1
|
Poston TB, Girardi J, Polson AG, Bhardwaj A, Yount KS, Jaras Salas I, Trim LK, Li Y, O'Connell CM, Leahy D, Harris JM, Beagley KW, Goonetilleke N, Darville T. Viral-vectored boosting of OmcB- or CPAF-specific T-cell responses fail to enhance protection from Chlamydia muridarum in infection-immune mice and elicits a non-protective CD8-dominant response in naïve mice. Mucosal Immunol 2024; 17:1005-1018. [PMID: 38969067 PMCID: PMC11495396 DOI: 10.1016/j.mucimm.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
A vaccine is needed to combat the Chlamydia epidemic. Replication-deficient viral vectors are safe and induce antigen-specific T-cell memory. We tested the ability of intramuscular immunization with modified vaccinia Ankara (MVA) virus or chimpanzee adenovirus (ChAd) expressing chlamydial outer membrane protein (OmcB) or the secreted protein, chlamydial protease-like activating factor (CPAF), to enhance T-cell immunity and protection in mice previously infected with plasmid-deficient Chlamydia muridarum CM972 and elicit protection in naïve mice. MVA.OmcB or MVA.CPAF increased antigen-specific T cells in CM972-immune mice ∼150 and 50-fold, respectively, but failed to improve bacterial clearance. ChAd.OmcB/MVA.OmcB prime-boost immunization of naïve mice elicited a cluster of differentiation (CD) 8-dominant T-cell response dominated by cluster of differentiation (CD)8 T cells that failed to protect. ChAd.CPAF/ChAd.CPAF prime-boost also induced a CD8-dominant response with a marginal reduction in burden. Challenge of ChAd.CPAF-immunized mice genetically deficient in CD4 or CD8 T cells showed that protection was entirely CD4-dependent. CD4-deficient mice had prolonged infection, whereas CD8-deficient mice had higher frequencies of CPAF-specific CD4 T cells, earlier clearance, and reduced burden than wild-type controls. These data reinforce the essential nature of the CD4 T-cell response in protection from chlamydial genital infection in mice and the need for vaccine platforms that drive CD4-dominant responses.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A Grace Polson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aakash Bhardwaj
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kacy S Yount
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian Jaras Salas
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Logan K Trim
- Center for Immunology and Infection Control and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yanli Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Darren Leahy
- Center for Immunology and Infection Control and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jonathan M Harris
- Center for Immunology and Infection Control and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kenneth W Beagley
- Center for Immunology and Infection Control and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Dockterman J, Coers J. Immunopathogenesis of genital Chlamydia infection: insights from mouse models. Pathog Dis 2021; 79:ftab012. [PMID: 33538819 PMCID: PMC8189015 DOI: 10.1093/femspd/ftab012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are pathogenic intracellular bacteria that cause a wide variety of diseases throughout the globe, affecting the eye, lung, coronary arteries and female genital tract. Rather than by direct cellular toxicity, Chlamydia infection generally causes pathology by inducing fibrosis and scarring that is largely mediated by host inflammation. While a robust immune response is required for clearance of the infection, certain elements of that immune response may also damage infected tissue, leading to, in the case of female genital infection, disease sequelae such as pelvic inflammatory disease, infertility and ectopic pregnancy. It has become increasingly clear that the components of the immune system that destroy bacteria and those that cause pathology only partially overlap. In the ongoing quest for a vaccine that prevents Chlamydia-induced disease, it is important to target mechanisms that can achieve protective immunity while preventing mechanisms that damage tissue. This review focuses on mouse models of genital Chlamydia infection and synthesizes recent studies to generate a comprehensive model for immunity in the murine female genital tract, clarifying the respective contributions of various branches of innate and adaptive immunity to both host protection and pathogenic genital scarring.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
| |
Collapse
|
3
|
D Helble J, N Starnbach M. T cell responses to Chlamydia. Pathog Dis 2021; 79:6164867. [PMID: 33693620 DOI: 10.1093/femspd/ftab014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis is the most commonly reported sexually transmitted infection in the United States. The high prevalence of infection and lack of a vaccine indicate a critical knowledge gap surrounding the host's response to infection and how to effectively generate protective immunity. The immune response to C. trachomatis is complex, with cells of the adaptive immune system playing a crucial role in bacterial clearance. Here, we discuss the CD4+ and CD8+ T cell response to Chlamydia, the importance of antigen specificity and the role of memory T cells during the recall response. Ultimately, a deeper understanding of protective immune responses is necessary to develop a vaccine that prevents the inflammatory diseases associated with Chlamydia infection.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
4
|
McQueen BE, Kiatthanapaiboon A, Fulcher ML, Lam M, Patton K, Powell E, Kollipara A, Madden V, Suchland RJ, Wyrick P, O'Connell CM, Reidel B, Kesimer M, Randell SH, Darville T, Nagarajan UM. Human Fallopian Tube Epithelial Cell Culture Model To Study Host Responses to Chlamydia trachomatis Infection. Infect Immun 2020; 88:e00105-20. [PMID: 32601108 PMCID: PMC7440757 DOI: 10.1128/iai.00105-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Chlamydia trachomatis infection of the human fallopian tubes can lead to damaging inflammation and scarring, ultimately resulting in infertility. To study the human cellular responses to chlamydial infection, researchers have frequently used transformed cell lines that can have limited translational relevance. We developed a primary human fallopian tube epithelial cell model based on a method previously established for culture of primary human bronchial epithelial cells. After protease digestion and physical dissociation of excised fallopian tubes, epithelial cell precursors were expanded in growth factor-containing medium. Expanded cells were cryopreserved to generate a biobank of cells from multiple donors and cultured at an air-liquid interface. Culture conditions stimulated cellular differentiation into polarized mucin-secreting and multiciliated cells, recapitulating the architecture of human fallopian tube epithelium. The polarized and differentiated cells were infected with a clinical isolate of C. trachomatis, and inclusions containing chlamydial developmental forms were visualized by fluorescence and electron microscopy. Apical secretions from infected cells contained increased amounts of proteins associated with chlamydial growth and replication, including transferrin receptor protein 1, the amino acid transporters SLC3A2 and SLC1A5, and the T-cell chemoattractants CXCL10, CXCL11, and RANTES. Flow cytometry revealed that chlamydial infection induced cell surface expression of T-cell homing and activation proteins, including ICAM-1, VCAM-1, HLA class I and II, and interferon gamma receptor. This human fallopian tube epithelial cell culture model is an important tool with translational potential for studying cellular responses to Chlamydia and other sexually transmitted pathogens.
