1
|
Wang X, Wu H, Fang C, Li Z. Insights into innate immune cell evasion by Chlamydia trachomatis. Front Immunol 2024; 15:1289644. [PMID: 38333214 PMCID: PMC10850350 DOI: 10.3389/fimmu.2024.1289644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.
Collapse
Affiliation(s)
| | | | | | - Zhongyu Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Thomas R, Wang S, Rashu R, Peng Y, Gounni AS, Yang X. Exogenous Semaphorin 3E treatment protects against chlamydial lung infection in mice. Front Immunol 2022; 13:882412. [PMID: 35983029 PMCID: PMC9379098 DOI: 10.3389/fimmu.2022.882412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies reported that semaphorins play a significant role in various settings of the immune response. In particular, Semaphorin 3E (Sema3E), a secreted semaphorin protein, is involved in cell proliferation, migration, inflammatory responses, and host defence against infections. However, the therapeutic function of Sema3E in bacterial infection has not been investigated. Our data showed that exogenous Sema3E treatment protects mice from chlamydial infection with lower bacterial burden, reduced body weight loss, and pathological lung changes. Cytokine analysis in the lung and spleen revealed that Sema3E-Fc treated mice, compared to saline-Fc treated mice, showed enhanced production of IFN-γ and IL-17 but reduced IL-4 and IL-10 production. Cellular analysis showed that Sema3E treatment leads to enhanced Th1/Th17 response but reduced Treg response in lungs following chlamydial infection. Moreover, Sema3E treatment also enhanced the recruitment of pulmonary dendritic cells, which express higher co-stimulatory but lower inhibitory surface molecules. The data demonstrate that Sema3E plays a vital role in protective immunity against chlamydial lung infection, mainly through coordinating functions of T cells and DCs.
Collapse
|
3
|
IL-21/IL-21R Regulates the Neutrophil-Mediated Pathologic Immune Response during Chlamydial Respiratory Infection. Mediators Inflamm 2022; 2022:4322092. [PMID: 35693111 PMCID: PMC9177341 DOI: 10.1155/2022/4322092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 12/28/2022] Open
Abstract
IL-21/IL-21R was documented to participate in the regulation of multiple infection and inflammation. During Chlamydia muridarum (C. muridarum) respiratory infection, our previous study had revealed that the absence of this signal induced enhanced resistance to infection with higher protective Th1/Th17 immune responses. Here, we use the murine model of C. muridarum respiratory infection and IL-21R deficient mice to further identify a novel role of IL-21/IL-21R in neutrophilic inflammation. Resistant IL-21R−/− mice showed impaired neutrophil recruitment to the site of infection. In the absence of IL-21/IL-21R, pulmonary neutrophils also exhibited reduced activation status, including lower CD64 expression, MPO activity, and neutrophil-produced protein production. These results correlated well with the decrease of neutrophil-related chemokines (KC and MIP-2), inflammatory cytokines (IL-6, IL-1β, and TNF-α), and TLR/MyD88 pathway mediators (TLR2, TLR4, and MyD88) in infected lungs of IL-21R−/− mice than normal mice. Complementarily, decreased pulmonary neutrophil infiltration, activity, and levels of neutrophilic chemotactic factors and TLR/MyD88 signal in infected lungs can be corrected by rIL-21 administration. These results revealed that IL-21/IL-21R may aggravate the neutrophil inflammation through regulating TLR/MyD88 signal pathway during chlamydial respiratory infection.
Collapse
|
4
|
Zhao L, Yang X. Cross Talk Between Natural Killer T and Dendritic Cells and Its Impact on T Cell Responses in Infections. Front Immunol 2022; 13:837767. [PMID: 35185930 PMCID: PMC8850912 DOI: 10.3389/fimmu.2022.837767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Both innate and adaptive immunity is vital for host defense against infections. Dendritic cells (DCs) are critical for initiating and modulating adaptive immunity, especially for T-cell responses. Natural killer T (NKT) cells are a small population of innate-like T cells distributed in multiple organs. Many studies have suggested that the cross-talk between these two immune cells is critical for immunobiology and host defense mechanisms. Not only can DCs influence the activation/function of NKT cells, but NKT cells can feedback on DCs also, thus modulating the phenotype and function of DCs and DC subsets. This functional feedback of NKT cells on DCs, especially the preferential promoting effect on CD8α+ and CD103+ DC subsets in lymphoid and non-lymphoid tissues, significantly impacts the systemic and local adaptive CD4 and CD8 T cell responses in infections. This review focuses on the two-way interaction between NKT cells and DCs, emphasizing the importance of NKT cell feedback on DCs in bridging innate and adaptive immune responses for host defense purposes.
Collapse
Affiliation(s)
- Lei Zhao
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Xi Yang
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Wang X, Zhang C, Wang S, Rashu R, Thomas R, Yang J, Yang X. SND1 promotes Th1/17 immunity against chlamydial lung infection through enhancing dendritic cell function. PLoS Pathog 2021; 17:e1009295. [PMID: 33635920 PMCID: PMC7946287 DOI: 10.1371/journal.ppat.1009295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/10/2021] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
To date, no reports have linked the multifunctional protein, staphylococcal nuclease domain-containing protein 1 (SND1), to host defense against intracellular infections. In this study, we investigated the role and mechanisms of SND1, by using SND1 knockout (SND1-/-) mice, in host defense against the lung infection of Chlamydia muridarum, an obligate intracellular bacterium. Our data showed that SND1-/- mice exhibited significantly greater body weight loss, higher organism growth, and more severe pathological changes compared with wild-type mice following the infection. Further analysis showed significantly reduced Chlamydia-specific Th1/17 immune responses in SND1-/- mice after infection. Interestingly, the dendritic cells (DCs) isolated from SND1-/- mice showed lower costimulatory molecules expression and IL-12 production, but higher IL-10 production compared with those from wild-type control mice. In the DC-T cell co-culture system, DCs isolated from SND1-/- infected mice showed significantly reduced ability to promote Chlamydia-specific IFN-γ producing Th1 cells but enhanced capacity to induce CD4+T cells into Foxp3+ Treg cells. Adoptive transfer of DCs isolated from SND1-/- mice, unlike those from wild-type control mice, failed to protect the recipients against challenge infection. These findings provide in vivo evidence that SND1 plays an important role in host defense against intracellular bacterial infection, and suggest that SND1 can promote Th1/17 immunity and inhibit the expansion of Treg cells through modulation of the function of DCs.
