse
|
41
|
Lotter H, González-Roldán N, Lindner B, Winau F, Isibasi A, Moreno-Lafont M, Ulmer AJ, Holst O, Tannich E, Jacobs T. Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 2009; 5:e1000434. [PMID: 19436711 PMCID: PMC2674934 DOI: 10.1371/journal.ppat.1000434] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/16/2009] [Indexed: 02/06/2023] Open
Abstract
The innate immune response is supposed to play an essential role in the control of amebic liver abscess (ALA), a severe form of invasive amoebiasis due to infection with the protozoan parasite Entamoeba histolytica. In a mouse model for the disease, we previously demonstrated that Jalpha18(-/-) mice, lacking invariant natural killer T (iNKT) cells, suffer from more severe abscess development. Here we show that the specific activation of iNKT cells using alpha-galactosylceramide (alpha-GalCer) induces a significant reduction in the sizes of ALA lesions, whereas CD1d(-/-) mice develop more severe abscesses. We identified a lipopeptidophosphoglycan from E. histolytica membranes (EhLPPG) as a possible natural NKT cell ligand and show that the purified phosphoinositol (PI) moiety of this molecule induces protective IFN-gamma but not IL-4 production in NKT cells. The main component of EhLPPG responsible for NKT cell activation is a diacylated PI, (1-O-[(28:0)-lyso-glycero-3-phosphatidyl-]2-O-(C16:0)-Ins). IFN-gamma production by NKT cells requires the presence of CD1d and simultaneously TLR receptor signalling through MyD88 and secretion of IL-12. Similar to alpha-GalCer application, EhLPPG treatment significantly reduces the severity of ALA in ameba-infected mice. Our results suggest that EhLPPG is an amebic molecule that is important for the limitation of ALA development and may explain why the majority of E. histolytica-infected individuals do not develop amebic liver abscess.
Collapse
Affiliation(s)
- Hannelore Lotter
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- * E-mail: (HL); (OH)
| | - Nestor González-Roldán
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Buko Lindner
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Florian Winau
- Immune Disease Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Armando Isibasi
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Martha Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Artur J. Ulmer
- Division of Immunology and Cell Biology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
- * E-mail: (HL); (OH)
| | - Egbert Tannich
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
42
|
Tessmer MS, Fatima A, Paget C, Trottein F, Brossay L. NKT cell immune responses to viral infection. Expert Opin Ther Targets 2009; 13:153-62. [PMID: 19236234 DOI: 10.1517/14712590802653601] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Natural killer T (NKT) cells are a heterogeneous population of innate T cells that have attracted interest because of their potential to regulate immune responses to a variety of pathogens. The most widely studied NKT cell subset is the invariant (i)NKT cells that recognize glycolipids in the context of the CD1d molecule. The multifaceted methods of activation iNKT cells possess and their ability to produce regulatory cytokines has made them a primary target for studies. OBJECTIVE/METHODS To give insights into the roles of iNKT cells during infectious diseases, particularly viral infections. We also highlight mechanisms leading to iNKT cell activation in response to pathogens. CONCLUSIONS iNKT cell's versatility allows them to detect and respond to several viruses. Therapeutic approaches to specifically target iNKT cells will require additional research. Notably, the roles of non-invariant NKT cells in response to pathogens warrant further investigation.
Collapse
Affiliation(s)
- Marlowe S Tessmer
- Brown University, Department of Molecular Microbiology and Immunology, Providence, USA
| | | | | | | | | |
Collapse
|
43
|
Fereidouni M, Farid Hosseini R, Jabbari Azad F, Schenkel J, Varasteh A, Mahmoudi M. Frequency of circulating iNKT cells among Iranian healthy adults. CYTOMETRY PART B-CLINICAL CYTOMETRY 2009; 78:65-9. [DOI: 10.1002/cyto.b.20489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
|
45
|
Kinjo Y, Kronenberg M. Detection of microbes by natural killer T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 633:17-26. [PMID: 19209678 DOI: 10.1007/978-0-387-79311-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yuki Kinjo
- La Jolla Institute for Allergy and Immunology, CA 92037, USA
| | | |
Collapse
|
46
|
Recent advances in the role of NKT cells in allergic diseases and asthma. Curr Allergy Asthma Rep 2008; 8:165-70. [PMID: 18417059 DOI: 10.1007/s11882-008-0027-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Asthma is the result of chronic airway inflammation that is dominated by the presence of eosinophils and CD4(+) T lymphocytes. CD4(+) T cells include several subsets and play a critical role in orchestrating the inflammation, predominantly by secreting interleukin-4 and interleukin-13. Recently, research identified a new subset of T cells, natural killer T (NKT) cells, which also express the CD4 marker. In contrast to conventional CD4(+) T cells, NKT cells do not respond to peptide antigens, but rather to glycolipids. In animal models of asthma, direct activation of NKT cells by glycolipids results in the secretion of extensive amounts of cytokines and triggers the development of airway hyperreactivity. Moreover, in patients with chronic asthma, NKT cells can be found in bronchoalveolar lavage fluids in significant amounts. These data strongly suggest that NKT cells play an important role in asthma pathogenesis.