Collapse
Affiliation(s)
- Bryan E McQueen
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amy Kiatthanapaiboon
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - M Leslie Fulcher
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mariam Lam
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kate Patton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily Powell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Avinash Kollipara
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Victoria Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert J Suchland
- University of Washington, Division of Allergy and Infectious Diseases, Department of Medicine, Seattle, Washington, USA
| | - Priscilla Wyrick
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Boris Reidel
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Helble JD, Gonzalez RJ, von Andrian UH, Starnbach MN. Gamma Interferon Is Required for Chlamydia Clearance but Is Dispensable for T Cell Homing to the Genital Tract. mBio 2020; 11:e00191-20. [PMID: 32184237 PMCID: PMC7078466 DOI: 10.1128/mbio.00191-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/08/2023] Open
Abstract
While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host's ability to sense the cytokine gamma interferon (IFN-γ). However, it is unclear what role NR1 production or sensing of IFN-γ plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-γ-/-, and IFN-γR-/- NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis We also determined that protection against infection requires production of IFN-γ from either NR1 T cells or endogenous cells, further highlighting the importance of IFN-γ in clearing C. trachomatis infection.IMPORTANCEChlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rodrigo J Gonzalez
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael N Starnbach
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Qiao S, Zheng N, Sun L, Pang G, Wang S, Jia P, Uzonna JE, Bai H, Yang X. The p110δ isoforme of phosphatidylinositol 3-kinase plays an important role in host defense against chlamydial lung infection through influencing CD4+ T-cell function. Pathog Dis 2018; 76:5035814. [PMID: 29893841 DOI: 10.1093/femspd/fty053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
PI3Ks display integrant significance in T-cell development and differentiation, which is related to host defense against infections. Here, we investigated the role of p110δ isoform of PI3Ks in host defense against chlamydial lung infection in a mouse model. Our data showed that lung infection with Chlamydia muridarum (Cm) activated PI3K/AKT signaling pathway. Compared to WT mice, p110δD910A mice, mice with an inactivating knockin mutation in the p110δ Isoform of PI3Ks, showed more sever disease phenotype and slower recovery, which was associated with reduced Chlamydia-specific Th1 and Th17 immune responses following infection. Further adoptive transfer experiment showed that mice which received CD4+ T cells from infected p110δD910A mice exhibited greater body weight loss and higher bacterial loads in the lung than those which received CD4+ T cells from WT mice following challenge infection. These results provide in vivo evidence that p110δ isoform of PI3Ks plays an important role in host defense against chlamydial infection by promoting CD4+ T-cell immunity.
Collapse
Affiliation(s)
- Sai Qiao
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Ningbo Zheng
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Lida Sun
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Gaoju Pang
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Shuhe Wang
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Ping Jia
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Jude Ezeh Uzonna
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Hong Bai
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Xi Yang
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| |
Collapse
|
7
|
Segal BH. Specific Adoptive T-Cell Therapy for Viral and Fungal Infections. MANAGEMENT OF INFECTIONS IN THE IMMUNOCOMPROMISED HOST 2018. [PMCID: PMC7121368 DOI: 10.1007/978-3-319-77674-3_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite advances in anti-infective agents, viral and fungal infections after hematopoietic stem cell transplantation (HSCT) continue to cause life-threatening complications that limit the success of HSCT. Early adoptive T-cell immunotherapy studies showed that administration of allogeneic virus-specific cytotoxic T lymphocytes (vCTL) can prevent and control viral infections and reconstitute antiviral immunity to cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Advances in immunobiology, in vitro culture technology, and current good manufacturing practice (cGMP) have provided opportunities for advancing adoptive cell therapy for viral infections: (1) T cells have been expanded targeting multiple pathogens; (2) vCTL production no longer requires viral infection or viral vector transduction of antigen-presenting cells (APCs); (3) the source of lymphocytes is no longer restricted to donors who are immune to the pathogens; (4) naive T cells have been redirected with chimeric antigen receptor T cells (CARTs) or armed with bispecific antibody-armed T cells (BATs) to mediate vCTL activity; (5) these technologies could be combined to targeted multiple viral or fungal pathogens; and (6) pathogen-specific T-cell products manufactured from third parties and banked for “off-the-shelf” use post-HSCT may soon become a reality.
Collapse
Affiliation(s)
- Brahm H. Segal
- Departments of Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York USA
| |
Collapse
|
8
|
Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines 2017; 17:57-69. [PMID: 29264970 DOI: 10.1080/14760584.2018.1417044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The "cloaked" bacterial pathogen that is Chlamydia trachomatis continues to cause sexually transmitted infections (STIs) that adversely affect the health and well-being of children, adolescents and adults globally. The reproductive disease sequelae follow unresolved or untreated chronic or recurrent asymptomatic C.trachomatis infections of the lower female genital tract (FGT) and can include pelvic pain, pelvic inflammatory disease (PID) and ectopic pregnancy. Tubal Factor Infertility (TFI) can also occur since protective and long-term natural immunity to chlamydial infection is incomplete, allowing for ascension of the organism to the upper FGT. Developing countries including the WHO African (8.3 million cases) and South-East Asian regions (7.2 million cases) bear the highest burden of chlamydial STIs. AREAS COVERED Genetic advances for Chlamydia have provided tools for transformation (including dendrimer-enabled transformation), lateral gene transfer and chemical mutagenesis. Recent progress in these areas is reviewed with a focus on vaccine development for Chlamydia infections of the female genital tract. EXPERT COMMENTARY A vaccine that can elicit immuno-protective responses whilst avoiding adverse immuno-pathologic host responses is required. The current technological advances in chlamydial genetics and proteomics, as well as novel and improved adjuvants and delivery systems, provide new hope that the elusive chlamydial vaccine is an imminent and realistic goal.