Collapse
Affiliation(s)
- Xinting Wang
- Department of Immunology, University of Manitoba, Winnipeg, Canada
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Department of Biochemistry and Molecular Biology, Excellent Talent Project, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chunyan Zhang
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Shuhe Wang
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | | | - Rony Thomas
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Jie Yang
- Department of Immunology, University of Manitoba, Winnipeg, Canada
- * E-mail: (JY); (XY)
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Canada
- * E-mail: (JY); (XY)
| |
Collapse
|
6
|
Thomas R, Wang S, Shekhar S, Peng Y, Qiao S, Zhang C, Shan L, Movassagh H, Gounni AS, Yang J, Yang X. Semaphorin 3E Protects against Chlamydial Infection by Modulating Dendritic Cell Functions. THE JOURNAL OF IMMUNOLOGY 2021; 206:1251-1265. [PMID: 33504621 DOI: 10.4049/jimmunol.2001013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/01/2021] [Indexed: 12/27/2022]
Abstract
Recent studies have identified semaphorin 3E (Sema3E) as a novel mediator of immune responses. However, its function in immunity to infection has yet to be investigated. Using a mouse model of chlamydial lung infection, we show that Sema3E plays a significant role in the host immune response to the infection. We found that Sema3E is induced in the lung after chlamydial infection, and Sema3E deficiency has a detrimental impact on disease course, dendritic cell (DC) function, and T cell responses. Specifically, we found that Sema3E knockout (KO) mice exhibited higher bacterial burden, severe body weight loss, and pathological changes after Chlamydia muridarum lung infection compared with wild-type (WT) mice. The severity of disease in Sema3E KO mice was correlated with reduced Th1/Th17 cytokine responses, increased Th2 response, altered Ab response, and a higher number of regulatory CD4 T cells. Moreover, DCs isolated from Sema3E KO mice showed lower surface expression of costimulatory molecules and production of IL-12, but higher expression of PD-L1, PD-L2, and IL-10 production. Functional DC-T cell coculture studies revealed that DCs from infected Sema3E KO mice failed to induce Th1 and Th17 cell responses compared with DCs from infected WT mice. Upon adoptive transfer, mice receiving DCs from Sema3E KO mice, unlike those receiving DCs from WT mice, were not protected against challenge infection. In conclusion, our data evidenced that Sema3E acts as a critical factor for protective immunity against intracellular bacterial infection by modulating DC functions and T cell subsets.
Collapse
Affiliation(s)
- Rony Thomas
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Shuhe Wang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Sudhanshu Shekhar
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Ying Peng
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Sai Qiao
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chunyan Zhang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Hesam Movassagh
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abdelilah S Gounni
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jie Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| |
Collapse
|
7
|
Rotavirus VP6 Adjuvant Effect on Norovirus GII.4 Virus-Like Particle Uptake and Presentation by Bone Marrow-Derived Dendritic Cells In Vitro and In Vivo. J Immunol Res 2020; 2020:3194704. [PMID: 32411793 PMCID: PMC7204108 DOI: 10.1155/2020/3194704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that rotavirus (RV) inner capsid protein VP6 has an adjuvant effect on norovirus (NoV) virus-like particle- (VLP-) induced immune responses and studied the adjuvant mechanism in immortalized cell lines used as antigen-presenting cells (APCs). Here, we investigated the uptake and presentation of RV VP6 and NoV GII.4 VLPs by primary bone marrow-derived dendritic cells (BMDCs). The adjuvant effect of VP6 on GII.4 VLP presentation and NoV-specific immune response induction by BMDC in vivo was also studied. Intracellular staining demonstrated that BMDCs internalized both antigens, but VP6 more efficiently than NoV VLPs. Both antigens were processed and presented to antigen-primed T cells, which responded by robust interferon γ secretion. When GII.4 VLPs and VP6 were mixed in the same pulsing reaction, a subpopulation of the cells had uptaken both antigens. Furthermore, VP6 copulsing increased GII.4 VLP uptake by 37% and activated BMDCs to secrete 2-5-fold increased levels of interleukin 6 and tumor necrosis factor α compared to VLP pulsing alone. When in vitro-pulsed BMDCs were transferred to syngeneic BALB/c mice, VP6 improved NoV-specific antibody responses. The results of this study support the earlier findings of VP6 adjuvant effect in vitro and in vivo.
