1
|
Gan J, Zhang W, Pan F, Qiu Z, Chen X. TRIM11 modulates sepsis progression by promoting HOXB9 ubiquitination and inducing the NF-κB signaling pathway. Mol Biol Rep 2025; 52:194. [PMID: 39903348 DOI: 10.1007/s11033-024-10212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
INTRODUCTION The purpose of this investigation was to elucidate the functions of TRIM11 and HOXB9 in the pathogenesis of sepsis, focusing on their influence on inflammation, apoptosis, and the NF-κB signaling pathway. MATERIAL AND METHODS Through public databases, TRIM family genes related to sepsis were screened, and TRIM11 was evaluated as a sepsis biomarker through ROC analysis. The UbiBrowser database screened TRIM11 downstream genes and identified HOXB9 as an essential target. THP-1 cells were stimulated by Lipopolysaccharide (LPS) to induce inflammation and simulate sepsis. Flow cytometry, Enzyme-linked immunosorbent assay, and Western blot experiments were used to detect changes in cell apoptosis rate, apoptosis-related proteins, and inflammatory cytokines after TRIM11 and HOXB9 were silenced. Additionally, we investigated the ubiquitination interaction between TRIM11 and HOXB9 and their effects on the NF-κB signaling pathway. RESULTS Our findings demonstrated that sepsis patient samples had elevated levels of TRIM11 expression and had high clinical diagnostic value. Functional experiments showed that the knockdown of TRIM11 significantly alleviated LPS-induced THP-1 cell apoptosis and inflammation, while the knockdown of HOXB9 did the opposite. The simultaneous downregulation of TRIM11 and HOXB9 balanced these responses, suggesting they play a key role in regulating sepsis-associated inflammation and apoptosis. In addition, TRIM11 regulated the NF-κB signaling pathway by reversing HOXB9-induced activation through ubiquitination, suggesting a novel regulatory mechanism in the pathogenesis of sepsis. CONCLUSIONS Our findings highlight the interaction between TRIM11 and HOXB9 in regulating inflammation and apoptosis pathways, providing new insights into sepsis treatment.
Collapse
Affiliation(s)
- Jiaqi Gan
- Department of General Medicine, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China
| | - Wei Zhang
- Emergency Medical Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China
| | - Fei Pan
- Department of General Medicine, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China
| | - Zhiyun Qiu
- Emergency Medical Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.
| | - Xiaobing Chen
- The First People's Hospital of Lianyungang Graduate Student Training Base, Jinzhou Medical University, No.6 East Zhenhua Road, Lianyungang, 222061, China.
| |
Collapse
|
2
|
Fan H, Qiao Z, Li J, Shang G, Shang C, Chen S, Leng Z, Su H, Kou H, Liu H. Recent advances in senescence-associated secretory phenotype and osteoporosis. Heliyon 2024; 10:e25538. [PMID: 38375248 PMCID: PMC10875379 DOI: 10.1016/j.heliyon.2024.e25538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
The worldwide elderly population is on the rise, and aging is a major osteoporosis risk factor. Senescent cells accumulation can have a detrimental effect the body as we age. The senescence-associated secretory phenotype (SASP), an essential cellular senescence hallmark, is an important mechanism connecting cellular senescence to osteoporosis. This review describes in detail the characteristics of SASPs and their regulatory agencies, and shed fresh light on how SASPs from different senescent cells contribute to osteoporosis development. Furthermore, we summarized various innovative therapy techniques that target SASPs to lower the burden of osteoporosis in the elderly and discussed the potential challenges of SASPs-based therapy for osteoporosis as a new clinical trial.
Collapse
Affiliation(s)
- Haonan Fan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhi Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang 471000, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Chunfeng Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huifang Su
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
3
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Qu Z, Lu X, Qu Y, Tao T, Liu X, Li X. Attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities induced by tunicamycin or hypoxia/reoxygenation in neonatal rat cardiomyocytes by SERCA2a overexpression. Int J Mol Med 2021; 47:113. [PMID: 33907834 PMCID: PMC8075284 DOI: 10.3892/ijmm.2021.4946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of the overexpression of sarco/endoplasmic reticulum Ca2+‑ATPase (SERCA2a) on endoplasmic reticulum (ER) stress (ERS)‑associated inflammation in neonatal rat cardiomyocytes (NRCMs) induced by tunicamycin (TM) or hypoxia/reoxygenation (H/R). The optimal multiplicity of infection (MOI) was 2 pfu/cell. Neonatal Sprague‑Dawley rat cardiomyocytes cultured in vitro were infected with adenoviral vectors carrying SERCA2a or enhanced green fluorescent protein genes, the latter used as a control. At 48 h following gene transfer, the NRCMs were treated with TM (10 µg/ml) or subjected to H/R to induce ERS. The results of electrophoretic mobility shift assay (EMSA) revealed that overexpression of SERCA2a attenuated the upregulation of nuclear factor (NF)‑κB and activator protein‑1 (AP‑1) DNA‑binding activities induced by TM or H/R. Western blot analysis and semi‑quantitative RT‑PCR revealed that the overexpression of SERCA2a attenuated the activation of the inositol‑requiring 1α (IRE1α) signaling pathway and ERS‑associated apoptosis induced by TM. The overexpression of SERCA2a also decreased the level of phospho‑p65 (Ser536) in the nucleus, as assessed by western blot analysis. However, the overexpression of SERCA2a induced the further nuclear translocation of NF‑κB p65 and higher levels of tumor necrosis factor (TNF)‑α transcripts in the NRCMs, indicating the occurrence of the ER overload response (EOR). Therefore, the overexpression of SERCA2a has a 'double‑edged sword' effect on ERS‑associated inflammation. On the one hand, it attenuates ERS and the activation of the IRE1α signaling pathway induced by TM, resulting in the attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities in the nucleus, and on the other hand, it induces EOR, leading to the further nuclear translocation of NF‑κB and the transcription of TNF‑α. The preceding EOR may precondition the NRCMs against subsequent ERS induced by TM. Further studies using adult rat cardiomyocytes are required to prevent the interference of EOR. The findings of the present study may enhance the current understanding of the role of SERCA2a in cardiomyocytes.
Collapse
Affiliation(s)
- Zhigang Qu
- Medical School of Chinese PLA, Beijing 100853, P.R. China
- Department of General Practice, The 900th Hospital of The Joint Logistic Support Force, Fuzhou, Fujian 350025, P.R. China
| | - Xiaochun Lu
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Qu
- Department of Functional Examination, Penglai Traditional Chinese Medicine Hospital, Penglai, Shandong 265600, P.R. China
| | - Tianqi Tao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoying Li
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
5
|
Welz B, Bikker R, Hoffmeister L, Diekmann M, Christmann M, Brand K, Huber R. Activation of GSK3 Prevents Termination of TNF-Induced Signaling. J Inflamm Res 2021; 14:1717-1730. [PMID: 33986607 PMCID: PMC8111165 DOI: 10.2147/jir.s300806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Termination of TNF-induced signaling plays a key role in the resolution of inflammation with dysregulations leading to severe pathophysiological conditions (sepsis, chronic inflammatory disease, cancer). Since a recent phospho-proteome analysis in human monocytes suggested GSK3 as a relevant kinase during signal termination, we aimed at further elucidating its role in this context. Materials and Methods For the analyses, THP-1 monocytic cells and primary human monocytes were used. Staurosporine (Stauro) was applied to activate GSK3 by inhibiting kinases that mediate inhibitory GSK3α/β-Ser21/9 phosphorylation (eg, PKC). For GSK3 inhibition, Kenpaulone (Ken) was used. GSK3- and PKC-siRNAs were applied for knockdown experiments. Protein expression and phosphorylation were assessed by Western blot or ELISA and mRNA expression by qPCR. NF-κB activation was addressed using reporter gene assays. Results Constitutive GSK3β and PKCβ expression and GSK3α/β-Ser21/9 and PKCα/βII-Thr638/641 phosphorylation were not altered during TNF long-term incubation. Stauro-induced GSK3 activation (demonstrated by Bcl3 reduction) prevented termination of TNF-induced signaling as reflected by strongly elevated IL-8 expression (used as an indicator) following TNF long-term incubation. A similar increase was observed in TNF short-term-exposed cells, and this effect was inhibited by Ken. PKCα/β-knockdown modestly increased, whereas GSK3α/β-knockdown inhibited TNF-induced IL-8 expression. TNF-dependent activation of two NF-κB-dependent indicator plasmids was enhanced by Stauro, demonstrating transcriptional effects. A TNF-induced increase in p65-Ser536 phosphorylation was further enhanced by Stauro, whereas IκBα proteolysis and IKKα/β-Ser176/180 phosphorylation were not affected. Moreover, PKCβ-knockdown reduced levels of Bcl3. A20 and IκBα mRNA, both coding for signaling inhibitors, were dramatically less affected under our conditions when compared to IL-8, suggesting differential transcriptional effects. Conclusion Our results suggest that GSK3 activation is involved in preventing the termination of TNF-induced signaling. Our data demonstrate that activation of GSK3 – either pathophysiologically or pharmacologically induced – may destroy the finely balanced condition necessary for the termination of inflammation-associated signaling.