Collapse
Affiliation(s)
- Louise M Hafner
- a School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Peter Timms
- b Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|
9
|
Li LX, Labuda JC, Imai DM, Griffey SM, McSorley SJ. CCR7 Deficiency Allows Accelerated Clearance of Chlamydia from the Female Reproductive Tract. THE JOURNAL OF IMMUNOLOGY 2017; 199:2547-2554. [PMID: 28801359 DOI: 10.4049/jimmunol.1601314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/21/2017] [Indexed: 12/24/2022]
Abstract
Immune mechanisms responsible for pathogen clearance from the female reproductive tract (FRT) are incompletely defined; in particular, the contribution of lymphocyte trafficking to this process is unclear. CCR7-deficient mice have profoundly altered lymphocyte recirculation and display ectopic formation of lymphocyte aggregates within mucosal nonlymphoid tissues, including the FRT. In this study, we investigated how altered lymphocyte distribution in CCR7-deficient mice would affect host responses to Chlamydia muridarum within the reproductive tract. As expected, CCR7-deficient mice exhibited reduced lymphocyte trafficking to lymph nodes and a corresponding increase in T cell populations within the FRT. After intravaginal infection with Chlamydia, CCR7-deficient mice displayed markedly reduced Ag-specific CD4 T cell responses within the local draining iliac lymph nodes, yet robust Th1 and Th17 responses were prominent in the FRT. In addition, Chlamydia-specific Ab responses were dysregulated in CCR7-deficient mice, displaying an unexpected increase in the systemic IgA responses. Importantly, prominent mucosal immune responses in CCR7-deficient mice increased the efficiency of bacteria clearance from the FRT while reducing tissue-associated inflammation and pathology. Thus, increased numbers of lymphocytes within the FRT result in pathogen clearance with reduced immune-mediated pathology.
Collapse
Affiliation(s)
- Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205;
| | - Jasmine C Labuda
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616; and
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
| | - Stephen M Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616; and
| |
Collapse
|
10
|
Mirrashidi KM, Elwell CA, Verschueren E, Johnson JR, Frando A, Von Dollen J, Rosenberg O, Gulbahce N, Jang G, Johnson T, Jäger S, Gopalakrishnan AM, Sherry J, Dunn JD, Olive A, Penn B, Shales M, Cox JS, Starnbach MN, Derre I, Valdivia R, Krogan NJ, Engel J. Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host Microbe 2015; 18:109-21. [PMID: 26118995 DOI: 10.1016/j.chom.2015.06.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/28/2015] [Accepted: 06/05/2015] [Indexed: 01/02/2023]
Abstract
Chlamydia trachomatis is a leading cause of genital and ocular infections for which no vaccine exists. Upon entry into host cells, C. trachomatis resides within a membrane-bound compartment—the inclusion—and secretes inclusion membrane proteins (Incs) that are thought to modulate the host-bacterium interface. To expand our understanding of Inc function(s), we subjected putative C. trachomatis Incs to affinity purification-mass spectroscopy (AP-MS). We identified Inc-human interactions for 38/58 Incs with enrichment in host processes consistent with Chlamydia's intracellular life cycle. There is significant overlap between Inc targets and viral proteins, suggesting common pathogenic mechanisms among obligate intracellular microbes. IncE binds to sorting nexins (SNXs) 5/6, components of the retromer, which relocalizes SNX5/6 to the inclusion membrane and augments inclusion membrane tubulation. Depletion of retromer components enhances progeny production, revealing that retromer restricts Chlamydia infection. This study demonstrates the value of proteomics in unveiling host-pathogen interactions in genetically challenging microbes.
Collapse
Affiliation(s)
- Kathleen M Mirrashidi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erik Verschueren
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey R Johnson
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Frando
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Von Dollen
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Oren Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Natali Gulbahce
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tasha Johnson
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefanie Jäger
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joe Dan Dunn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Andrew Olive
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bennett Penn
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffery S Cox
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Isabelle Derre
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Raphael Valdivia
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Nevan J Krogan
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Nogueira CV, Zhang X, Giovannone N, Sennott EL, Starnbach MN. Protective immunity against Chlamydia trachomatis can engage both CD4+ and CD8+ T cells and bridge the respiratory and genital mucosae. THE JOURNAL OF IMMUNOLOGY 2015; 194:2319-29. [PMID: 25637024 DOI: 10.4049/jimmunol.1402675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the cellular populations and mechanisms responsible for overcoming immune compartmentalization is valuable for designing vaccination strategies targeting distal mucosae. In this study, we show that the human pathogen Chlamydia trachomatis infects the murine respiratory and genital mucosae and that T cells, but not Abs, elicited through intranasal immunization can protect against a subsequent transcervical challenge. Unlike the genital infection where CD8(+) T cells are primed, yet fail to confer protection, we found that intranasal priming engages both CD4(+) and CD8(+) T cells, allowing for protection against genital infection with C. trachomatis. The protection is largely dependent on IFN-γ secretion by T cells. Moreover, different chemokine receptors are critical for C. trachomatis-specific CD4(+) T cells to home to the lung, rather than the CXCR3- and CCR5-dependent migration observed during genital infection. Overall, this study demonstrates that the cross-mucosa protective immunity against genital C. trachomatis infection following intranasal immunization is not dependent on Ab response but is mediated by not only CD4(+) T cells but also by CD8(+) T cells. This study provides insights for the development of vaccines against mucosal pathogens that threaten reproductive health worldwide.