Collapse
|
8
|
Jeon JH, Lee BC, Kim D, Cho D, Kim TS. Hydrophilic Astragalin Galactoside Induces T Helper Type 1-Mediated Immune Responses via Dendritic Cells. Int J Mol Sci 2018; 19:ijms19103120. [PMID: 30314368 PMCID: PMC6213651 DOI: 10.3390/ijms19103120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
A flavonoid Astragalin (kaempferol-3-O-β-d-glucopyranoside, Ast) has several biological activities including anti-oxidant, anti-HIV, and anti-allergic effects. Nonetheless, its insolubility in hydrophilic solvents imposes restrictions on its therapeutic applications. In this study, we investigated the effects of water-soluble astragalin-galactoside (kaempferol-3-O-β-d-isomaltotrioside, Ast-Gal) on murine bone marrow-derived dendritic cell (DC) maturation and T helper (Th) cell-mediated immune responses. Ast-Gal significantly increased maturation and activation of DCs through the upregulation of surface markers, such as cluster of differentiation (CD)80, CD86, and Major histocompatibility complex (MHC) II in a dose-dependent manner, while Ast had little effects. Additionally, Ast-Gal-treated DCs markedly secreted immune-stimulating cytokines such as interleukin (IL)-1β, IL-6, and IL-12. Importantly, Ast-Gal strongly increased expression of IL-12, a polarizing cytokine of Th1 cells. In a co-culture system of DCs and CD4+ T cells, Ast-Gal-treated DCs preferentially differentiates naïve CD4+ T cells into Th1 cells. The addition of neutralizing IL-12 monoclonal antibody (mAb) to cultures of Ast-Gal-treated DCs and CD4+ T cells significantly decreased interferon (IFN)-γ production, thereby indicating that Ast-Gal-stimulated DCs enhance the Th1 response through IL-12 production by DCs. Injection with Ast-Gal-treated DCs in mice increased IFN-γ-secreting Th1 cell population. Collectively, these findings indicate that hydrophilically modified astragalin can enhance Th1-mediated immune responses via DCs and point to a possible application of water-soluble astragalin-galactoside as an immune adjuvant.
Collapse
Affiliation(s)
- Jae Hyoung Jeon
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Byung-Cheol Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea.
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul 02841, Korea.
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
9
|
Guan Q, Weiss CR, Wang S, Qing G, Yang X, Warrington RJ, Bernstein CN, Peng Z. Reversing Ongoing Chronic Intestinal Inflammation and Fibrosis by Sustained Block of IL-12 and IL-23 Using a Vaccine in Mice. Inflamm Bowel Dis 2018; 24:1941-1952. [PMID: 29788053 PMCID: PMC6205364 DOI: 10.1093/ibd/izy142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-12 and IL-23 that share subunit p40 are important cytokines in the pathogenesis of inflammatory bowel disease. We reported that mouse p40 peptide-based vaccines ameliorated intestinal inflammation in the prevention of trinitrobenzene sulfonic acid (TNBS)–induced murine colitis model. Here, we evaluated whether administration of the vaccine after establishment of colitis would be effective in modifying both TNBS-induced and dextran sulfate sodium (DSS)–induced chronic colitis and the underlying immune mechanisms. We further examined whether vaccination could exacerbate infections. Chronic colitis was developed by either intrarectally administrating TNBS or drinking 4% DSS water. Vaccination started after two TNBS administrations or 7 days of DSS treatment. Results showed that administrating p40 vaccine induced high tittered antibodies to IL-12 and IL-23, improved clinical scores, reduced intestinal inflammation and fibrosis, and down-regulated proinflammatory cytokine productions in colon tissue, compared with control mice. Furthermore, in lamina propria mononuclear cells and/or mesenteric lymph nodes, mice immunized with p40 peptide vaccine exhibited high ratios of Treg/Th1 and Treg/Th17 cells and increased IL-10 expression in CD11c+IL-10+cells. In mice infected with lung chlamydia, in which the protective role of Th1/Th17 is well documented, vaccine immunization did not increase lung bacterial burden. We conclude that p40 vaccine may provide a potential and safe approach for treatment of IBD.
Collapse
Affiliation(s)
- Qingdong Guan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada,Cellular Therapy Laboratory, CancerCare Manitoba, Winnipeg, Manitoba, Canada,The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou Shi, Gansu Sheng, China,Address correspondence to: Dr. Qingdong Guan, Cellular Therapy Laboratory, CancerCare Manitoba, MS773M, 820 Sherbrook St., Winnipeg, Manitoba, Canada R3A 1R9. E-mail:
| | - Carolyn R Weiss
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gefei Qing
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard J Warrington
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles N Bernstein
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhikang Peng
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Qiao S, Zheng N, Sun L, Pang G, Wang S, Jia P, Uzonna JE, Bai H, Yang X. The p110δ isoforme of phosphatidylinositol 3-kinase plays an important role in host defense against chlamydial lung infection through influencing CD4+ T-cell function. Pathog Dis 2018; 76:5035814. [PMID: 29893841 DOI: 10.1093/femspd/fty053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
PI3Ks display integrant significance in T-cell development and differentiation, which is related to host defense against infections. Here, we investigated the role of p110δ isoform of PI3Ks in host defense against chlamydial lung infection in a mouse model. Our data showed that lung infection with Chlamydia muridarum (Cm) activated PI3K/AKT signaling pathway. Compared to WT mice, p110δD910A mice, mice with an inactivating knockin mutation in the p110δ Isoform of PI3Ks, showed more sever disease phenotype and slower recovery, which was associated with reduced Chlamydia-specific Th1 and Th17 immune responses following infection. Further adoptive transfer experiment showed that mice which received CD4+ T cells from infected p110δD910A mice exhibited greater body weight loss and higher bacterial loads in the lung than those which received CD4+ T cells from WT mice following challenge infection. These results provide in vivo evidence that p110δ isoform of PI3Ks plays an important role in host defense against chlamydial infection by promoting CD4+ T-cell immunity.