Collapse
Affiliation(s)
- Bastian Welz
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Rolf Bikker
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Mareike Diekmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
6
|
Appelberg S, Gupta S, Svensson Akusjärvi S, Ambikan AT, Mikaeloff F, Saccon E, Végvári Á, Benfeitas R, Sperk M, Ståhlberg M, Krishnan S, Singh K, Penninger JM, Mirazimi A, Neogi U. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 2020; 9:1748-1760. [PMID: 32691695 PMCID: PMC7473213 DOI: 10.1080/22221751.2020.1799723] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
How severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections engage cellular host pathways and innate immunity in infected cells remains largely elusive. We performed an integrative proteo-transcriptomics analysis in SARS-CoV-2 infected Huh7 cells to map the cellular response to the invading virus over time. We identified four pathways, ErbB, HIF-1, mTOR and TNF signaling, among others that were markedly modulated during the course of the SARS-CoV-2 infection in vitro. Western blot validation of the downstream effector molecules of these pathways revealed a dose-dependent activation of Akt, mTOR, S6K1 and 4E-BP1 at 24 hours post infection (hpi). However, we found a significant inhibition of HIF-1α through 24hpi and 48hpi of the infection, suggesting a crosstalk between the SARS-CoV-2 and the Akt/mTOR/HIF-1 signaling pathways. Inhibition of the mTOR signaling pathway using Akt inhibitor MK-2206 showed a significant reduction in virus production. Further investigations are required to better understand the molecular sequelae in order to guide potential therapy in the management of severe coronavirus disease 2019 (COVID-19) patients.
Collapse
Affiliation(s)
| | - Soham Gupta
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sara Svensson Akusjärvi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elisa Saccon
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marie Ståhlberg
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kamal Singh
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Veterinary Pathobiology and the Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, Canada
| | - Ali Mirazimi
- Public Health Agency of Sweden, Solna, Sweden.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,National Veterinary Institute, Uppsala, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Veterinary Pathobiology and the Bond Life Science Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Caveolar communication with xenobiotic-stalled ribosomes compromises gut barrier integrity. Commun Biol 2020; 3:270. [PMID: 32461676 PMCID: PMC7253476 DOI: 10.1038/s42003-020-0994-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
In response to internal and external insults, the intestinal lining undergoes various types of epithelial adaptation or pathologic distress via stress-responsive eIF2α kinase signaling and subsequent cellular reprogramming. As a vital platform for growth factor-linked adaptive signaling, caveolae were evaluated for epithelial modulation of the insulted gut. Patients under ulcerative insult displayed enhanced expression of caveolin-1, the main structural component of caveolae, which was positively associated with expression of protein kinase R (PKR), the ribosomal stress-responsive eIF2α kinase. PKR-linked biological responses were simulated in experimental gut models of ribosome-inactivating stress using mice and Caenorhabditis elegans. Caveolar activation counteracted the expression of wound-protective epidermal growth factor receptor (EGFR) and its target genes, such as chemokines that were pivotal for epithelial integrity in the ribosome-inactivated gut. Mechanistic findings regarding ribosomal inactivation-associated disorders in the gut barrier provide crucial molecular evidence for detrimental caveolar actions against EGFR-mediated epithelial protection in patients with IBD.
Collapse
|
8
|
Kumari R, Guo Z, Kumar A, Wiens M, Gangappa S, Katz JM, Cox NJ, Lal RB, Sarkar D, Fisher PB, García-Sastre A, Fujita T, Kumar V, Sambhara S, Ranjan P, Lal SK. Influenza virus NS1- C/EBPβ gene regulatory complex inhibits RIG-I transcription. Antiviral Res 2020; 176:104747. [PMID: 32092305 PMCID: PMC10773002 DOI: 10.1016/j.antiviral.2020.104747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex. C/EBPβ overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPβ. Further, C/EBPβ phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.
Collapse
Affiliation(s)
- Rashmi Kumari
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amrita Kumar
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India
| | - Mayim Wiens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shivaprakash Gangappa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nancy J Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Renu B Lal
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Department of Medicine Division of Infectious Diseases and Global Health, Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India; Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110070, India
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Sunil K Lal
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India; School of Science, Tropical Medicine and Biology Multidisciplinary Plateform, Monash University Malaysia, 47500, Bandar Sunway, Selangor DE, Malaysia.
| |
Collapse
|
9
|
GSK3: A Kinase Balancing Promotion and Resolution of Inflammation. Cells 2020; 9:cells9040820. [PMID: 32231133 PMCID: PMC7226814 DOI: 10.3390/cells9040820] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
GSK3 has been implicated for years in the regulation of inflammation and addressed in a plethora of scientific reports using a variety of experimental (disease) models and approaches. However, the specific role of GSK3 in the inflammatory process is still not fully understood and controversially discussed. Following a detailed overview of structure, function, and various regulatory levels, this review focusses on the immunoregulatory functions of GSK3, including the current knowledge obtained from animal models. Its impact on pro-inflammatory cytokine/chemokine profiles, bacterial/viral infections, and the modulation of associated pro-inflammatory transcriptional and signaling pathways is discussed. Moreover, GSK3 contributes to the resolution of inflammation on multiple levels, e.g., via the regulation of pro-resolving mediators, the clearance of apoptotic immune cells, and tissue repair processes. The influence of GSK3 on the development of different forms of stimulation tolerance is also addressed. Collectively, the role of GSK3 as a kinase balancing the initiation/perpetuation and the amelioration/resolution of inflammation is highlighted.
Collapse
|
10
|
Monocytes Undergo Functional Reprogramming to Generate Immunosuppression through HIF-1 α Signaling Pathway in the Late Phase of Sepsis. Mediators Inflamm 2020; 2020:4235909. [PMID: 32089644 PMCID: PMC7029303 DOI: 10.1155/2020/4235909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023] Open
Abstract
Severe pneumonia with sepsis is characterized by a dysregulated inflammatory response of endotoxin. In our study, we attempted to investigate the roles of the immune guardian cells (monocytes) in the immune-inflammatory response of severe pneumonia-induced sepsis. We performed analysis in the blood samples of human and animals with ELISA, western blot, flow cytometry (FCM) methods, etc. Results showed that the proinflammatory status shifted to hypoinflammatory phases during the sepsis process. In a clinical study, the levels of IL-1β, IL-6, TNF-α, etc., except for IL-10, were inhibited in the late phase of sepsis, while, in an animal study, the immune suppression status was attenuated with administration of the adenovirus Ade-HIF-1α. Conversely, the amount of IL-10 was lower in the adenovirus Ade-HIF-1α group compared with the sepsis model group and the Ade-control group. Moreover, in the clinical study, the programmed cell death-ligand 1 (PD-L1) was overexpressed in monocytes in the late phase of sepsis, while the expression of proteins HIF-1α and STAT3 was decreased in the late phase of sepsis. However, in the animal study, we found that the HIF-1α factor facilitated the inflammatory response. The expression of the proteins HIF-1α and STAT3 was increased, and the PD-L1 protein was decreased with the adenovirus Ade-HIF-1α administration compared with the rats without Ade-HIF-1α injection and with the Ade-control injection. Additionally, the proteins HIF-1α and STAT3 were coregulated at transcriptional levels during the inflammatory responses of sepsis. Taken together, monocytes undergo reprogramming to generate immunosuppression through the HIF-1α signaling pathway in the late phase of sepsis.
Collapse
|
11
|
Nikiforov NG, Wetzker R, Kubekina MV, Petukhova AV, Kirichenko TV, Orekhov AN. Trained Circulating Monocytes in Atherosclerosis: Ex Vivo Model Approach. Front Pharmacol 2019; 10:725. [PMID: 31316385 PMCID: PMC6610245 DOI: 10.3389/fphar.2019.00725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/05/2019] [Indexed: 11/25/2022] Open
Abstract
Inflammation is one of the key processes in the pathogenesis of atherosclerosis. Numerous studies are focused on the local inflammatory processes associated with atherosclerotic plaque initiation and progression. However, changes in the activation state of circulating monocytes, the main components of the innate immunity, may precede the local events. In this article, we discuss tolerance, which results in decreased ability of monocytes to be activated by pathogens and other stimuli, and training, the ability of monocyte to potentiate the response to pathological stimuli, and their relation to atherosclerosis. We also present previously unpublished results of the experiments that our group performed with monocytes/macrophages isolated from atherosclerosis patients. Our data allow assuming the existence of relationship between the formation of monocyte training and the degree of atherosclerosis progression. The suppression of trained immunity ex vivo seems to be a perspective model for searching anti-atherogenic drugs.