Collapse
Affiliation(s)
- Catarina V Nogueira
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Xuqing Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Nicholas Giovannone
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Erica L Sennott
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
12
|
Gupta R, Arkatkar T, Yu JJ, Wali S, Haskins WE, Chambers JP, Murthy AK, Bakar SA, Guentzel MN, Arulanandam BP. Chlamydia muridarum infection associated host MicroRNAs in the murine genital tract and contribution to generation of host immune response. Am J Reprod Immunol 2014; 73:126-40. [PMID: 24976530 DOI: 10.1111/aji.12281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/21/2014] [Indexed: 12/23/2022] Open
Abstract
PROBLEM Chlamydia trachomatis (CT) is the leading sexually transmitted bacterial infection in humans and is associated with reproductive tract damage. However, little is known about the involvement and regulation of microRNAs (miRs) in genital CT. METHODS We analyzed miRs in the genital tract (GT) following C. muridarum (murine strain of CT) challenge of wild type (WT) and CD4(+) T-cell deficient (CD4(-/-)) C57BL/6 mice at days 6 and 12 post-challenge. RESULTS At day 6, miRs significantly downregulated in the lower GT were miR-125b-5p, -16, -214, -23b, -135a, -182, -183, -30c, and -30e while -146 and -451 were significantly upregulated, profiles not exhibited at day 12 post-bacterial challenge. Significant differences in miR-125b-5p (+5.06-fold change), -135a (+4.9), -183 (+7.9), and -182 (+3.2) were observed in C. muridarum-infected CD4(-/-) compared to WT mice. In silico prediction and mass spectrometry revealed regulation of miR-135a and -182 and associated proteins, that is, heat-shock protein B1 and alpha-2HS-glycoprotein. CONCLUSION This study provides evidence on regulation of miRs following genital chlamydial infection suggesting a role in pathogenesis and host immunity.
Collapse
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jerchel S, Kaufhold I, Schuchardt L, Shima K, Rupp J. Host immune responses after hypoxic reactivation of IFN-γ induced persistent Chlamydia trachomatis infection. Front Cell Infect Microbiol 2014; 4:43. [PMID: 24783060 PMCID: PMC3997002 DOI: 10.3389/fcimb.2014.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/25/2014] [Indexed: 01/05/2023] Open
Abstract
Genital tract infections with Chlamydia trachomatis (C. trachomatis) are the most frequent sexually transmitted disease worldwide. Severe clinical sequelae such as pelvic inflammatory disease (PID), tubal occlusion, and tubal infertility are linked to inflammatory processes of chronically infected tissues. The oxygen concentrations in the female urogenital tract are physiologically low and further diminished (0.5–5% O2, hypoxia) during an ongoing inflammation. However, little is known about the effect of a low oxygen environment on genital C. trachomatis infections. In this study, we investigated the host immune responses during reactivation of IFN-γ induced persistent C. trachomatis infection under hypoxia. For this purpose, the activation of the MAP-kinases p44/42 and p38 as well as the induction of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and MCP-1 were analyzed. Upon hypoxic reactivation of IFN-γ induced persistent C. trachomatis infection, the phosphorylation of the p44/42 but not of the p38 MAP-kinase was significantly diminished compared to IFN-γ induced chlamydial persistence under normoxic condition. In addition, significantly reduced IL-6 and IL-8 mRNA expression levels were observed for reactivated Chlamydiae under hypoxia compared to a persistent chlamydial infection under normoxia. Our findings indicate that hypoxia not only reactivates IFN-γ induced persistent C. trachomatis infections resulting in increased bacterial growth and progeny but also dampens inflammatory host immune signaling responses that are normally observed in a normoxic environment.
Collapse
Affiliation(s)
- Stefan Jerchel
- Institute of Medical Microbiology and Hygiene, University of Lübeck Lübeck, Germany
| | - Inga Kaufhold
- Institute of Medical Microbiology and Hygiene, University of Lübeck Lübeck, Germany
| | - Larissa Schuchardt
- Institute of Medical Microbiology and Hygiene, University of Lübeck Lübeck, Germany
| | - Kensuke Shima
- Institute of Medical Microbiology and Hygiene, University of Lübeck Lübeck, Germany
| | - Jan Rupp
- Institute of Medical Microbiology and Hygiene, University of Lübeck Lübeck, Germany ; Medical Clinic III/Infectious Diseases, University Hospital of Schleswig-Holstein Lübeck, Germany
| |
Collapse
|
14
|
Fankhauser SC, Starnbach MN. PD-L1 limits the mucosal CD8+ T cell response to Chlamydia trachomatis. THE JOURNAL OF IMMUNOLOGY 2013; 192:1079-90. [PMID: 24353266 DOI: 10.4049/jimmunol.1301657] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydia trachomatis infection is the most common bacterial sexually transmitted disease in the United States. Repeated infections with C. trachomatis lead to serious sequelae, such as infertility. It is unclear why the adaptive immune system, specifically the CD8(+) T cell response, is unable to protect against subsequent C. trachomatis infections. In this article, we characterize the mucosal CD8(+) T cell response to C. trachomatis in the murine genital tract. We demonstrate that the immunoinhibitory ligand, PD-L1, contributes to the defective CD8(+) T cell response. Deletion or inhibition of PD-L1 restores the CD8(+) T cell response and enhances C. trachomatis clearance.
Collapse
Affiliation(s)
- Sarah C Fankhauser
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
15
|
Habbeddine M, Verbeke P, Delarbre C, Moutier R, Prieto S, Ojcius DM, Kanellopoulos-Langevin C. CD1d-restricted NKT cells modulate placental and uterine leukocyte populations during chlamydial infection in mice. Microbes Infect 2013; 15:928-38. [PMID: 23999314 DOI: 10.1016/j.micinf.2013.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 08/01/2013] [Accepted: 08/21/2013] [Indexed: 01/18/2023]
Abstract
Invariant CD1d-restricted natural killer T cells play an important immunoregulatory role and can influence a broad spectrum of immunological responses including against bacterial infections. They are present at the fetal-maternal interface and although it has been reported that experimental systemic iNKT cell activation can induce mouse abortion, their role during pregnancy remain poorly understood. In the present work, using a physiological Chlamydia muridarum infection model, we have shown that, in vaginally infected pregnant mice, C. muridarum is cleared similarly in C57BL/6 wild type (WT) and CD1d(-/-) mice. We have also shown that infected- as well as uninfected-CD1d(-/-) mice have the same litter size as WT counterparts. Thus, CD1d-restricted cells are required neither for the resolution of chlamydial infection of the lower-genital tract, nor for the maintenance of reproductive capacity. However, unexpected differences in T cell populations were observed in uninfected pregnant females, as CD1d(-/-) placentas contained significantly higher percentages of CD4(+) and CD8(+) T cells than WT counterparts. However, infection triggered a significant decrease in the percentages of CD4(+) T cells in CD1d(-/-) mice. In infected WT pregnant mice, the numbers of uterine CD4(+) and CD8(+) T cells, monocytes and granulocytes were greatly increased, changes not observed in infected CD1d(-/-) mice. An increase in the percentage of CD8(+) T cells seems independent of CD1d-restricted cells as it occurred in both WT and CD1d(-/-) mice. Thus, in the steady state, the lack of CD1d-restricted NKT cells affects leukocyte populations only in the placenta. In Chlamydia-infected pregnant mice, the immune response against Chlamydia is dampened in the uterus. Our results suggest that CD1d-restricted NKT cells play a role in the recruitment or homeostasis of leukocyte populations at the maternal-fetal interface in the presence or absence of Chlamydia infection.