Collapse
Affiliation(s)
- Sai Qiao
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Ningbo Zheng
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Lida Sun
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Gaoju Pang
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Shuhe Wang
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Ping Jia
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Jude Ezeh Uzonna
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Hong Bai
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Xi Yang
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| |
Collapse
|
11
|
V γ4+ T Cells: A Novel IL-17-Producing γδ T Subsets during the Early Phase of Chlamydial Airway Infection in Mice. Mediators Inflamm 2018; 2018:6265746. [PMID: 29670466 PMCID: PMC5835244 DOI: 10.1155/2018/6265746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Our previous studies showed that γδ T cells provided immune protection against Chlamydial muridarum (Cm), an obligate intracellular strain of chlamydia trachomatis, lung infection by producing abundant IL-17. In this study, we investigated the proliferation and activation of lung γδ T cell subsets, specifically the IL-17 and IFNγ production by them following Cm lung infection. Our results found that five γδ T cell subsets, Vγ1+ T, Vγ2+ T, Vγ4+ T, Vγ5+ T, and Vγ6+ T, expressed in lungs of naïve mice, while Cm lung infection mainly induced the proliferation and activation of Vγ4+ T cells at day 3 p.i., following Vγ1+ T cells at day 7 p.i. Cytokine detection showed that Cm lung infection induced IFNγ secretion firstly by Vγ4+ T cells at very early stage (day 3) and changed to Vγ1+ T cells at midstage (day 7). Furthermore, Vγ4+ T cell is the main γδ T cell subset that secretes IL-17 at the very early stage of Cm lung infection and Vγ1+ T cell did not secrete IL-17 during the infection. These findings provide in vivo evidence that Vγ4+T cells are the major IL-17 and IFNγ-producing γδ T cell subsets at the early period of Cm lung infection.
Collapse
|
12
|
Shekhar S, Peng Y, Wang S, Yang X. CD103+ lung dendritic cells (LDCs) induce stronger Th1/Th17 immunity to a bacterial lung infection than CD11b hi LDCs. Cell Mol Immunol 2017; 15:377-387. [PMID: 28194020 DOI: 10.1038/cmi.2016.68] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/04/2016] [Accepted: 12/04/2016] [Indexed: 12/24/2022] Open
Abstract
Recent studies suggest differential roles for CD103+ and CD11bhi lung dendritic cells (LDCs) in host defense against viral and bacterial infections. In this study, we examined the contribution of these LDC subsets in protective immunity to chlamydial lung infection using a Chlamydia muridarum mouse infection model. We found that CD103+ LDCs showed higher expression of costimulatory molecules (CD40, CD80 and CD86) and increased production of cytokines (IL-12p70, IL-10, IL-23 and IL-6) compared with CD11bhi LDCs, but the expression of programmed death-ligand 1 (PD-L1) was similar between the two subsets. More importantly, we found, in adoptive transfer experiments, that the mice receiving CD103+ LDCs from Chlamydia-infected mice exhibited better protection than the recipients of CD11bhi LDCs, which was associated with more robust Th1/Th17 cytokine responses. In addition, in vitro experiments showed that CD103+ LDCs induced stronger IFN-γ and IL-17 responses, when cocutured with chlamydial antigen-primed CD4+ T cells, than CD11bhi LDCs. Furthermore, the blockade of PD1 in the culture of CD4+ T cells with either CD103+ or CD11bhi LDCs enhanced production of IFN-γ and IL-17. In conclusion, our data provide direct evidence that CD103+ LDCs are more potent in promoting Th1/Th17 immunity to chlamydial lung infection than CD11bhi LDCs.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Peng
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Shuhe Wang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Papadopoulos A, Gorvel JP. Subversion of mouse dendritic cell subset function by bacterial pathogens. Microb Pathog 2015; 89:140-9. [PMID: 26453826 DOI: 10.1016/j.micpath.2015.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an important role as sentinels of the immune system in initiating and controlling the quality of adaptive immune responses. Located at entry points of the host they can sense and alert the body from dangers such as infection by pathogenic bacteria. Considering their strategic localization it is not surprising that DCs have evolved in a series of DC subtypes, which are well adapted to their microenvironment. Nowadays, the advent of the identification of specific DC subtypes has opened the way for the study of pathogen-DCs interactions and the involved mechanisms of these interactions. Due to key aspect of DCs, several bacterial pathogens have taken advantage of these cells and developed mechanisms to subvert DC function and thereby evade the immune system. This review brings recent insights into DC-pathogenic bacteria cross-talk using the mouse model of infection with an emphasis on DC subtypes.
Collapse
Affiliation(s)
- Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
14
|
Shekhar S, Peng Y, Gao X, Joyee AG, Wang S, Bai H, Zhao L, Yang J, Yang X. NK cells modulate the lung dendritic cell-mediated Th1/Th17 immunity during intracellular bacterial infection. Eur J Immunol 2015. [PMID: 26222048 DOI: 10.1002/eji.201445390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum-infected NK-cell-depleted mice (NK-LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham-treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN-γ) and Th17 (IL-17), but higher levels of Th2 (IL-4), cytokines. Consistently, NK-LDCs were less efficient in directing C. muridarum-specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4(+) T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL-12p70, IL-6, and IL-23 by LDCs. The neutralization of IFN-γ in the culture decreased the production of IL-12p70 by LDCs, whereas the blockade of TNF-α resulted in diminished IL-6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ying Peng
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaoling Gao
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Antony G Joyee
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hong Bai
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lei Zhao
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Peng Y, Gao X, Yang J, Shekhar S, Wang S, Fan Y, Yang X. Chlamydial lung infection induces transient IL-9 production which is redundant for host defense against primary infection. PLoS One 2015; 10:e0115195. [PMID: 25646821 PMCID: PMC4315580 DOI: 10.1371/journal.pone.0115195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/19/2014] [Indexed: 12/01/2022] Open
Abstract
IL-9/Th9 responses are recently found to be important for innate and adaptive immunity particularly in parasitic infections. To date, the study on the role of IL-9 in bacterial infections is limited and the reported data are contradictory. One reported function of IL-9/Th9 is to modulate Th1/Th17 responses. Since our and others’ previous work has shown a critical role of Th1 and Th17 cells in host defense against chlamydial lung infection, we here examined the role of IL-9 responses in Chlamydia muridarum (Cm) lung infection, particularly its effect on Th1 and Th17 responses and outcome infection. Our data showed quick but transient IL-9 production in the lung following infection, peaking at day 3 and back to baseline around day 7. CD4+ T cell was the major source of IL-9 production in the lung infection. Blockade of endogenous IL-9 using neutralizing antibody failed to change Interferon-γ (IFN-γ) and IL-17 production by cultured spleen mononuclear cells isolated from Cm infected mice. Similarly, in vivo neutralization of IL-9 failed to show significant effect on T cell (Th1 and Th17) and antibody responses (IgA, IgG1 and IgG2a). Consistently, the neutralization of IL-9 had no significant effect on disease process, including body weight change, bacterial burden and histopathological score. The data suggest that IL-9 production following chlamydial lung infection is redundant for host defense against the intracellular bacteria.