Collapse
Affiliation(s)
- Nikita G Nikiforov
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Institute of Gene Biology, Centre of Collective Usage, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Marina V Kubekina
- Institute of Gene Biology, Centre of Collective Usage, Moscow, Russia
| | - Anna V Petukhova
- Institute of Gene Biology, Centre of Collective Usage, Moscow, Russia
| | - Tatiana V Kirichenko
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
12
|
Elevated pre-activation basal level of nuclear NF-κB in native macrophages accelerates LPS-induced translocation of cytosolic NF-κB into the cell nucleus. Sci Rep 2019; 9:4563. [PMID: 30872589 PMCID: PMC6418260 DOI: 10.1038/s41598-018-36052-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Signaling via Toll-like receptor 4 (TLR4) in macrophages constitutes an essential part of the innate immune response to bacterial infections. Detailed and quantified descriptions of TLR4 signal transduction would help to understand and exploit the first-line response of innate immune defense. To date, most mathematical modelling studies were performed on transformed cell lines. However, properties of primary macrophages differ significantly. We therefore studied TLR4-dependent activation of NF-κB transcription factor in bone marrow-derived and peritoneal primary macrophages. We demonstrate that the kinetics of NF-κB phosphorylation and nuclear translocation induced by a wide range of bacterial lipopolysaccharide (LPS) concentrations in primary macrophages is much faster than previously reported for macrophage cell lines. We used a comprehensive combination of experiments and mathematical modeling to understand the mechanisms of this rapid response. We found that elevated basal NF-κB in the nuclei of primary macrophages is a mechanism increasing native macrophage sensitivity and response speed to the infection. Such pre-activated state of macrophages accelerates the NF-κB translocation kinetics in response to low agonist concentrations. These findings enabled us to refine and construct a new model combining both NF-κB phosphorylation and translocation processes and predict the existence of a negative feedback loop inactivating phosphorylated NF-κB.
Collapse
|
13
|
Welz B, Bikker R, Junemann J, Christmann M, Neumann K, Weber M, Hoffmeister L, Preuß K, Pich A, Huber R, Brand K. Proteome and Phosphoproteome Analysis in TNF Long Term-Exposed Primary Human Monocytes. Int J Mol Sci 2019; 20:E1241. [PMID: 30871024 PMCID: PMC6429050 DOI: 10.3390/ijms20051241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
Abstract
To better understand the inflammation-associated mechanisms modulating and terminating tumor necrosis factor (TNF-)induced signal transduction and the development of TNF tolerance, we analyzed both the proteome and the phosphoproteome in TNF long term-incubated (i.e., 48 h) primary human monocytes using liquid chromatography-mass spectrometry. Our analyses revealed the presence of a defined set of proteins characterized by reproducible changes in expression and phosphorylation patterns in long term TNF-treated samples. In total, 148 proteins and 569 phosphopeptides were significantly regulated (103 proteins increased, 45 proteins decreased; 377 peptides with increased and 192 peptides with decreased phosphorylation). A variety of these proteins are associated with the non-canonical nuclear factor κB (NF-κB) pathway (nuclear factor κB (NFKB) 2, v-rel reticuloendotheliosis viral oncogene homolog (REL) B, indolamin-2,3-dioxygenase (IDO), kynureninase (KYNU)) or involved in the negative regulation of the canonical NF-κB system. Within the phosphopeptides, binding motifs for specific kinases were identified. Glycogen synthase kinase (GSK) 3 proved to be a promising candidate, since it targets NF-κB inhibiting factors, such as CCAAT/enhancer binding protein (C/EBP) β. Our experiments demonstrate that both proteome and phosphoproteome analysis can be effectively applied to study protein/phosphorylation patterns of primary monocytes. These results provide new regulatory candidates and evidence for a complex network of specific but synergistically acting/cooperating mechanisms enabling the affected cells to resist sustained TNF exposure and resulting in the resolution of inflammation.
Collapse
Affiliation(s)
- Bastian Welz
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Rolf Bikker
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Johannes Junemann
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany; (J.J.); (A.P.)
- Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Mareike Weber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Katharina Preuß
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany; (J.J.); (A.P.)
- Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (B.W.); (R.B.); (M.C.); (K.N.); (M.W.); (L.H.); (K.P.); (R.H.)
| |
Collapse
|
14
|
TNF Tolerance in Monocytes and Macrophages: Characteristics and Molecular Mechanisms. J Immunol Res 2017; 2017:9570129. [PMID: 29250561 PMCID: PMC5698820 DOI: 10.1155/2017/9570129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor (TNF) tolerance in monocytes and macrophages means that preexposure to TNF reduces the sensitivity in these cells to a subsequent restimulation with this cytokine. Differential effects arise following preincubation with both low and high doses of TNF resulting in absolute as well as induction tolerance affecting specific immunologically relevant gene sets. In this review article, we summarize the relevance of TNF tolerance in vivo and the molecular mechanisms underlying these forms of tolerance including the role of transcription factors and signaling systems. In addition, the characteristics of cross-tolerance between TNF and lipopolysaccharide (LPS) as well as pathophysiological aspects of TNF tolerance are discussed. We conclude that TNF tolerance may represent a protective mechanism involved in the termination of inflammation and preventing excessive or prolonged inflammation. Otherwise, tolerance may also be a trigger of immune paralysis thus contributing to severe inflammatory diseases such as sepsis. An improved understanding of TNF tolerance will presumably facilitate the implementation of diagnostic or therapeutic approaches to more precisely assess and treat inflammation-related diseases.
Collapse
|
15
|
Bikker R, Christmann M, Preuß K, Welz B, Friesenhagen J, Dittrich-Breiholz O, Huber R, Brand K. TNF phase III signalling in tolerant cells is tightly controlled by A20 and CYLD. Cell Signal 2017. [DOI: 10.1016/j.cellsig.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Noack K, Mahendrarajah N, Hennig D, Schmidt L, Grebien F, Hildebrand D, Christmann M, Kaina B, Sellmer A, Mahboobi S, Kubatzky K, Heinzel T, Krämer OH. Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells. Arch Toxicol 2016; 91:2191-2208. [PMID: 27807597 DOI: 10.1007/s00204-016-1878-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I-IV), critically control the development and progression of APL. We set out to clarify the parameters that determine the interaction between ATRA and histone deacetylase inhibitors (HDACi). Our assays included drugs against class I HDACs (MS-275, VPA, and FK228), pan-HDACi (LBH589, SAHA), and the novel HDAC6-selective compound Marbostat-100. We demonstrate that ATRA protects APL cells from cytotoxic effects of SAHA, MS-275, and Marbostat-100. However, LBH589 and FK228, which have a superior substrate-inhibitor dissociation constant (Ki) for the class I deacetylases HDAC1, 2, 3, are resistant against ATRA-dependent cytoprotective effects. We further show that HDACi evoke DNA damage, measured as induction of phosphorylated histone H2AX and by the comet assay. The ability of ATRA to protect APL cells from the induction of p-H2AX by HDACi is a readout for the cytoprotective effects of ATRA. Moreover, ATRA increases the fraction of cells in the G1 phase, together with an accumulation of the cyclin-dependent kinase inhibitor p21 and a reduced expression of thymidylate synthase (TdS). In contrast, the ATRA-dependent activation of the transcription factors STAT1, NF-κB, and C/EBP hardly influences the responses of APL cells to HDACi. We conclude that the affinity of HDACi for class I HDACs determines whether such drugs can kill naïve and maturated APL cells.
Collapse
Affiliation(s)
- Katrin Noack
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Center for Molecular Biomedicine (CMB), Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Nisintha Mahendrarajah
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Dorle Hennig
- Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Luisa Schmidt
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Katharina Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine (CMB), Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.
| |
Collapse
|
17
|
Pak JH, Son WC, Seo SB, Hong SJ, Sohn WM, Na BK, Kim TS. Peroxiredoxin 6 expression is inversely correlated with nuclear factor-κB activation during Clonorchis sinensis infestation. Free Radic Biol Med 2016; 99:273-285. [PMID: 27554973 DOI: 10.1016/j.freeradbiomed.2016.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke. Its infection promotes persistent oxidative stress and chronic inflammation environments in the bile duct and surrounding liver tissues owing to direct contact with worms and their excretory-secretory products (ESPs), provoking epithelial hyperplasia, periductal fibrosis, and cholangiocarcinogenesis. We examined the reciprocal regulation of two ESP-induced redox-active proteins, NF-κB and peroxiredoxin 6 (Prdx6), during C. sinensis infection. Prdx6 overexpression suppressed intracellular free-radical generation by inhibiting NADPH oxidase2 and inducible nitric oxide synthase activation in the ESP-treated cholangiocarcinoma cells, substantially attenuating NF-κB-mediated inflammation. NF-κB overexpression decreased Prdx6 transcription levels by binding to two κB sites within the promoter. This transcriptional repression was compensated for by other ESP-induced redox-active transcription factors, including erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor 1α (HIF1α), and CCAAT/enhancer-binding protein β (C/EBPβ). Distribution of immunoreactive Prdx6 and NF-κB was distinct in the early stages of infection in mouse livers but shared concomitant localization in the later stages. The intensity and extent of their immunoreactive staining in infected mouse livers are proportional to lesion severity and infection duration. The constitutive elevations of Prdx6 and NF-κB during C. sinensis infection may be associated with more severe persistent hepatobiliary abnormalities mediated by clonorchiasis.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 388-1 Pungnap-2 dong, Songpa-gu, Seoul 138-736, Republic of Korea.