Collapse
Affiliation(s)
- Mohamed Habbeddine
- Laboratory of Inflammation, Gestation and Autoimmunity, Jacques Monod Institute, CNRS and University Paris-Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France; Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University UM2, France; INSERM U1104 and CNRS UMR7280, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Ibana JA, Myers L, Porretta C, Lewis M, Taylor SN, Martin DH, Quayle AJ. The major CD8 T cell effector memory subset in the normal and Chlamydia trachomatis-infected human endocervix is low in perforin. BMC Immunol 2012; 13:66. [PMID: 23216954 PMCID: PMC3538661 DOI: 10.1186/1471-2172-13-66] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/03/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The local tissue microenvironment plays an important role in the induction, homing, maintenance and development of effector functions of T cells. Thus, site-specific differences in phenotypes of mucosal and systemic T cell populations have been observed. Chlamydia trachomatis most commonly infects the endocervix in women, yet little is known about Chlamydia-specific effector T cell immunity at this unique mucosal site. Our previous flow-cytometry-based study of cervical-cytobrush retrieved cells indicated that CD8 T cells are significantly increased in the C. trachomatis-infected human endocervix. The cytolytic function of CD8 T cells is important in the protective immunity against many intracellular pathogens, and requires the cytolytic granule perforin to facilitate the entry of other molecules that mediate the lysis of target cells. Determination of perforin expression of the CD8 T cell population in the endocervix would therefore provide insights on the granule-mediated cytolytic potential of these cells at this site. RESULTS Our histological data revealed that C. trachomatis-infected tissues have significantly higher numbers of CD3 and CD8 T cells compared to non-infected tissues (p<0.01), and that the majority of CD8+ cells do not express perforin in situ. A subsequent flow cytometric analysis of paired blood and endocervix-derived cells (n=16) revealed that while all the CD8 T cell subsets: naïve, effector memory (TEM), central memory (TCM) and terminally differentiated effector memory (TEMRA) can be found in the blood, the endocervix is populated mainly by the TEM CD8 T cell subset. Our data also showed that perforin expression in the TEM population is significantly lower in the endocervix than in the blood of C. trachomatis positive women (n=15; p<0.0001), as well as in C. trachomatis-negative individuals (n=6; p<0.05). Interestingly, our in vitro co-culture study suggests that the exposure of HeLa 229 cervical epithelial cells to IFN gamma could potentially induce a decrease in perforin content in CD8 TEM cells in the same microenvironment. CONCLUSIONS The low perforin content of CD8 TEM cells in the endocervix, the local site of C. trachomatis infection in women, may reflect the unique immunological environment that balances immune protection against sexually transmitted infections and immune- tolerance to support conception.
Collapse
Affiliation(s)
- Joyce A Ibana
- Microbiology, Immunology and Parasitology Department, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Bettini ML, Bettini M, Vignali DAA. T-cell receptor retrogenic mice: a rapid, flexible alternative to T-cell receptor transgenic mice. Immunology 2012; 136:265-72. [PMID: 22348644 DOI: 10.1111/j.1365-2567.2012.03574.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The T-cell receptor (TCR) is unique in its complexity. It determines not only positive (life) and negative (death) selection in the thymus, but also mediates proliferation, anergy, differentiation, cytotoxicity and cytokine production in the periphery. Through its association with six CD3 signalling chains (εγ, δε and ζζ), the TCR is capable of recognizing an extensive variety of antigenic peptides, from both pathogens and self-antigens, and translating these interactions into multiple signalling pathways that mediate diverse T-cell developmental and functional responses. The analysis of TCR biology has been revolutionized by the development of TCR transgenic mice, which express a single clonotypic T-cell population, with diverse specificities and genetic backgrounds. However, they are time consuming to generate and characterize, limiting the analysis of large numbers of TCR over a short period of time in multiple genetic backgrounds. The recent development of TCR retrogenic technology resolves these limitations and could in time have a similarly important impact on our understanding of T-cell development and function. In this review, we will discuss the advantages and limitations of retrogenic technology compared with the generation and use of TCR transgenic mice for studying all aspects of T-cell biology.
Collapse
Affiliation(s)
- Matthew L Bettini
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
18
|
Gondek DC, Olive AJ, Stary G, Starnbach MN. CD4+ T cells are necessary and sufficient to confer protection against Chlamydia trachomatis infection in the murine upper genital tract. THE JOURNAL OF IMMUNOLOGY 2012; 189:2441-9. [PMID: 22855710 DOI: 10.4049/jimmunol.1103032] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydia trachomatis infection is the most common bacterial sexually transmitted disease in the United States. Chlamydia infections that ascend to the upper genital tract can persist, trigger inflammation, and result in serious sequelae such as infertility. However, mouse models in which the vaginal vault is inoculated with C. trachomatis do not recapitulate the course of human disease. These intravaginal infections of the mouse do not ascend efficiently to the upper genital tract, do not cause persistent infection, do not induce significant inflammation, and do not induce significant CD4⁺ T cell infiltration. In this article, we describe a noninvasive transcervical infection model in which we bypass the cervix and directly inoculate C. trachomatis into the uterus. We show that direct C. trachomatis infection of the murine upper genital tract stimulates a robust Chlamydia-specific CD4⁺ T cell response that is both necessary and sufficient to clear infection and provide protection against reinfection.