Collapse
Affiliation(s)
- Ying Peng
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaoling Gao
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sudhanshu Shekhar
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yijun Fan
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
16
|
Peng Y, Gao X, Yang J, Shekhar S, Wang S, Fan Y, Zhao W, Yang X. Interleukin-22 promotes T helper 1 (Th1)/Th17 immunity in chlamydial lung infection. Mol Med 2014; 20:109-19. [PMID: 24531835 DOI: 10.2119/molmed.2013.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/30/2014] [Indexed: 01/10/2023] Open
Abstract
The role of interleukin-22 (IL-22) in intracellular bacterial infections is a controversial issue, although the contribution of this cytokine to host defense against extracellular bacterial pathogens has been well established. In this study, we focused on an intra-cellular bacterium, Chlamydia, and evaluated the production and function of IL-22 in host defense against chlamydial lung infection using a mouse model. We found that Chlamydia muridarum infection elicited quick IL-22 responses in the lung, which increased during infection and were reduced when bacterial loads decreased. More importantly, blockade of endogenous IL-22 using neutralizing anti-IL-22 monoclonal antibodies (mAb) resulted in more severe disease in the mice, leading to significantly higher weight loss and bacterial growth and much more severe pathological changes than treatment with isotype control antibody. Immunological analyses identified significantly lower T helper 1 (Th1) and Th17 responses in the IL-22-neutralized mice. In contrast, intranasal administration of exogenous IL-22 significantly enhanced protection following chlamydial lung infection, which was associated with a significant increase of Th17 response. The data demonstrate that IL-22 is a critical cytokine, mediating host defense against chlamydial lung infection and coordinating the function of distinct Th-cell subsets, particularly Th1 and Th17, in the process.
Collapse
Affiliation(s)
- Ying Peng
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Medical Microbiology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Xiaoling Gao
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sudhanshu Shekhar
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yijun Fan
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Weiming Zhao
- Department of Medical Microbiology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Xi Yang
- Departments of Medical Microbiology and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Gao X, Gigoux M, Yang J, Leconte J, Yang X, Suh WK. Anti-chlamydial Th17 responses are controlled by the inducible costimulator partially through phosphoinositide 3-kinase signaling. PLoS One 2012; 7:e52657. [PMID: 23285133 PMCID: PMC3527575 DOI: 10.1371/journal.pone.0052657] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
We previously showed that mice deficient in the Inducible Costimulator ligand (ICOSL-KO) develop more severe disease and lung pathology with delayed bacterial clearance upon respiratory infection of Chlamydia muridarum. Importantly, the exacerbation of disease in ICOSL-KO mice was seen despite heightened IFN-γ/Th1 responses, the major defense mechanisms against Chlamydia. To gain insight into the mechanism of ICOS function in this model, we presently analyzed anti-Chlamydia immune responses in mice lacking the entire ICOS (ICOS-KO) versus knock-in mice expressing a mutant ICOS (ICOS-Y181F) that has selectively lost the ability to activate phosphoinositide 3-kinase (PI3K). Like ICOSL-KO mice, ICOS-KO mice showed worse disease with elevated IFN-γ/Th1 responses compared to wild-type (WT) mice. ICOS-Y181F mice developed much milder disease compared to ICOS-KO mice, yet they were still not fully protected to the WT level. This partial protection in ICOS-Y181F mice could not be explained by the magnitude of IFN-γ/Th1 responses since these mice developed a similar level of IFN-γ response compared to WT mice. It was rather IL-17/Th17 responses that reflected disease severity: IL-17/Th17 response was partially impaired in ICOS-Y181F mice compared to WT, but was substantially stronger than that of ICOS-KO mice. Consistently, we found that both polarization and expansion of Th17 cells were partially impaired in ICOS-Y181F CD4 T cells, and was further reduced in ICOS-KO CD4 T cells in vitro. Our results indicate that once the IFN-γ/Th1 response is above a threshold level, the IL-17/Th17 response becomes a limiting factor in controlling Chlamydia lung infection, and that ICOS plays an important role in promoting Th17 responses in part through the activation of PI3K.