| | - Woo Chan Son
- Department of Pathology, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology and Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Tong-Soo Kim
- Department of Parasitology, Inha University School of Medicine, Incheon 400-103, Republic of Korea
| |
Collapse
|
18
|
Pantsulaia I, Ciszewski WM, Niewiarowska J. Senescent endothelial cells: Potential modulators of immunosenescence and ageing. Ageing Res Rev 2016; 29:13-25. [PMID: 27235855 DOI: 10.1016/j.arr.2016.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Recent studies have demonstrated that the accumulation of senescent endothelial cells may be the primary cause of cardiovascular diseases. Because of their multifunctional properties, endothelial cells actively take part in stimulating the immune system and inflammation. In addition, ageing is characterized by the progressive deterioration of immune cells and a decline in the activation of the immune response. This results in a loss of the primary function of the immune system, which is eliminating damaged/senescent cells and neutralizing potential sources of harmful inflammatory reactions. In this review, we discuss cellular senescence and the senescence-associated secretory phenotype (SASP) of endothelial cells and summarize the link between endothelial cells and immunosenescence. We describe the possibility that age-related changes in Toll-like receptors (TLRs) and microRNAs can affect the phenotypes of senescent endothelial cells and immune cells via a negative feedback loop aimed at restraining the excessive pro-inflammatory response. This review also addresses the following questions: how do senescent endothelial cells influence ageing or age-related changes in the inflammatory burden; what is the connection between ECs and immunosenescence, and what are the crucial hypothetical pathways linking endothelial cells and the immune system during ageing.
Collapse
|
19
|
Bułdak Ł, Machnik G, Bułdak RJ, Łabuzek K, Bołdys A, Okopień B. Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1103-15. [PMID: 27424158 DOI: 10.1007/s00210-016-1277-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022]
Abstract
Metformin and exenatide are effective antidiabetic drugs, and they seem to have pleiotropic properties improving cardiovascular outcomes. Macrophages' phenotype is essential in the development of atherosclerosis, and it can be modified during antidiabetic therapy, resulting in attenuated atherogenesis. The mechanism orchestrating this phenomenon is not fully clear. We examined the impact of exenatide and metformin on the level of TNF alpha, MCP-1, reactive oxygen species (ROS), and the activation of mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NFκB), and CCAAT/enhancer-binding protein beta (C/EBP beta) in human monocytes/macrophages. We found that both drugs reduced levels of TNF alpha, ROS, and NFκB binding activity to a similar extent. Compared to metformin, exenatide was more effective in reducing MCP-1 levels. We noted that Compound C (AMPK inhibitor) reduced the impact of exenatide on cytokines, ROS, and NFκB in cultures. Both drugs elevated the C/EBP beta phosphorylation level. Experiments on MAPKs showed effective inhibitory potential of exenatide toward p38, JNK, and ERK, whereas metformin inhibited JNK and ERK only. Exenatide was more effective in the inhibition of JNK than metformin. Interestingly, an in vitro setting additive effect of drugs was absent. In conclusion, here, we report that metformin and exenatide inhibit the proinflammatory phenotype of human monocytes/macrophages via influence on MAPK, C/EBP beta, and NFκB. Exenatide was more effective than metformin in reducing MCP-1 expression and JNK activity. We also showed that some effects of exenatide relied on AMPK activation. This shed light on the possible mechanisms responsible for pleiotropic effects of metformin and exenatide.
Collapse
Affiliation(s)
- Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland.
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Rafał Jakub Bułdak
- Department of Physiology, School of Medicine in Zabrze, Medical University of Silesia, Jordana 19, 41-808, Zabrze, Poland
| | - Krzysztof Łabuzek
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| |
Collapse
|
20
|
Sawada S, Chosa N, Takizawa N, Yokota J, Igarashi Y, Tomoda K, Kondo H, Yaegashi T, Ishisaki A. Establishment of mesenchymal stem cell lines derived from the bone marrow of green fluorescent protein-transgenic mice exhibiting a diversity in intracellular transforming growth factor-β and bone morphogenetic protein signaling. Mol Med Rep 2016; 13:2023-31. [PMID: 26781600 PMCID: PMC4768972 DOI: 10.3892/mmr.2016.4794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 08/04/2015] [Indexed: 12/28/2022] Open
Abstract
Cytokines and their intercellular signals regulate the multipotency of mesenchymal stem cells (MSCs). The present study established the MSC lines SG-2, -3, and -5 from the bone marrow of green fluorescent protein (GFP)-transgenic mice. These cell lines clearly expressed mouse MSC markers Sca-1 and CD44, and SG-2 and -5 cells retained the potential for osteogenic and adipogenic differentiation in the absence of members of the transforming growth factor (TGF)-β superfamily. By contrast, SG-3 cells only retained adipogenic differentiation potential. Analysis of cytokine and cytokine receptor expression in these SG cell lines showed that bone morphogenetic protein (BMP) receptor 1B was most highly expressed in the SG-3 cells, which underwent osteogenesis in response to BMP, while TGF-β receptor II was most highly expressed in SG-3 and -5 cells. However, it was unexpectedly noted that phosphorylation of Smad 2, a major transcription factor, was induced by TGF-β1 in SG-2 cells but not in SG-3 or -5 cells. Furthermore, TGF-β1 clearly induced the expression of Smad-interacting transcription factor CCAAT/enhancer binding protein-β in SG-2 but not in SG-3 or -5 cells. These results demonstrated the establishment of TGF-β-responsive SG-2 MSCs, BMP-responsive SG-3 MSCs and TGF-β/BMP-unresponsive SG-5 MSCs, each of which was able to be traced by GFP fluorescence after transplantation into in vivo experimental models. In conclusion, the present study suggested that these cell lines may be used to explore how the TGF-β superfamily affects the proliferation and differentiation status of MSCs in vivo.
Collapse
Affiliation(s)
- Shunsuke Sawada
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028‑3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028‑3694, Japan
| | - Naoki Takizawa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028‑3694, Japan
| | - Jun Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028‑3694, Japan
| | - Yasuyuki Igarashi
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028‑3694, Japan
| | - Koichi Tomoda
- Department of Otolaryngology, Dentistry and Oral Surgery, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology, Iwate Medical University School of Dentistry, Morioka, Iwate 020‑8505, Japan
| | - Takashi Yaegashi
- Division of Periodontology, Department of Conservative Dentistry, Iwate Medical University School of Dentistry, Morioka, Iwate 020‑8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028‑3694, Japan
| |
Collapse
|
21
|
Huber R, Panterodt T, Welz B, Christmann M, Friesenhagen J, Westphal A, Pietsch D, Brand K. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation. PLoS One 2015; 10:e0144338. [PMID: 26646662 PMCID: PMC4672875 DOI: 10.1371/journal.pone.0144338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022] Open
Abstract
The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation.
Collapse
Affiliation(s)
- René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Panterodt
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Bastian Welz
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Judith Friesenhagen
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Westphal
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Daniel Pietsch
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
- * E-mail:
| |
Collapse
|
22
|
Günther J, Vogt N, Hampel K, Bikker R, Page S, Müller B, Kandemir J, Kracht M, Dittrich-Breiholz O, Huber R, Brand K. Identification of two forms of TNF tolerance in human monocytes: differential inhibition of NF-κB/AP-1- and PP1-associated signaling. THE JOURNAL OF IMMUNOLOGY 2014; 192:3143-55. [PMID: 24574500 DOI: 10.4049/jimmunol.1301610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular basis of TNF tolerance is poorly understood. In human monocytes we detected two forms of TNF refractoriness, as follows: absolute tolerance was selective, dose dependently affecting a small group of powerful effector molecules; induction tolerance represented a more general phenomenon. Preincubation with a high TNF dose induces both absolute and induction tolerance, whereas low-dose preincubation predominantly mediates absolute tolerance. In cells preincubated with the high TNF dose, we observed blockade of IκBα phosphorylation/proteolysis and nuclear p65 translocation. More prominent in cells preincubated with the high dose, reduced basal IκBα levels were found, accompanied by increased IκBα degradation, suggesting an increased IκBα turnover. In addition, a nuclear elevation of p50 was detected in tolerant cells, which was more visible following high-dose preincubation. TNF-induced phosphorylation of p65-Ser(536), p38, and c-jun was inhibited, and basal inhibitory p65-Ser(468) phosphorylation was increased in tolerant cells. TNF tolerance induced by the low preincubation dose is mediated by glycogen synthesis kinase-3, whereas high-dose preincubation-mediated tolerance is regulated by A20/glycogen synthesis kinase-3 and protein phosphatase 1-dependent mechanisms. To our knowledge, we present the first genome-wide analysis of TNF tolerance in monocytic cells, which differentially inhibits NF-κB/AP-1-associated signaling and shifts the kinase/phosphatase balance. These forms of refractoriness may provide a cellular paradigm for resolution of inflammation and may be involved in immune paralysis.