Collapse
|
47
|
Abstract
Invariant NK T cells (iNKT) bridge the innate and adaptive immune response, being characterized by the ability to use invariant T cell receptors to recognize glycolipid antigens presented by CD1d, leading to an explosive cytokine effector response. As such it has been proposed that iNKT cells perform important roles as both effector and regulatory cells in a wide range of disease settings. These roles have been characterized in experiments depending on the use of iNKT-null mice, due to lack of either CD1d expression or Jalpha18 and the use of CD1d tetramers loaded with the model glycolipid antigen, alpha-galactosylceramide (alphaGalCer). Several studies have examined lung disease, infectious and allergic, in humans and mice. While the lung itself does not carry an exceptionally large population of iNKT cells (compared with, say, the liver), it does appear to be a site at which these cells can exert a profound effect. Several models of bacterial, fungal and viral murine lung infection have been investigated that have sometimes produced conflicting results. Abrogation of iNKT cell function in knockouts is often associated with disease exacerbation, indicating a regulatory role in lung infection. Studies in murine asthma models and in patients have similarly probed the role of iNKT cells in these settings. While there are again somewhat contradictory findings, evidence suggests a likely role for iNKT cells in mediating airway hyper-responsiveness (AHR), but probably not in Th2 polarization or lung eosinophilia. In marginally different models, administration of alphaGalCer has either ameliorated or exacerbated AHR. Different studies of BAL from human asthma patients show variously that there is either a very enlarged population of iNKT cells in the asthmatic lung, or that there is no significant difference from controls. Taken together, there are some observations that argue compellingly for an important role of iNKT cells in the lung, but resolution of some of the contradictory findings may await the development of reagents capable of providing alternative readouts of iNKT activation in these diverse disease settings.
Collapse
Affiliation(s)
- R Boyton
- Lung Immunology Group, National Heart and Lung Institute, Imperial College London, UK.
| |
Collapse
|
48
|
MacDonald AJ, Libri NA, Lustigman S, Barker SJ, Whelan MA, Semper AE, Rosenberg WM. A novel, helminth-derived immunostimulant enhances human recall responses to hepatitis C virus and tetanus toxoid and is dependent on CD56+ cells for its action. Clin Exp Immunol 2008; 152:265-73. [PMID: 18341617 DOI: 10.1111/j.1365-2249.2008.03623.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have described previously an immunostimulant derived from Onchocerca volvulus, the helminth parasite that causes onchocerciasis. Recombinant O. volvulus activation-associated secreted protein-1 (rOv-ASP-1) was a potent adjuvant for antibody and cellular responses to protein, polypeptide and small peptide antigens. Our aims were to determine whether rOv-ASP-1 is immunostimulatory for human peripheral blood mononuclear cells (PBMC) and, if so, whether it could augment cellular responses against human pathogen antigens in vitro. Cytokines from rOv-ASP-1-stimulated human PBMC were measured by a fluorescence activated cell sorter-based multiplex assay. Recall responses of normal healthy donor (NHD) and chronic hepatitis C virus (c-HCV)-infected patient PBMC to tetanus toxoid (TT) or HCV core (HCVco) antigen, respectively, were measured by interferon-gamma enzyme-linked immunospot assays. Interferon-gamma was the predominant cytokine induced by rOv-ASP-1. 77.3% of NHD anti-TT and 88.9% of c-HCV anti-HCVco responses were enhanced by rOv-ASP-1. The immunostimulant effect was dependent upon contact between CD56+ and CD56- fractions of PBMC. We have described a helminth-derived protein that can act as an immunostimulant for human recall responses in vitro to TT and, perhaps more importantly, HCV antigens in patients with chronic HCV infection. Our longer-term goal would be to boost anti-viral responses in chronic infections such as HCV.
Collapse
Affiliation(s)
- A J MacDonald
- iQur Ltd, Mailpoint 811, Southampton General Hospital, Southampton, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Gerhold K, Darcan Y, Hamelmann E. Primary prevention of allergic diseases: current concepts and mechanisms. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2007; 3:105-13. [PMID: 20525115 PMCID: PMC2873606 DOI: 10.1186/1710-1492-3-4-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
: Atopic diseases, the new "epidemic of the twenty-first century" and a central health problem of industrial nations, call for the development of innovative primary prevention strategies. The present review provides an overview of current experimental and immunomodulatory procedures and their underlying mechanisms.
Collapse
Affiliation(s)
- Kerstin Gerhold
- Department of Pediatric Pneumology and Immunology, Charite, Universitätsmedizinm, Berlin, Germany
| | | | | |
Collapse
|
50
|
Zaccone P, Burton OT, Cooke A. Interplay of parasite-driven immune responses and autoimmunity. Trends Parasitol 2007; 24:35-42. [PMID: 18055264 DOI: 10.1016/j.pt.2007.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 09/29/2007] [Accepted: 10/01/2007] [Indexed: 12/24/2022]
Abstract
As more facts emerge regarding the ways in which parasite-derived molecules modulate the host immune response, it is possible to envisage how a lack of infection by agents that once infected humans commonly might contribute to the rise in autoimmune disease. Through effects on cells of both the innate and adaptive arms of the immune response, parasites can orchestrate a range of outcomes that are beneficial not only to parasites, in terms of facilitating their life cycles, but also to their host, in limiting pathology.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | | |
Collapse
|