Collapse
Affiliation(s)
- Xiaoling Gao
- Laboratory of Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mathieu Gigoux
- Immune Regulation Laboratory, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Jie Yang
- Laboratory of Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julien Leconte
- Immune Regulation Laboratory, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Xi Yang
- Laboratory of Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (W-KS); (XY)
| | - Woong-Kyung Suh
- Immune Regulation Laboratory, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (W-KS); (XY)
| |
Collapse
|
18
|
Wang H, Zhao L, Peng Y, Liu J, Qi M, Chen Q, Yang X, Zhao W. Protective role of α-galactosylceramide-stimulated natural killer T cells in genital tract infection with Chlamydia muridarum. ACTA ACUST UNITED AC 2012; 65:43-54. [PMID: 22309187 DOI: 10.1111/j.1574-695x.2012.00939.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 11/28/2022]
Abstract
Natural killer T (NKT) cells are a unique lymphocyte subpopulation which has an important role in the response to microbial pathogens. In this study, we used α-galactosylceramide (α-GalCer), a specific ligand of NKT cells, to enhance NKT response and examine its effect on host defense against genital tract Chlamydia muridarum infection. The results showed that α-GalCer treatment before infection led to reduced pathological changes and bacterial burden in the genital tract. Moreover, α-GalCer-treated mice showed greater local Th1 cytokine production [interferon γ (IFN-γ) and interleukin 12 (IL-12)] in local lymph node cells and genital tissues following challenge infection compared with untreated mice, as well as an enhanced level of IFN-γ production by NK and T cells. In addition, NKT cells in the mice with genital tract C. muridarum infection, unlike those from naïve mice, showed a polarized IFN-γ production. These results suggest a promoting role of NKT cells on type 1 T cell immune response and host resistance to Chlamydia in genital tract infection.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medical Microbiology, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gao X, Bai H, Cheng J, Fan Y, Wang S, Jiao L, Xiu N, Yang X. CD8α+and CD8α−DC subsets from BCG-infected mice inhibit allergic Th2-cell responses by enhancing Th1-cell and Treg-cell activity respectively. Eur J Immunol 2011; 42:165-75. [DOI: 10.1002/eji.201141833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/08/2011] [Accepted: 10/13/2011] [Indexed: 12/20/2022]
|
20
|
Jung MY, Son MH, Kim SH, Cho D, Kim TS. IL-32γ Induces the Maturation of Dendritic Cells with Th1- and Th17-Polarizing Ability through Enhanced IL-12 and IL-6 Production. THE JOURNAL OF IMMUNOLOGY 2011; 186:6848-59. [DOI: 10.4049/jimmunol.1003996] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Yang X, Gao X. Role of dendritic cells: a step forward for the hygiene hypothesis. Cell Mol Immunol 2011; 8:12-8. [PMID: 21200379 PMCID: PMC4002986 DOI: 10.1038/cmi.2010.51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/20/2010] [Accepted: 09/02/2010] [Indexed: 12/20/2022] Open
Abstract
The hygiene hypothesis was proposed more than two decades ago, but its mechanism remains unclear. This review focuses on recent advances in the field, especially on the role played by dendritic cells (DCs) and their modulating effects on various infections and allergic diseases, including allergic asthma. DCs isolated from mice long after the resolution of an infection were reported to have a significant modulating effect on allergen-specific Th2 responses in both in vitro and in vivo systems. These DCs showed DC1-like and/or tolerogenic DC capacity, which allowed for the inhibition of allergic responses by immune deviation (enhancing Th1 response) and immune regulation (through regulatory T-cell and Th2 hyporesponsiveness) mechanisms. These findings represented a significant advance in the elucidation of the mechanisms underlying the hygiene hypothesis. Further investigation on the mechanisms by which DCs are 'educated' by infectious agents and the influence of the type, time, and extent of infections on this 'education' process will help us understand immune regulation in disease settings and in the rational design of preventive/therapeutic approaches to allergy/asthma and infections.
Collapse
Affiliation(s)
- Xi Yang
- Laboratory for Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | | |
Collapse
|
22
|
Gao X, Wang S, Fan Y, Bai H, Yang J, Yang X. CD8+ DC, but Not CD8(-)DC, isolated from BCG-infected mice reduces pathological reactions induced by mycobacterial challenge infection. PLoS One 2010; 5:e9281. [PMID: 20174628 PMCID: PMC2823775 DOI: 10.1371/journal.pone.0009281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/29/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tuberculosis is a mycobacterial infection causing worldwide public health problems but the available vaccine is far from ideal. Type-1 T cell immunity has been shown to be critical for host defence against tuberculosis infection, but the role of dendritic cell (DC) subsets in pathogenesis of mycobacterial infection remains unclear. METHODOLOGY/PRINCIPAL FINDINGS We examined the effectiveness of dendritic cell (DC) subsets in BCG-infected mice in generating immune responses beneficial for pathogen clearance and reduction of pathological reactions in the tissues following challenge infection. Our data showed that only the adoptive transfer of the subset of CD8alpha+ DC isolated from infected mice (iCD8+ DC) generated significant protection, demonstrated by less mycobacterial growth and pathological changes in the lung and liver tissues in iCD8+ DC recipients than sham-treated control mice. The adoptive transfer of the CD8alpha(-)DC from the infected mice (iCD8(-) DC) not only failed to reduce bacterial growth, but enhanced inflammation characterized by diffuse heavy cellular infiltration. Notably, iCD8(-) DC produced significantly higher levels of IL-10 than iCD8+ DC and promoted more Th2 cytokine responses in in vitro DC-T cell co-culture and in vivo adoptive transfer experiments. CONCLUSIONS/SIGNIFICANCE The data indicate that in vivo BCG-primed CD8+ DC is the dominant DC subset in inducing protective immunity especially for reducing pathological reactions in infected tissues. The finding has implications for the rational improvement of the prophylactic and therapeutic approaches for controlling tuberculosis infection and related diseases.