Collapse
Affiliation(s)
- Johannes Günther
- Institute of Clinical Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu J, Simmons SO, Pei R. Regulation of IL-8 promoter activity by verrucarin A in human monocytic THP-1 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1125-1140. [PMID: 25119735 DOI: 10.1080/15287394.2013.874246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Macrocyclic trichothecenes have been frequently detected in fungi in water-damaged buildings and exhibited higher toxicity than the well-studied trichothecenes; however, the mechanism underlying their toxicity has been poorly understood. In this study, transcriptional regulation of the cytokine interleukin (IL)-8 by a macrocyclic trichothecene, verrucarin A (VA), in human monocytic THP-1 cells is reported. Consistent with previous findings, VA was 100-fold more cytotoxic than deoxynivalenol (DON), while ochratoxin A (OA) was not cytotoxic. In cells transduced with the wild-type IL-8 promoter luciferase construct, VA induced a biphasic dose response composed of an upregulation of luciferase expression at low concentrations of 0.01-1 ng/ml and a downregulation at high levels of 10 ng/ml and higher. In contrast, DON induced a sigmoid-shaped dose response with the EC50 of 11.6 ng/ml, while OA did not markedly affect the IL-8 expression. When cells were transduced with IL-8 promoter with a mutation of transcription factor nuclear factor-κB (NF-κB)-binding site, VA (1 ng/ml), DON (1000 ng/ml), and tumor necrosis factor (TNF) α (20 ng/ml)-induced luciferase expression were impaired. In addition, the NF-κB inhibitor caffeic acid phenethyl ester inhibited VA-, DON-, and TNFα-induced luciferase expression. Mutation of the CCAAT/enhancer-binding protein (CEBP) β binding site of the IL-8 promoter affected only DON-, but not VA- and TNFα-induced luciferase expression. Taken together, these results suggested that VA activated IL-8 promoter via an NF-κB-dependent, but not CEBPβ-dependent, pathway in human monocytes.
Collapse
Affiliation(s)
- Jun Liu
- a Department of Civil and Environmental Engineering , University of Texas at San Antonio , San Antonio , Texas , USA
| | | | | |
Collapse
|
24
|
Fuchs F, Damm J, Gerstberger R, Roth J, Rummel C. Activation of the inflammatory transcription factor nuclear factor interleukin-6 during inflammatory and psychological stress in the brain. J Neuroinflammation 2013; 10:140. [PMID: 24279606 PMCID: PMC4222273 DOI: 10.1186/1742-2094-10-140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transcription factor nuclear factor interleukin 6 (NF-IL6) is known to be activated by various inflammatory stimuli in the brain. Interestingly, we recently detected NF-IL6-activation within the hypothalamus-pituitary-adrenal (HPA)-axis of rats after systemic lipopolysaccharide (LPS)-injection. Thus, the aim of the present study was to investigate whether NF-IL6 is activated during either, inflammatory, or psychological stress in the rat brain. METHODS Rats were challenged with either the inflammatory stimulus LPS (100 μg/kg, i.p.) or exposed to a novel environment. Core body temperature (Tb) and motor activity were monitored using telemetry, animals were killed at different time points, brains and blood removed, and primary cell cultures of the anterior pituitary lobe (AL) were investigated. Analyses were performed using immunohistochemistry, RT-PCR, and cytokine-specific bioassays. RESULTS Stress stimulation by a novel environment increased NF-IL6-immunoreactivity (IR) in the pituitary's perivascular macrophages and hypothalamic paraventricular cells and a rise in Tb lasting approximately 2 h. LPS stimulation lead to NF-IL6-IR in several additional cell types including ACTH-IR-positive corticotrope cells in vivo and in vitro. Two other proinflammatory transcription factors, namely signal transducer and activator of transcription (STAT)3 and NFκB, were significantly activated and partially colocalized with NF-IL6-IR in cells of the AL only after LPS-stimulation, but not following psychological stress. In vitro NF-IL6-activation was associated with induction and secretion of TNFα in folliculostellate cells, which could be antagonized by the JAK-STAT-inhibitor AG490. CONCLUSIONS We revealed, for the first time, that NF-IL6 activation occurs not only during inflammatory LPS stimulation, but also during psychological stress, that is, a novel environment. Both stressors were associated with time-dependent activation of NF-IL6 in different cell types of the brain and the pituitary. Moreover, while NF-IL6-IR was partially linked to STAT3 and NFκB activation, TNFα production, and ACTH-IR after LPS stimulation; this was not the case after exposure to a novel environment, suggesting distinct underlying signaling pathways. Overall, NF-IL6 can be used as a broad activation marker in the brain and might be of interest for therapeutic approaches not only during inflammatory but also psychological stress.
Collapse
Affiliation(s)
- Franziska Fuchs
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| | - Jelena Damm
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| | - Rüdiger Gerstberger
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| | - Joachim Roth
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| | - Christoph Rummel
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, Giessen D-35392, Germany
| |
Collapse
|
25
|
Witham J, Ouboussad L, Lefevre PF. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages. PLoS One 2013; 8:e59389. [PMID: 23533622 PMCID: PMC3606415 DOI: 10.1371/journal.pone.0059389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/14/2013] [Indexed: 02/06/2023] Open
Abstract
The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3′ end of the gene.
Collapse
Affiliation(s)
- James Witham
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
| | - Lylia Ouboussad
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
| | - Pascal F. Lefevre
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell Signal 2012; 24:1287-96. [DOI: 10.1016/j.cellsig.2012.02.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/14/2012] [Indexed: 01/10/2023]
|
27
|
Johno H, Ogata R, Nakajima S, Hiramatsu N, Kobayashi T, Hara H, Kitamura M. Acidic stress–ER stress axis for blunted activation of NF-κB in mesothelial cells exposed to peritoneal dialysis fluid. Nephrol Dial Transplant 2012; 27:4053-60. [DOI: 10.1093/ndt/gfs130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling. PLoS One 2012; 7:e36200. [PMID: 22558381 PMCID: PMC3338606 DOI: 10.1371/journal.pone.0036200] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/03/2012] [Indexed: 12/12/2022] Open
Abstract
Background Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets. Methodology/Principal Findings A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway. Conclusions/Significance Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function.
Collapse
|
29
|
Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 2012; 24:835-45. [PMID: 22182507 DOI: 10.1016/j.cellsig.2011.12.006] [Citation(s) in RCA: 482] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/04/2011] [Indexed: 11/17/2022]
Abstract
The major hallmark of cellular senescence is an irreversible cell cycle arrest and thus it is a potent tumor suppressor mechanism. Genotoxic insults, e.g. oxidative stress, are important inducers of the senescent phenotype which is characterized by an accumulation of senescence-associated heterochromatic foci (SAHF) and DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS). Interestingly, senescent cells secrete pro-inflammatory factors and thus the condition has been called the senescence-associated secretory phenotype (SASP). Emerging data has revealed that NF-κB signaling is the major signaling pathway which stimulates the appearance of SASP. It is known that DNA damage provokes NF-κB signaling via a variety of signaling complexes containing NEMO protein, an NF-κB essential modifier, as well as via the activation of signaling pathways of p38MAPK and RIG-1, retinoic acid inducible gene-1. Genomic instability evoked by cellular stress triggers epigenetic changes, e.g. release of HMGB1 proteins which are also potent enhancers of inflammatory responses. Moreover, environmental stress and chronic inflammation can stimulate p38MAPK and ceramide signaling and induce cellular senescence with pro-inflammatory responses. On the other hand, two cyclin-dependent kinase inhibitors, p16INK4a and p14ARF, are effective inhibitors of NF-κB signaling. We will review in detail the signaling pathways which activate NF-κB signaling and trigger SASP in senescent cells.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | |
Collapse
|
30
|
Walker S, Drummond PD. Implications of a Local Overproduction of Tumor Necrosis Factor-α in Complex Regional Pain Syndrome. PAIN MEDICINE 2011; 12:1784-807. [DOI: 10.1111/j.1526-4637.2011.01273.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Aversa Z, Alamdari N, Hasselgren PO. Molecules modulating gene transcription during muscle wasting in cancer, sepsis, and other critical illness. Crit Rev Clin Lab Sci 2011; 48:71-86. [DOI: 10.3109/10408363.2011.591365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Abstract
Under inflammatory situations, endoplasmic reticulum (ER) stress occurs at local sites and modulates inflammatory processes. NF-κB is a key regulator for immune and inflammatory responses, and its activity is influenced by ER stress positively or negatively. Recent investigation suggested that ER stress induces activation of NF-κB in the early phase, whereas in the later phase, consequent unfolded protein response (UPR) inhibits NF-κB. This review summarizes current knowledge on potential mechanisms underlying the biphasic, bidirectional regulation of NF-κB by the UPR and possible roles for ER stress in the regulation of inflammation.