Collapse
Affiliation(s)
- David C Gondek
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
19
|
Protective capacity of virus-specific T cell receptor-transduced CD8 T cells in vivo. J Virol 2012; 86:10866-9. [PMID: 22787223 DOI: 10.1128/jvi.01472-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transfer of T cell receptor (TCR) genes by viral vectors represents a promising technique to generate antigen-specific T cells for adoptive immunotherapy. TCR-transduced T cells specific for infectious pathogens have been described, but their protective function in vivo has not yet been examined. Here, we demonstrate that CD8 T cells transduced with the P14 TCR specific for the gp33 epitope of lymphocytic choriomeningitis virus exhibit protective activities in both viral and bacterial infection models in mice.
Collapse
|
20
|
Ibana JA, Aiyar A, Quayle AJ, Schust DJ. Modulation of MICA on the surface of Chlamydia trachomatis-infected endocervical epithelial cells promotes NK cell-mediated killing. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2012; 65:32-42. [PMID: 22251247 PMCID: PMC5029121 DOI: 10.1111/j.1574-695x.2012.00930.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/24/2022]
Abstract
Chlamydia trachomatis serovars D-K are obligate intracellular bacteria that have tropism for the columnar epithelial cells of the genital tract. Chlamydia trachomatis infection has been reported to induce modifications in immune cell ligand expression on epithelial host cells. In this study, we used an in vitro infection model that resulted in a partial infection of C. trachomatis-exposed primary-like immortalized endocervical epithelial cells (A2EN). Using this model, we demonstrated that expression of the natural killer (NK) cell activating ligand, MHC class I-related protein A (MICA), was upregulated on C. trachomatis-infected, but not on noninfected bystander cells. MICA upregulation was concomitant with MHC class I downregulation and impacted the susceptibility of C. trachomatis-infected cells to NK cell activity. The specificity of MICA upregulation was reflected by a higher cytolytic activity of an NK cell line (NK92MI) against C. trachomatis-infected cells compared with uninfected control cells. Significantly, data also indicated that NK cells exerted a partial, but incomplete sterilizing effect on C. trachomatis as shown by the reduction in recoverable inclusion forming units (IFU) when cocultured with C. trachomatis-infected cells. Taken together, our data suggest that NK cells may play a significant role in the ability of the host to counter C. trachomatis infection.
Collapse
Affiliation(s)
- Joyce Altamarino Ibana
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Alison Jane Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Danny Joseph Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
21
|
Ibana JA, Schust DJ, Sugimoto J, Nagamatsu T, Greene SJ, Quayle AJ. Chlamydia trachomatis immune evasion via downregulation of MHC class I surface expression involves direct and indirect mechanisms. Infect Dis Obstet Gynecol 2011; 2011:420905. [PMID: 21747639 PMCID: PMC3123996 DOI: 10.1155/2011/420905] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 02/15/2011] [Indexed: 11/10/2022] Open
Abstract
Genital C. trachomatis infections typically last for many months in women. This has been attributed to several strategies by which C. trachomatis evades immune detection, including well-described methods by which C. trachomatis decreases the cell surface expression of the antigen presenting molecules major histocompatibility complex (MHC) class I, MHC class II, and CD1d in infected genital epithelial cells. We have harnessed new methods that allow for separate evaluation of infected and uninfected cells within a mixed population of chlamydia-infected endocervical epithelial cells to demonstrate that MHC class I downregulation in the presence of C. trachomatis is mediated by direct and indirect (soluble) factors. Such indirect mechanisms may aid in priming surrounding cells for more rapid immune evasion upon pathogen entry and help promote unfettered spread of C. trachomatis genital infections.
Collapse
Affiliation(s)
- Joyce A. Ibana
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO 65202, USA
| | - Jun Sugimoto
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO 65202, USA
| | - Takeshi Nagamatsu
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO 65202, USA
| | - Sheila J. Greene
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection. Infect Immun 2011; 79:2928-35. [PMID: 21536799 DOI: 10.1128/iai.05022-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunopathogenesis of Chlamydia trachomatis-induced oviduct pathological sequelae is not well understood. Mice genetically deficient in perforin (perforin(-/-) mice) or tumor necrosis factor alpha (TNF-α) production (TNF-α(-/-) mice) displayed comparable vaginal chlamydial clearance rates but significantly reduced oviduct pathology (hydrosalpinx) compared to that of wild-type mice. Since both perforin and TNF-α are effector mechanisms of CD8(+) T cells, we evaluated the role of CD8(+) T cells during genital Chlamydia muridarum infection and oviduct sequelae. Following vaginal chlamydial challenge, (i) mice deficient in TAP I (and therefore the major histocompatibility complex [MHC] I pathway and CD8(+) T cells), (ii) wild-type mice depleted of CD8(+) T cells, and (iii) mice genetically deficient in CD8 (CD8(-/-) mice) all displayed similar levels of vaginal chlamydial clearance but significantly reduced hydrosalpinx, compared to those of wild-type C57BL/6 mice, suggesting a role for CD8(+) T cells in chlamydial pathogenesis. Repletion of CD8(-/-) mice with wild-type or perforin(-/-), but not TNF-α(-/-), CD8(+) T cells at the time of challenge restored hydrosalpinx to levels observed in wild-type C57BL/6 mice, suggesting that TNF-α production from CD8(+) T cells is important for pathogenesis. Additionally, repletion of TNF-α(-/-) mice with TNF-α(+/+) CD8(+) T cells significantly enhanced the incidence of hydrosalpinx and oviduct dilatation compared to those of TNF-α(-/-) mice but not to the levels found in wild-type mice, suggesting that TNF-α production from CD8(+) T cells and non-CD8(+) cells cooperates to induce optimal oviduct pathology following genital chlamydial infection. These results provide compelling new evidence supporting the contribution of CD8(+) T cells and TNF-α production to Chlamydia-induced reproductive tract sequelae.