Collapse
Affiliation(s)
- Xiaoling Gao
- Laboratory for Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Laboratory for Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yijun Fan
- Laboratory for Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hong Bai
- Laboratory for Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Yang
- Laboratory for Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Laboratory for Infection and Immunity, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
- * E-mail:
| |
Collapse
|
23
|
Bai H, Cheng J, Gao X, Joyee AG, Fan Y, Wang S, Jiao L, Yao Z, Yang X. IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2009; 183:5886-95. [PMID: 19812198 DOI: 10.4049/jimmunol.0901584] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although their contribution to host defense against extracellular infections has been well defined, IL-17 and Th17 are generally thought to have limited impact on intracellular infections. In this study, we investigated the role and mechanisms of IL-17/Th17 in host defense against Chlamydia muridarum, an obligate intracellular bacterium, lung infection. Our data showed rapid increase in IL-17 production and expansion of Th17 cells following C. muridarum infection and significant detrimental impact of in vivo IL-17 neutralization by anti-IL-17 mAb on disease course, immune response, and dendritic cell (DC) function. Specifically, IL-17-neutralized mice exhibited significantly greater body weight loss, higher organism growth, and much more severe pathological changes in the lung compared with sham-treated control mice. Immunological analysis showed that IL-17 neutralization significantly reduced Chlamydia-specific Th1 responses, but increased Th2 responses. Interestingly, the DC isolated from IL-17-neutralized mice showed lower CD40 and MHC II expression and IL-12 production, but higher IL-10 production compared with those from sham-treated mice. In two DC-T cell coculture systems, DC isolated from IL-17-neutralized mice induced higher IL-4, but lower IFN-gamma production by Ag-specific T cells than those from sham-treated mice in cell priming and reaction settings. Adoptive transfer of DC isolated from IL-17-neutralized mice, unlike those from sham-treated mice, failed to protect the recipients against challenge infection. These findings provide in vivo evidence that IL-17/Th17 plays an important role in host defense against intracellular bacterial infection, and suggest that IL-17/Th17 can promote type 1 T cell immunity through modulating DC function.
Collapse
Affiliation(s)
- Hong Bai
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Azadmehr A, Pourfathollah AA, Amirghofran Z, Hassan ZM, Moazzeni SM. Enhancement of Th1 immune response by CD8alpha(+) dendritic cells loaded with heat shock proteins enriched tumor extract in tumor-bearing mice. Cell Immunol 2009; 260:28-32. [PMID: 19712929 DOI: 10.1016/j.cellimm.2009.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 11/28/2022]
Abstract
The discovery of dendritic cells (DCs) as professional antigen presenting cells has opened up new possibilities for their use in the development of tumor vaccines. We investigated the effect of the CD8alpha(+) DCs loaded with heat-treated tumor lysate (HTL) as a vaccine in tumor immunotherapy. The HTL loaded CD8alpha(+) DCs, TL loaded CD8alpha(+) DCs and unloaded CD8alpha(+) DCs were subcutaneously injected in the fibrosarcoma-bearing mice. The splenocyte proliferation and the shifting of Th1/Th2 response were measured. The results indicated a significant increase in the lymphocytes proliferation and the IFN-gamma production in the test group of mouse splenocytes. According to the results, HTL loaded CD8alpha(+) DCs vaccine significantly decreased tumor growth and longer survival than the other immunized animals. These findings show that anti-tumor immune response against the fibrosarcoma can be induced by HTL loaded CD8alpha(+) DCs and may provide a useful therapeutic model for development of approaches to tumor treatments.
Collapse
Affiliation(s)
- Abbas Azadmehr
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
25
|
Jiao L, Han X, Wang S, Fan Y, Yang M, Qiu H, Yang X. Imprinted DC mediate the immune-educating effect of early-life microbial exposure. Eur J Immunol 2009; 39:469-80. [PMID: 19180467 DOI: 10.1002/eji.200838367] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been long proposed that exposure to environmental factors early in life may have an educating effect on the development of immune regulatory functions. However, experimental studies on this issue are limited and the related molecular and cellular basis remains unclear. Here we report that neonatal exposure to killed bacteria (Chlamydia muridarum, originally called Chlamydia trachomatis mouse pneumonitis (MoPn)) changed the pattern of the hosts' immune responses to a model allergen (OVA) in adulthood. This was associated with altered phenotype and function of DC. We found that DC from adult mice treated neonatally with UV-killed MoPn exhibited distinct patterns of surface marker and TLR expression and cytokine production from control mice (DC from adult mice neonatally treated with vehicle, (Sham-DC)). More importantly, DC from adult mice treated neonatally with UV-killed MoPn induced significantly lower type-2 antigen-specific T-cell responses than Sham-DC shown in DC:T co-culture experiments in vitro and in adoptive transfer experiments in vivo. In addition, depletion of T cells in vivo largely abolished the phenotypic and functional alterations of DC caused by bacterial exposure, suggesting the involvement of T cell in this process. Our study demonstrates a central role of DC in linking the early-life exposure to microbial products and the balanced development of immune regulatory functions and the involvement of T cells in imprinting of the DC function.
Collapse
Affiliation(s)
- Lei Jiao
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Man, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Moniz RJ, Chan AM, Kelly KA. Identification of dendritic cell subsets responding to genital infection by Chlamydia muridarum. ACTA ACUST UNITED AC 2009; 55:226-36. [PMID: 19159430 DOI: 10.1111/j.1574-695x.2008.00523.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs) are central for the induction of T-cell responses needed for chlamydial eradication. Here, we report the activation of two DC subsets: a classical CD11b+ (cDC) and plasmacytoid (pDC) during genital infection with Chlamydia muridarum. Genital infection induced an influx of cDC and pDC into the genital tract and its draining lymph node (iliac lymph nodes, ILN) as well as colocalization with T cells in the ILN. Genital infection with C. muridarum also stimulated high levels of costimulatory molecules on cDC central for the activation of naïve T cells in vivo. In contrast, pDC expressed low levels of most costimulatory molecules in vivo and did not secrete cytokines associated with the production of T helper (Th)1 cells in vitro. However, pDC upregulated inducible costimulatory ligand expression and produced IL-6 and IL-10 in response to chlamydial exposure in vitro. Our findings show that these two DC subsets likely have different functions in vivo. cDCs are prepared for induction of antichlamydial T-cell responses, whereas pDCs have characteristics associated with the differentiation of non-Th1 cell subsets.