Collapse
Affiliation(s)
- Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
33
|
Nakajima S, Kato H, Takahashi S, Johno H, Kitamura M. Inhibition of NF-κB by MG132 through ER stress-mediated induction of LAP and LIP. FEBS Lett 2011; 585:2249-54. [PMID: 21627972 DOI: 10.1016/j.febslet.2011.05.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 11/17/2022]
Abstract
Proteasome inhibitor MG132 blocks activation of NF-κB by preventing degradation of IκB. In this report, we propose an alternative mechanism by which MG132 inhibits cytokine-triggered NF-κB activation. We found that MG132 induced endoplasmic reticulum (ER) stress, and attenuation of ER stress blunted the suppressive effect of MG132 on NF-κB. Through ER stress, MG132 up-regulated C/EBPβ mRNA transiently and caused sustained accumulation of its translational products liver activating protein (LAP) and liver-enriched inhibitory protein (LIP), both of which were identified as suppressors of NF-κB. Our results disclosed a novel mechanism underlying inhibition of NF-κB by MG132.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
34
|
Gutsch R, Kandemir JD, Pietsch D, Cappello C, Meyer J, Simanowski K, Huber R, Brand K. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology. J Biol Chem 2011; 286:22716-29. [PMID: 21558273 PMCID: PMC3123039 DOI: 10.1074/jbc.m110.152538] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Monocytic differentiation is orchestrated by complex networks that are not fully understood. This study further elucidates the involvement of transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). Initially, we demonstrated a marked increase in nuclear C/EBPβ-liver-enriched activating protein* (LAP*)/liver-enriched activating protein (LAP) levels and LAP/liver-enriched inhibiting protein (LIP) ratios in phorbol 12-myristate 13-acetate (PMA)-treated differentiating THP-1 premonocytic cells accompanied by reduced proliferation. To directly study C/EBPβ effects on monocytic cells, we generated novel THP-1-derived (low endogenous C/EBPβ) cell lines stably overexpressing C/EBPβ isoforms. Most importantly, cells predominantly overexpressing LAP* (C/EBPβ-long), but not those overexpressing LIP (C/EBPβ-short), exhibited a reduced proliferation, with no effect on morphology. PMA-induced inhibition of proliferation was attenuated in C/EBPβ-short cells. In C/EBPβWT macrophage-like cells (high endogenous C/EBPβ), we measured a reduced proliferation/cycling index compared with C/EBPβKO. The typical macrophage morphology was only observed in C/EBPβWT, whereas C/EBPβKO stayed round. C/EBPα did not compensate for C/EBPβ effects on proliferation/morphology. Serum reduction, an independent approach known to inhibit proliferation, induced macrophage morphology in C/EBPβKO macrophage-like cells but not THP-1. In PMA-treated THP-1 and C/EBPβ-long cells, a reduced phosphorylation of cell cycle repressor retinoblastoma was found. In addition, C/EBPβ-long cells showed reduced c-Myc expression accompanied by increased CDK inhibitor p27 and reduced cyclin D1 levels. Finally, C/EBPβ-long and C/EBPβWT cells exhibited low E2F1 and cyclin E levels, and C/EBPβ overexpression was found to inhibit cyclin E1 promoter-dependent transcription. Our results suggest that C/EBPβ reduces monocytic proliferation by affecting the retinoblastoma/E2F/cyclin E pathway and that it may contribute to, but is not directly required for, macrophage morphology. Inhibition of proliferation by C/EBPβ may be important for coordinated monocytic differentiation.
Collapse
Affiliation(s)
- Romina Gutsch
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Selective abrogation of BiP/GRP78 blunts activation of NF-κB through the ATF6 branch of the UPR: involvement of C/EBPβ and mTOR-dependent dephosphorylation of Akt. Mol Cell Biol 2011; 31:1710-8. [PMID: 21300786 DOI: 10.1128/mcb.00939-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtilase cytotoxin (SubAB) that selectively cleaves BiP/GRP78 triggers the unfolded protein response (UPR) and protects mice from endotoxic lethality and collagen arthritis. We found that pretreatment of cells with SubAB suppressed tumor necrosis alpha (TNF-α)-induced activation of NF-κB and NF-κB-dependent chemokine expression. To elucidate underlying mechanisms, the involvement of C/EBP and Akt, putative regulators of NF-κB, was investigated. Among members of the C/EBP family, SubAB preferentially induced C/EBPβ. Overexpression of C/EBPβ suppressed TNF-α-induced NF-κB activation, and knockdown of C/EBPβ attenuated the suppressive effect of SubAB on NF-κB. We identified that the ATF6 branch of the UPR plays a crucial role in the induction of C/EBPβ. In addition to this effect, SubAB depressed basal and TNF-α-induced phosphorylation of Akt via the UPR. It was mediated by the induction of ATF6 and consequent activation of mTOR that dephosphorylated Akt. Inhibition of Akt attenuated activation of NF-κB by TNF-α, suggesting that the mTOR-Akt pathway is another target for SubAB-initiated, UPR-mediated NF-κB suppression. These results elucidated that SubAB blunts activation of NF-κB through ATF6-dependent mechanisms, i.e., preferential induction of C/EBPβ and mTOR-dependent dephosphorylation of Akt.
Collapse
|
36
|
Lingual antimicrobial peptide and IL-8 expression are oppositely regulated by the antagonistic effects of NF-κB p65 and C/EBPβ in mammary epithelial cells. Mol Immunol 2011; 48:895-908. [PMID: 21255844 DOI: 10.1016/j.molimm.2010.12.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/20/2010] [Indexed: 01/01/2023]
Abstract
Pathogen contact induces quickly in Mammary Epithelial Cells (MEC) the expression of the proinflammatory cytokine IL-8 and delayed that of the bactericidal β-defensin LAP. Both genes encoding these factors feature on their proximal promoter a composite NF-κB/CEBP binding site. We compare here in MEC the role of NF-κB and C/EBP factors in regulating basal and pathogen-induced expression of both genes from cattle. Abrogating NF-κB binding to that site by introduction of a single point mutation blocks promoter activity of both genes in reporter gene assays. Chromatin accessibility PCR and Chromatin immunoprecipitation reveal that the chromatin of the resting LAP promoter is tightly packed and NF-κB p50 homodimer binding prevails. Infection results in chromatin decompaction accompanied by predominant recruitment of NF-κB p65 for promoter activation. Overexpression of transcription factors confirms a stimulatory role of NF-κB p65 but also a repressive function of C/EBPβ for LAP promoter activity. These factors reverse roles to control IL-8 expression. NF-κB p65 homodimers already reside on the resting IL-8 promoter and induction recruits NF-κB p50. Overexpression of both NF-κB factors represses the promoter in MEC, but not in HEK293 cells. Inhibitors of NF-κB activation and nuclear recruitment both tremendously increase basal and pathogen stimulated IL-8 mRNA concentrations in MEC. Mutation of the C/EBP-binding site blocks and overexpression of C/EBPβ stimulates IL-8-promoter activity. Thus, the pathogen-induced fast activation of diverse transcription factors acting through a common promoter binding site is gene specifically differentiated into opposite functional significance for swiftly (IL-8) or slowly (LAP) induced genes in MEC.
Collapse
|
37
|
Abstract
Activation of nuclear factor (NF)-κB, one of the most investigated transcription factors, has been found to control multiple cellular processes in cancer including inflammation, transformation, proliferation, angiogenesis, invasion, metastasis, chemoresistance and radioresistance. NF-κB is constitutively active in most tumor cells, and its suppression inhibits the growth of tumor cells, leading to the concept of 'NF-κB addiction' in cancer cells. Why NF-κB is constitutively and persistently active in cancer cells is not fully understood, but multiple mechanisms have been delineated including agents that activate NF-κB (such as viruses, viral proteins, bacteria and cytokines), signaling intermediates (such as mutant receptors, overexpression of kinases, mutant oncoproteins, degradation of IκBα, histone deacetylase, overexpression of transglutaminase and iNOS) and cross talk between NF-κB and other transcription factors (such as STAT3, HIF-1α, AP1, SP, p53, PPARγ, β-catenin, AR, GR and ER). As NF-κB is 'pre-active' in cancer cells through unrelated mechanisms, classic inhibitors of NF-κB (for example, bortezomib) are unlikely to mediate their anticancer effects through suppression of NF-κB. This review discusses multiple mechanisms of NF-κB activation and their regulation by multitargeted agents in contrast to monotargeted agents, thus 'one size does not fit all' cancers.