Collapse
|
23
|
CXCR3 and CCR5 are both required for T cell-mediated protection against C. trachomatis infection in the murine genital mucosa. Mucosal Immunol 2011; 4:208-16. [PMID: 20844481 PMCID: PMC3010299 DOI: 10.1038/mi.2010.58] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemokine receptors direct T lymphocytes to the site of an infection by following coordinated chemokine gradients, which allow their recruitment to specific tissues. Although identification of receptors needed for homing to some mucosal sites, such as skin and gut, have been elucidated, the receptors that direct lymphocytes to the genital mucosa remain relatively uncharacterized. In this study we identify that the chemokine receptors CXCR3 (chemokine (C-X-C motif) receptor 3) and CCR5 (chemokine (C-C motif) receptor 5) are pivotal for T-lymphocyte access to the genital tract during Chlamydia trachomatis infection. Chlamydia-specific CD4(+) transgenic T cells that lack CXCR3 or CCR5 do not accumulate in the genital mucosa following infection. Loss of either CXCR3 or CCR5 impairs the protective capacity of Chlamydia-specific T cells, whereas T cells lacking both receptors are completely nonprotective. These results show that CXCR3 and CCR5 are the predominant chemokine receptors that act cooperatively to promote homing to the genital mucosa during Chlamydia infection.
Collapse
|
24
|
Cheng C, Bettahi I, Cruz-Fisher MI, Pal S, Jain P, Jia Z, Holmgren J, Harandi AM, de la Maza LM. Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin. Vaccine 2009; 27:6239-46. [PMID: 19686693 DOI: 10.1016/j.vaccine.2009.07.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/22/2009] [Accepted: 07/30/2009] [Indexed: 01/21/2023]
Abstract
The present study was undertaken to test the efficacy of immunization with the native major outer membrane protein (nMOMP) of Chlamydia trachomatis mouse pneumonitis (MoPn) serovar in combination with a novel immunostimulatory adjuvant consisting of CpG oligodeoxynucleotide (ODN) linked to the nontoxic B subunit of cholera toxin (CTB-CpG) to elicit a protective immune response to C. trachomatis. High levels of Chlamydia-specific IgG antibodies were detected in the sera from BALB/c mice immunized intramuscularly and subcutaneously (i.m.+s.c.) with the nMOMP/CTB-CpG vaccine or with nMOMP adjuvanted with a mixture of CT and CpG ODN (CT+CpG). Further, these immunization schemes gave rise to significant T-cell-mediated Chlamydia-specific immune responses. No Chlamydia-specific humoral or cell-mediated immune responses were detected in the control mice vaccinated with ovalbumin together with either CTB-CpG or CT+CpG. Following an intranasal challenge with C. trachomatis the groups of mice immunized with nMOMP plus CTB-CpG, CT+CpG or live C. trachomatis were found to be protected based on their change in body weight and lung weight as well as number of inclusion forming unit recovered from the lungs, as compared with control groups immunized with ovalbumin plus either adjuvants. Interestingly, IFN-gamma-producing CD4(+), but not CD8(+), T-cells showed a significant correlation with the outcomes of the challenge. In conclusion, nMOMP in combination with the novel adjuvant CTB-CpG elicited a significant antigen-specific antibody and cell-mediated immune responses as well as protection against a pulmonary challenge with C. trachomatis.
Collapse
Affiliation(s)
- Chunmei Cheng
- Department of Pathology and Laboratory Medicine, Medical Sciences, I, Room D440, University of California, Irvine, CA 92697-4800, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Identification of novel single nucleotide polymorphisms in inflammatory genes as risk factors associated with trachomatous trichiasis. PLoS One 2008; 3:e3600. [PMID: 18974840 PMCID: PMC2572999 DOI: 10.1371/journal.pone.0003600] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/08/2008] [Indexed: 11/09/2022] Open
Abstract
Background Trachoma is the leading preventable cause of global blindness. A balanced Th1/Th2/Th3 immune response is critical for resolving Chlamydia trachomatis infection, the primary cause of trachoma. Despite control programs that include mass antibiotic treatment, reinfection and recurrence of trachoma are common after treatment cessation. Furthermore, a subset of infected individuals develop inflammation and are at greater risk for developing the severe sequela of trachoma known as trachomatous trichiasis (TT). While there are a number of environmental and behavioral risk factors for trachoma, genetic factors that influence inflammation and TT risk remain ill defined. Methodology/Findings We identified single nucleotide polymorphisms (SNP) in 36 candidate inflammatory genes and interactions among these SNPs that likely play a role in the overall risk for TT. We conducted a case control study of 538 individuals of Tharu ethnicity residing in an endemic region of Nepal. Trachoma was graded according to World Health Organization guidelines. A linear array was used to genotype 51 biallelic SNPs in the 36 genes. Analyses were performed using logic regression modeling, which controls for multiple comparisons. We present, to our knowledge, the first significant association of TNFA (-308GA), LTA (252A), VCAM1 (-1594TC), and IL9 (T113M) polymorphisms, synergistic SNPs and risk of TT. TT risk decreased 5 times [odds ratio = 0.2 (95% confidence interval 0.11.–0.33), p = 0.001] with the combination of TNFA (-308A), LTA (252A), VCAM1 (-1594C), SCYA 11 (23T) minor allele, and the combination of TNFA (-308A), IL9 (113M), IL1B (5′UTR-T), and VCAM1 (-1594C). However, TT risk increased 13.5 times [odds ratio = 13.5 (95% confidence interval 3.3–22), p = 0.001] with the combination of TNFA (-308G), VDR (intron G), IL4R (50V), and ICAM1 (56M) minor allele. Conclusions Evaluating genetic risk factors for trachoma will advance our understanding of disease pathogenesis, and should be considered in the context of designing global control programs.
Collapse
|
26
|
Giles DK, Wyrick PB. Trafficking of chlamydial antigens to the endoplasmic reticulum of infected epithelial cells. Microbes Infect 2008; 10:1494-503. [PMID: 18832043 DOI: 10.1016/j.micinf.2008.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 01/02/2023]
Abstract
Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major outer membrane protein (MOMP), lipopolysaccharide (LPS) and the inclusion membrane protein A (IncA) were localized to the endoplasmic reticulum (ER) and co-localized with multiple ER markers, but not with markers of the endosomes, lysosomes, Golgi nor mitochondria. Chlamydial LPS was also co-localized with CD1d in the ER. Since the chlamydial antigens, contained in everted inclusion membrane vesicles, were found within the host cell ER, these data raise additional implications for antigen processing by infected uterine epithelial cells for classical and non-classical T cell antigen presentation.