Collapse
Affiliation(s)
- Raymond J Moniz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 90095, USA
| | | | | |
Collapse
|
27
|
Han X, Fan Y, Wang S, Jiao L, Qiu H, Yang X. NK cells contribute to intracellular bacterial infection-mediated inhibition of allergic responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:4621-8. [PMID: 18354185 DOI: 10.4049/jimmunol.180.7.4621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To experimentally examine the hygiene hypothesis, here we studied the effect of chlamydial infection on the development of allergic responses induced by OVA and the involvement of NK cells in this process using a mouse model of airway inflammation. We found that prior Chlamydia muridarum infection can inhibit airway eosinophilic inflammation and mucus production induced by allergen sensitization and challenge. The inhibition was correlated with an alteration of allergen-driven cytokine-producing patterns of T cells. We demonstrated that NK cells were activated following chlamydial infection, showing both cell expansion and cytokine secretion. The in vivo depletion of NK cells using anti-NK Ab before OVA sensitization and challenge partially abolished the inhibitory effect of chlamydial infection, which was associated with a partial restoration of Th2 cytokine production. In contrast, the adoptive transfer of NK cells that were isolated from infected mice showed a significant inhibitory effect on allergic responses, similar to that observed in natural infection. The data suggest that the innate immune cells such as NK cells may play an important role in infection-mediated inhibition of allergic responses.
Collapse
Affiliation(s)
- Xiaobing Han
- Immune Regulation of Allergy Research Group, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Characterization of murine dendritic cell line JAWS II and primary bone marrow-derived dendritic cells in Chlamydia muridarum antigen presentation and induction of protective immunity. Infect Immun 2008; 76:2392-401. [PMID: 18362126 DOI: 10.1128/iai.01584-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Dendritic cells (DCs) appear to orchestrate much of the immunobiology of Chlamydia infection, but most studies of Chlamydia-DC interaction have been limited by the availability and heterogeneity of primary bone marrow-derived DCs (BMDCs). We therefore evaluated the immunobiology of Chlamydia muridarum infection in an immortal DC line termed JAWS II derived from BMDCs of a C57BL/6 p53-knockout mouse. JAWS II cells were permissive to the developmental cycle of Chlamydia. Infection-induced cell death was 50 to 80% less in JAWS II cells than in BMDCs. Chlamydia infected JAWS II cells and yielded infectious progeny 10-fold greater than that with primary BMDCs. JAWS II cells showed an expression pattern of cell activation markers and cytokine secretion following Chlamydia infection similar to that of primary BMDCs by up-regulating the expression of CD86, CD40, and major histocompatibility complex class II and secreting significant amounts of interleukin-12 (IL-12) but not IL-10. JAWS II cells pulsed with Chlamydia stimulated immune CD4(+) T cells to secrete gamma interferon. Adoptive transfer of ex vivo Chlamydia-pulsed JAWS II cells conferred levels of immunity on C57BL/6 mice similar to those conferred by primary BMDCs. Taken together, the data show that JAWS II cells exhibit immunobiological characteristics and functions similar to those of primary BMDCs in terms of Chlamydia antigen presentation in vitro and antigen delivery in vivo. We conclude that the JAWS II cell line can substitute for primary BMDCs in Chlamydia immunobiological studies.
Collapse
|
29
|
Kim E, Kim SH, Kim S, Cho D, Kim TS. AIMP1/p43 Protein Induces the Maturation of Bone Marrow-Derived Dendritic Cells with T Helper Type 1-Polarizing Ability. THE JOURNAL OF IMMUNOLOGY 2008; 180:2894-902. [DOI: 10.4049/jimmunol.180.5.2894] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Gao FG, Wan DF, Gu JR. Ex vivo nicotine stimulation augments the efficacy of therapeutic bone marrow-derived dendritic cell vaccination. Clin Cancer Res 2007; 13:3706-12. [PMID: 17575236 DOI: 10.1158/1078-0432.ccr-07-0028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To explore the preventive and therapeutic antitumor effects of nicotine-treated immature dendritic cells (imDC). EXPERIMENTAL DESIGN First, bone marrow-derived imDCs were stimulated with nicotine in vitro, and nicotinic acetylcholine receptor, costimulator molecules, chemokine receptor, and endocytosis ability of imDCs were detected by flow cytometry. Second, the DC-dependent antigen-specific T-cell proliferation, CTL priming, and interleukin-12 secretion were determined by flow cytometry, enzyme-linked immunospot assay, and ELISA, respectively. Finally, preventive and therapeutic antitumor effects of such imDCs were determined by i.p. transfer against tumor challenge or implantation in mice. RESULTS Nicotine could up-regulate expression of nicotinic acetylcholine receptor, costimulatory molecules, such as CD80, CD86, and CD40, adhesion molecule CD11b, and chemokine receptor CCR7 and enhance endocytosis ability of imDCs. In addition, nicotine could promote imDC-dependent CTL priming and interleukin-12 secretion in vitro. Most importantly, systemic transfer of ex vivo nicotine-stimulated imDCs could reveal preventive and therapeutic effect on tumor development. CONCLUSIONS Ex vivo nicotine stimulation can significantly improve the efficacy of imDCs for adaptive therapy of cancer and nicotine-treated imDCs may be considered as a potential candidate for preventive and therapeutic tumor vaccination.
Collapse
MESH Headings
- Animals
- Antigens, CD/drug effects
- Antigens, CD/metabolism
- Bone Marrow Cells/cytology
- Cancer Vaccines
- Cytokines/biosynthesis
- Cytokines/drug effects
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Endocytosis/drug effects
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Immunotherapy/methods
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Neoplasms, Experimental/therapy
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Receptors, CCR7
- Receptors, Chemokine/drug effects
- Receptors, Chemokine/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Feng Guang Gao
- The National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | |
Collapse
|