Collapse
|
38
|
Yan C, Cao J, Wu M, Zhang W, Jiang T, Yoshimura A, Gao H. Suppressor of cytokine signaling 3 inhibits LPS-induced IL-6 expression in osteoblasts by suppressing CCAAT/enhancer-binding protein {beta} activity. J Biol Chem 2010; 285:37227-39. [PMID: 20876575 DOI: 10.1074/jbc.m110.132084] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is an important intracellular protein that inhibits cytokine signaling in numerous cell types and has been implicated in several inflammatory diseases. However, the expression and function of SOCS3 in osteoblasts are not known. In this study, we demonstrated that SOCS3 expression was transiently induced by LPS in osteoblasts, and apparently contributed to the inhibition of IL-6 induction by LPS treatment. We found that tyrosine 204 of the SOCS box, the SH2 domain, and the N-terminal kinase inhibitory region (KIR) of SOCS3 were all involved in its IL-6 inhibition. Furthermore, we demonstrated that CCAAT/enhancer-binding protein (C/EBP) β was activated by LPS (increased DNA binding activity), and played a key role in LPS-induced IL-6 expression in osteoblasts. We further provided the evidence that SOCS3 functioned as a negative regulator for LPS response in osteoblasts by suppressing C/EBPβ DNA binding activity. In addition, tyrosine 204 of the SOCS box, the SH2 domain, and the N-terminal kinase inhibitory region (KIR) of SOCS3 were all required for its C/EBPβ inhibition. These findings suggest that SOCS3 by interfering with C/EBPβ activation may have an important regulatory role during bone-associated inflammatory responses.
Collapse
Affiliation(s)
- Chunguang Yan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Park SH, Choi HJ, Yang H, Do KH, Kim J, Lee DW, Moon Y. Endoplasmic reticulum stress-activated C/EBP homologous protein enhances nuclear factor-kappaB signals via repression of peroxisome proliferator-activated receptor gamma. J Biol Chem 2010; 285:35330-9. [PMID: 20829347 DOI: 10.1074/jbc.m110.136259] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a causative factor of inflammatory bowel diseases. ER stress mediators, including CCAAT enhancer-binding protein (C/EBP) homologous protein (CHOP), are elevated in intestinal epithelia from patients with inflammatory bowel diseases. The present study arose from the question of how chemical ER stress and CHOP protein were associated with nuclear factor-κB (NF-κB)-mediated epithelial inflammatory response. In a human intestinal epithelial cell culture model, chemical ER stresses induced proinflammatory cytokine interleukin-8 (IL-8) expression and the nuclear translocation of CHOP protein. CHOP was positively involved in ER-activated IL-8 production and was negatively associated with expression of peroxisome proliferator-activated receptor γ (PPARγ). ER stress-induced IL-8 production was enhanced by NF-κB activation that was negatively regulated by PPARγ. Mechanistically, ER stress-induced CHOP suppressed PPARγ transcription by sequestering C/EBPβ and limiting availability of C/EBPβ binding to the PPARγ promoter. Due to the CHOP-mediated regulation of PPARγ action, ER stress can enhance proinflammatory NF-κB activation and maintain an increased level of IL-8 production in human intestinal epithelial cells. In contrast, PPARγ was a counteracting regulator of gut inflammatory response through attenuation of NF-κB activation. The collective results support the view that balances between CHOP and PPARγ are crucial for epithelial homeostasis, and disruption of these balances in mucosal ER stress can etiologically affect the progress of human inflammatory bowel diseases.
Collapse
Affiliation(s)
- Seong-Hwan Park
- Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 626-813, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Selective deletion of adipocytes, but not preadipocytes, by TNF-alpha through C/EBP- and PPARgamma-mediated suppression of NF-kappaB. J Transl Med 2010; 90:1385-95. [PMID: 20567236 DOI: 10.1038/labinvest.2010.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a key regulator of adipose tissue mass, but mechanisms underlying this effect have not been fully elucidated. We found that exposure to TNF-alpha caused a significant decrease in the number of adipocytes, but not preadipocytes. Subsequent experiments revealed that TNF-alpha selectively deleted adipocytes through induction of apoptosis. Following exposure to TNF-alpha, rapid activation of nuclear factor-kappaB (NF-kappaB) was observed only in preadipocytes, but not in adipocytes. Inhibition of NF-kappaB rendered preadipocytes susceptible to TNF-alpha-induced apoptosis, suggesting that different activity of NF-kappaB is the determinant for the distinct apoptotic responses. During adipocyte differentiation, expression and activity of peroxisome proliferator-activated receptor-gamma (PPARgamma) were upregulated. Treatment of preadipocytes with a PPARgamma agonist attenuated NF-kappaB activation and rendered the cells vulnerable to TNF-alpha-induced apoptosis. Conversely, treatment of adipocytes with a PPARgamma antagonist enhanced NF-kappaB activation and conferred resistance to TNF-alpha-induced apoptosis, suggesting involvement of PPARgamma in the suppression of NF-kappaB in adipocytes. We also found that, following differentiation, expression and activity of CCAAT/enhancer binding protein (C/EBP), especially C/EBPalpha and C/EBPbeta, were upregulated in adipocytes. Overexpression of individual C/EBPs significantly inhibited activation of NF-kappaB in preadipocytes. Furthermore, transfection with siRNA for C/EBPalpha or C/EBPbeta enhanced activity of NF-kappaB in adipocytes, suggesting that C/EBP is also involved in the repression of NF-kappaB in adipocytes. These results suggested novel mechanisms by which TNF-alpha selectively deletes adipocytes in the adipose tissue. The C/EBP- and PPARgamma-mediated suppression of NF-kappaB may contribute to TNF-alpha-related loss of adipose tissue mass under certain pathological situations, such as cachexia.
Collapse
|
41
|
Jude JA, Solway J, Panettieri RA, Walseth TF, Kannan MS. Differential induction of CD38 expression by TNF-{alpha} in asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2010; 299:L879-90. [PMID: 20693316 DOI: 10.1152/ajplung.00021.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ADP-ribosyl cyclase activity of CD38, a membrane protein expressed in human airway smooth muscle (ASM) cells, generates cyclic ADP-ribose (cADPR), a Ca²(+)-mobilizing agent. cADPR-mediated Ca²(+) responses to agonists are augmented in human ASM cells by TNF-α. CD38-deficient mice fail to develop airway hyperresponsiveness following intranasal TNF-α or IL-13 challenge, suggesting a role in asthma. The role of CD38 in human asthma remains unknown. We hypothesized that CD38 expression will be elevated in ASM cells from asthmatic donors (ASMA cells). CD38 mRNA and ADP-ribosyl cyclase activity were measured in cells maintained in growth-arrested conditions and exposed to vehicle or TNF-α (10-40 ng/ml). TNF-α-induced induction of CD38 expression was greater in ASMA than in ASM cells from nonasthmatic donors (ASMNA). In four of the six donors, basal and TNF-α-induced ERK and p38 MAPK activation were higher in ASMA than ASMNA cells. JNK MAPK activation was lower in ASMA than ASMNA cells. Nuclear NF-κB (p50 subunit) and phosphorylated c-Jun were comparable in cells from both groups, although nuclear c-Fos (part of the AP-1 complex) levels were lower in ASMA than ASMNA cells. NF-κB or AP-1 binding to their consensus sequences was comparable in ASMNA and ASMA cells, as are the decay kinetics of CD38 mRNA. The findings suggest that the differential induction of CD38 by TNF-α in ASMA cells is due to increased transcriptional regulation involving ERK and p38 MAPK activation and is independent of changes in NF-κB or AP-1 activation. The findings suggest a potential role for CD38 in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Joseph A Jude
- Dept. of Veterinary and Biomedical Sciences, Univ. of Minnesota, St. Paul, 55108, USA
| | | | | | | | | |
Collapse
|
42
|
Haas SC, Huber R, Gutsch R, Kandemir JD, Cappello C, Krauter J, Duyster J, Ganser A, Brand K. ITD- and FL-induced FLT3 signal transduction leads to increased C/EBPβ-LIP expression and LIP/LAP ratio by different signalling modules. Br J Haematol 2010; 148:777-90. [DOI: 10.1111/j.1365-2141.2009.08012.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Valentine R, Dawson CW, Hu C, Shah KM, Owen TJ, Date KL, Maia SP, Shao J, Arrand JR, Young LS, O'Neil JD. Epstein-Barr virus-encoded EBNA1 inhibits the canonical NF-kappaB pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol Cancer 2010; 9:1. [PMID: 20051109 PMCID: PMC2818691 DOI: 10.1186/1476-4598-9-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/05/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The Epstein-Barr virus (EBV)-encoded EBNA1 protein is expressed in all EBV-associated tumours, including undifferentiated nasopharyngeal carcinoma (NPC), where it is indispensable for viral replication, genome maintenance and viral gene expression. EBNA1's transcription factor-like functions also extend to influencing the expression of cellular genes involved in pathways commonly dysregulated during oncogenesis, including elevation of AP-1 activity in NPC cell lines resulting in enhancement of angiogenesis in vitro. In this study we sought to extend these observations by examining the role of EBNA1 upon another pathway commonly deregulated during carcinogenesis; namely NF-kappaB. RESULTS In this report we demonstrate that EBNA1 inhibits the canonical NF-kappaB pathway in carcinoma lines by inhibiting the phosphorylation of IKKalpha/beta. In agreement with this observation we find a reduction in the phosphorylation of IkappaBalpha and reduced phosphorylation and nuclear translocation of p65, resulting in a reduction in the amount of p65 in nuclear NF-kappaB complexes. Similar effects were also found in carcinoma lines infected with recombinant EBV and in the EBV-positive NPC-derived cell line C666-1. Inhibition of NF-kappaB was dependent upon regions of EBNA1 essential for gene transactivation whilst the interaction with the deubiquitinating enzyme, USP7, was entirely dispensable. Furthermore, in agreement with EBNA1 inhibiting p65 NF-kappaB we demonstrate that p65 was exclusively cytoplasmic in 11 out of 11 NPC tumours studied. CONCLUSIONS Inhibition of p65 NF-kappaB in murine and human epidermis results in tissue hyperplasia and the development of squamous cell carcinoma. In line with this, p65 knockout fibroblasts have a transformed phenotype. Inhibition of p65 NF-kappaB by EBNA1 may therefore contribute to the development of NPC by inducing tissue hyperplasia. Furthermore, inhibition of NF-kappaB is employed by viruses as an immune evasion strategy which is also closely linked to oncogenesis during persistent viral infection. Our findings therefore further implicate EBNA1 in playing an important role in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Robert Valentine
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res 2009; 20:24-33. [PMID: 19997086 DOI: 10.1038/cr.2009.137] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor-kappa B (NF-kappaB) transcription factor plays a critical role in diverse cellular processes associated with proliferation, cell death, development, as well as innate and adaptive immune responses. NF-kappaB is normally sequestered in the cytoplasm by a family of inhibitory proteins known as inhibitors of NF-kappaB (IkappaBs). The signal pathways leading to the liberation and nuclear accumulation of NF-kappaB, which can be activated by a wide variety of stimuli, have been extensively studied in the past two decades. After gaining access to the nucleus, NF-kappaB must be actively regulated to execute its fundamental function as a transcription factor. Recent studies have highlighted the importance of nuclear signaling in the regulation of NF-kappaB transcriptional activity. A non-Rel subunit of NF-kappaB, ribosomal protein S3 (RPS3), and numerous other nuclear regulators of NF-kappaB, including Akirin, Nurr1, SIRT6, and others, have recently been identified, unveiling novel and exciting layers of regulatory specificity for NF-kappaB in the nucleus. Further insights into the nuclear events that govern NF-kappaB function will deepen our understanding of the elegant control of its transcriptional activity and better inform the potential rational design of therapeutics for NF-kappaB-associated diseases.