Collapse
Affiliation(s)
- David K Giles
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | |
Collapse
|
27
|
Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect Immun 2008; 76:4642-8. [PMID: 18663004 DOI: 10.1128/iai.00629-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFNs) induced during in vitro chlamydial infection exert bactericidal and immunomodulatory functions. To determine the precise role of type I IFNs during in vivo chlamydial genital infection, we examined the course and outcome of Chlamydia muridarum genital infection in mice genetically deficient in the receptor for type I IFNs (IFNAR(-/-) mice). A significant reduction in chlamydial shedding and duration of lower genital tract infection was observed in IFNAR(-/-) mice in comparison to the level of chlamydial shedding and duration of infection in wild-type (WT) mice. Furthermore, IFNAR(-/-) mice developed less chronic oviduct pathology in comparison to that in WT mice. Compared to the WT, IFNAR(-/-) mice had a greater number of chlamydial-specific T cells in their iliac lymph nodes 21 days postinfection. IFNAR(-/-) mice also exhibited earlier and enhanced CD4 T-cell recruitment to the cervical tissues, which was associated with increased expression of CXCL9 in the genital secretions of IFNAR(-/-) mice, but not with expression of CXCL10, which was reduced in the genital secretions of IFNAR(-/-) mice. These data suggest that type I IFNs exacerbate C. muridarum genital infection through an inhibition of the chlamydial-specific CD4 T-cell response.
Collapse
|
28
|
Monitoring of vaccine-specific gamma interferon induction in genital mucosa of mice by real-time reverse transcription-PCR. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:757-64. [PMID: 18367582 DOI: 10.1128/cvi.00392-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monitoring of T-cell responses in genital mucosa has remained a major challenge because of the absence of lymphoid aggregates and the low abundance of T cells. Here we have adapted to genital tissue a sensitive real-time reverse transcription-PCR (TaqMan) method to measure induction of gamma interferon (IFN-gamma) mRNA transcription after 3 h of antigen-specific activation of CD8 T cells. For this purpose, we vaccinated C57BL/6 mice subcutaneously with human papillomavirus type 16 L1 virus-like particles and monitored the induction of CD8 T cells specific to the L1(165-173) H-2D(b)-restricted epitope. Comparison of the responses induced in peripheral blood mononuclear cells and lymph nodes (LN) by L1-specific IFN-gamma enzyme-linked immunospot assay and TaqMan determination of the relative increase in L1-specific IFN-gamma mRNA induction normalized to the content of CD8b mRNA showed a significant correlation, despite the difference in the readouts. Most of the cervicovaginal tissues could be analyzed by the TaqMan method if normalization to glyceraldehyde-3-phosphate dehydrogenase mRNA was used and a significant L1-specific IFN-gamma induction was found in one-third of the immunized mice. This local response did not correlate with the immune responses measured in the periphery, with the exception of the sacral LN, an LN draining the genital mucosa, where a significant correlation was found. Our data show that the TaqMan method is sensitive enough to detect antigen-specific CD8 T-cell responses in the genital mucosa of individual mice, and this may contribute to elaborate effective vaccines against genital pathogens.
Collapse
|
29
|
Abstract
Chlamydia trachomatis causes genital tract infections that affect men, women, and children on a global scale. This review focuses on innate and adaptive immune responses in the female reproductive tract (FRT) to genital tract infections with C. trachomatis. It covers C. trachomatis infections and highlights our current knowledge of genital tract infections, serovar distribution, infectious load, and clinical manifestations of these infections in women. The unique features of the immune system of the FRT will be discussed and will include a review of our current knowledge of innate and adaptive immunity to chlamydial infections at this mucosal site. The use of animal models to study the pathogenesis of, and immunity to, Chlamydia infection of the female genital tract will also be discussed and a review of recent immunization and challenge experiments in the murine model of chlamydial FRT infection will be presented.
Collapse
|
30
|
Abstract
Infection with the bacterium Chlamydia trachomatis can lead to a variety of diseases, including ectopic pregnancy, infertility and blindness. Exposure of the host to C. trachomatis stimulates multiple innate and adaptive immune effectors that can contribute towards controlling bacterial replication. However, these effectors are often insufficient to resolve the infection and prevent re-infection, and the continued presence of C. trachomatis within the host may induce immune effectors to chronically produce inflammatory cytokines. This may eventually lead to the tissue pathologies associated with the infection. Reducing the incidence and sequelae of infection will ultimately require the development of a C. trachomatis vaccine that can stimulate sterilizing immunity while avoiding immune-mediated pathology.
Collapse
Affiliation(s)
- Nadia R Roan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Leonhardt RM, Lee SJ, Kavathas PB, Cresswell P. Severe tryptophan starvation blocks onset of conventional persistence and reduces reactivation of Chlamydia trachomatis. Infect Immun 2007; 75:5105-17. [PMID: 17724071 PMCID: PMC2168275 DOI: 10.1128/iai.00668-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular survival of the bacterial pathogen Chlamydia trachomatis depends on protein synthesis by the microbe soon after internalization. Pharmacologic inhibition of bacterial translation inhibits early trafficking of the parasitophorous vacuole (inclusion) to the microtubule-organizing center (MTOC) and promotes its fusion with lysosomes, which is normally blocked by Chlamydia. Depletion of cellular tryptophan pools by gamma interferon-inducible indoleamine-2,3-dioxygenase (IDO) is believed to be the major innate immune mechanism controlling C. trachomatis infection in human cells, an action to which the bacteria can respond by converting into a nonreplicating but highly reactivatable persistent state. However, whether severe IDO-mediated tryptophan starvation can be sufficient to fully arrest the chlamydial life cycle and thereby counteract the onset of persistence is unknown. Here we demonstrate that at low exogenous tryptophan concentrations a substantial fraction of C. trachomatis bacteria fail to traffic to the MTOC or to switch into the conventional persistent state in gamma interferon-induced human cells. The organisms stay scattered in the cell periphery, do not retain infectivity, and display only low transcriptional activity. Importantly, the rate at which these aberrant Chlamydia bacteria become reactivated upon replenishment of cellular tryptophan pools is substantially lower. Thus, severe tryptophan depletion in cells with high IDO activity affects chlamydial development more rigorously than previously described.
Collapse
Affiliation(s)
- Ralf M Leonhardt
- Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, TAC S669/670, New Haven, CT 06519-1612, USA.
| | | | | | | |
Collapse
|