Collapse
Affiliation(s)
- Fengyi Wan
- Laborathory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
45
|
Cappello C, Zwergal A, Kanclerski S, Haas SC, Kandemir JD, Huber R, Page S, Brand K. C/EBPβ enhances NF–κB-associated signalling by reducing the level of IκB-α. Cell Signal 2009; 21:1918-24. [DOI: 10.1016/j.cellsig.2009.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/30/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
|
46
|
Kitamura M. Biphasic, bidirectional regulation of NF-kappaB by endoplasmic reticulum stress. Antioxid Redox Signal 2009; 11:2353-64. [PMID: 19187000 DOI: 10.1089/ars.2008.2391] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endoplasmic reticulum (ER) stress induces an adaptive program called the unfolded protein response (UPR), which affects activity of an array of kinases and transcription factors. Previous reports provided evidence for activation of nuclear factor-kappaB (NF-kappaB), the major transcription factor regulating inflammatory processes, by ER stress. However, recent investigation also suggested that preceding ER stress suppresses activation of NF-kappaB by subsequent exposure to inflammatory stimuli. Although ER stress induces activation of NF-kappaB in the early phase, consequent UPR may inhibit NF-kappaB-dependent cellular activation in the later phase. This article summarizes current knowledge on potential mechanisms underlying the biphasic, bidirectional regulation of NF-kappaB by ER stress.
Collapse
Affiliation(s)
- Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
47
|
Du S, Hiramatsu N, Hayakawa K, Kasai A, Okamura M, Huang T, Yao J, Takeda M, Araki I, Sawada N, Paton AW, Paton JC, Kitamura M. Suppression of NF-κB by Cyclosporin A and Tacrolimus (FK506) via Induction of the C/EBP Family: Implication for Unfolded Protein Response. THE JOURNAL OF IMMUNOLOGY 2009; 182:7201-11. [DOI: 10.4049/jimmunol.0801772] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Albrecht V, Hofer TPJ, Foxwell B, Frankenberger M, Ziegler-Heitbrock L. Tolerance induced via TLR2 and TLR4 in human dendritic cells: role of IRAK-1. BMC Immunol 2008; 9:69. [PMID: 19025640 PMCID: PMC2628880 DOI: 10.1186/1471-2172-9-69] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 11/24/2008] [Indexed: 11/20/2022] Open
Abstract
Background While dendritic cells (DCs) can induce tolerance in T cells, little is known about tolerance induction in DCs themselves. We have analysed tolerance induced in human in-vitro generated DCs by repeated stimulation with ligands for TLR4 and TLR2. Results DCs stimulated with the TLR4 ligand LPS did show a rapid and pronounced expression of TNF mRNA and protein. When DCs were pre-cultured for 2 days with 5 ng LPS/ml then the subsequent response to stimulation with a high dose of LPS (500 ng/ml) was strongly reduced for both TNF mRNA and protein. At the promoter level there was a reduced transactivation by the -1173 bp TNF promoter and by a construct with a tetrameric NF-κB motif. Within the signalling cascade leading to NF-κB activation we found an ablation of the IRAK-1 adaptor protein in LPS-tolerant DCs. Pre-culture of DCs with the TLR2 ligand Pam3Cys also led to tolerance with respect to TNF gene expression and IRAK-1 protein was ablated in such tolerant cells as well, while IRAK-4 protein levels were unchanged. Conclusion These data show that TLR-ligands can render DCs tolerant with respect to TNF gene expression by a mechanism that likely involves blockade of signal transduction at the level of IRAK-1.
Collapse
Affiliation(s)
- Valerie Albrecht
- Helmholtz Center München, German Research Center for Environmental Health and Asklepios-Fachkliniken Gauting, Inflammatory Lung Diseases, 82131 Gauting, Germany.
| | | | | | | | | |
Collapse
|
49
|
Foka P, Singh NN, Salter RC, Ramji DP. The tumour necrosis factor-alpha-mediated suppression of the CCAAT/enhancer binding protein-alpha gene transcription in hepatocytes involves inhibition of autoregulation. Int J Biochem Cell Biol 2008; 41:1189-97. [PMID: 19027873 DOI: 10.1016/j.biocel.2008.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/24/2008] [Accepted: 10/29/2008] [Indexed: 11/17/2022]
Abstract
Tumour necrosis factor-alpha (TNF-alpha) is a key regulator of the immune and inflammatory responses along with numerous other cellular changes during physiological and pathophysiological conditions. The cellular actions of TNF-alpha are associated with both the activation and the inhibition of gene transcription. In contrast to gene activation, the mechanisms underlying the TNF-alpha-mediated transcriptional inhibition remain largely unclear. We have investigated this aspect using the transcription factor CCAAT/enhancer binding protein-alpha (C/EBPalpha) as a model gene. TNF-alpha decreased the expression of C/EBPalpha mRNA and protein in the human hepatoma Hep3B cell line. The activity of the proximal promoter of both the human and the Xenopus C/EBPalpha genes in transfected Hep3B cells was inhibited by TNF-alpha. Transient transfection assays using various Xenopus C/EBPalpha promoter-luciferase DNA constructs showed that a C/EBP recognition sequence was essential for the TNF-alpha response. Electrophoretic mobility shift assays showed that C/EBPalpha bound to this site and co-transfection assays revealed that it was a major activator of the promoter and its transactivation potential was reduced by TNF-alpha. The potential role of nuclear factor kappaB (NF-kappaB) in the response was also investigated in the light of its pivotal role in TNF-alpha signalling. Inhibition of NF-kappaB using pharmacological agents or by transfection of a plasmid specifying for a superrepressor attenuated the TNF-alpha-inhibited C/EBPalpha promoter activity. In addition, an involvement of NF-kappaB in DNA-protein interactions at the C/EBP recognition sequence was identified.
Collapse
Affiliation(s)
- Pelagia Foka
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | | | | |
Collapse
|
50
|
Hasselgren PO. Ubiquitination, phosphorylation, and acetylation--triple threat in muscle wasting. J Cell Physiol 2007; 213:679-89. [PMID: 17657723 DOI: 10.1002/jcp.21190] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Loss of muscle mass is commonly seen in patients with critical illness and is associated with increased expression of multiple genes controlling protein breakdown. Transcription factors that are activated during muscle wasting include NF-kB and members of the FOXO and C/EBP transcription factor families. The activity of these transcription factors is regulated by multiple posttranslational modifications, including ubiquitination, phosphorylation, and acetylation, providing for a complex and integrated network of regulatory mechanisms in muscle wasting. Targeting posttranslational modifications of transcription factors may prove important in the prevention and treatment of the debilitating consequences of muscle wasting.
Collapse
Affiliation(s)
- Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|