1
|
Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 2023; 19:289-304. [PMID: 37055617 PMCID: PMC10100639 DOI: 10.1038/s41582-023-00800-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood-brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
2
|
Lee J, Robinson ME, Sun R, Kume K, Ma N, Cosgun KN, Chan LN, Leveille E, Geng H, Vykunta VS, Shy BR, Marson A, Katz S, Chen J, Paietta E, Meffre E, Vaidehi N, Müschen M. Dynamic phosphatase-recruitment controls B-cell selection and oncogenic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532151. [PMID: 36993276 PMCID: PMC10054997 DOI: 10.1101/2023.03.13.532151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Initiation of B-cell receptor (BCR) 1 signaling, and subsequent antigen-encounter in germinal centers 2,3 represent milestones of B-lymphocyte development that are both marked by sharp increases of CD25 surface-expression. Oncogenic signaling in B-cell leukemia (B-ALL) 4 and lymphoma 5 also induced CD25-surface expression. While CD25 is known as an IL2-receptor chain on T- and NK-cells 6-9 , the significance of its expression on B-cells was unclear. Our experiments based on genetic mouse models and engineered patient-derived xenografts revealed that, rather than functioning as an IL2-receptor chain, CD25 expressed on B-cells assembled an inhibitory complex including PKCδ and SHIP1 and SHP1 phosphatases for feedback control of BCR-signaling or its oncogenic mimics. Recapitulating phenotypes of genetic ablation of PKCδ 10 - 12 , SHIP1 13,14 and SHP1 14, 15,16 , conditional CD25-deletion decimated early B-cell subsets but expanded mature B-cell populations and induced autoimmunity. In B-cell malignancies arising from early (B-ALL) and late (lymphoma) stages of B-cell development, CD25-loss induced cell death in the former and accelerated proliferation in the latter. Clinical outcome annotations mirrored opposite effects of CD25-deletion: high CD25 expression levels predicted poor clinical outcomes for patients with B-ALL, in contrast to favorable outcomes for lymphoma-patients. Biochemical and interactome studies revealed a critical role of CD25 in BCR-feedback regulation: BCR-signaling induced PKCδ-mediated phosphorylation of CD25 on its cytoplasmic tail (S 268 ). Genetic rescue experiments identified CD25-S 268 tail-phosphorylation as central structural requirement to recruit SHIP1 and SHP1 phosphatases to curb BCR-signaling. A single point mutation CD25 S268A abolished recruitment and activation of SHIP1 and SHP1 to limit duration and strength of BCR-signaling. Loss of phosphatase-function, autonomous BCR-signaling and Ca 2+ -oscillations induced anergy and negative selection during early B-cell development, as opposed to excessive proliferation and autoantibody production in mature B-cells. These findings highlight the previously unrecognized role of CD25 in assembling inhibitory phosphatases to control oncogenic signaling in B-cell malignancies and negative selection to prevent autoimmune disease.
Collapse
|
3
|
Hodgson R, Xu X, Anzilotti C, Deobagkar-Lele M, Crockford TL, Kepple JD, Cawthorne E, Bhandari A, Cebrian-Serrano A, Wilcock MJ, Davies B, Cornall RJ, Bull KR. NDRG1 is induced by antigen-receptor signaling but dispensable for B and T cell self-tolerance. Commun Biol 2022; 5:1216. [PMID: 36357486 PMCID: PMC9649591 DOI: 10.1038/s42003-022-04118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Peripheral tolerance prevents the initiation of damaging immune responses by autoreactive lymphocytes. While tolerogenic mechanisms are tightly regulated by antigen-dependent and independent signals, downstream pathways are incompletely understood. N-myc downstream-regulated gene 1 (NDRG1), an anti-cancer therapeutic target, has previously been implicated as a CD4+ T cell clonal anergy factor. By RNA-sequencing, we identified Ndrg1 as the third most upregulated gene in anergic, compared to naïve follicular, B cells. Ndrg1 is upregulated by B cell receptor activation (signal one) and suppressed by co-stimulation (signal two), suggesting that NDRG1 may be important in B cell tolerance. However, though Ndrg1-/- mice have a neurological defect mimicking NDRG1-associated Charcot-Marie-Tooth (CMT4d) disease, primary and secondary immune responses were normal. We find that B cell tolerance is maintained, and NDRG1 does not play a role in downstream responses during re-stimulation of in vivo antigen-experienced CD4+ T cells, demonstrating that NDGR1 is functionally redundant for lymphocyte anergy.
Collapse
Affiliation(s)
- Rose Hodgson
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xijin Xu
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tanya L Crockford
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jessica D Kepple
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Cawthorne
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aneesha Bhandari
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alberto Cebrian-Serrano
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin J Wilcock
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard J Cornall
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Katherine R Bull
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Parham KA, Tan XXS, Morelli DM, Chowdhury L, Craig HC, Kerfoot SM. Pre–Germinal Center Interactions with T Cells Are Natural Checkpoints to Limit Autoimmune B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2022; 209:1703-1712. [DOI: 10.4049/jimmunol.2200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
|
5
|
Leveille E, Chan LN, Mirza AS, Kume K, Müschen M. SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cell Signal 2022; 94:110331. [PMID: 35398488 DOI: 10.1016/j.cellsig.2022.110331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
SYK and ZAP70 nonreceptor tyrosine kinases serve essential roles in initiating B-cell receptor (BCR) and T-cell receptor (TCR) signaling in B- and T-lymphocytes, respectively. Despite their structural and functional similarity, expression of SYK and ZAP70 is strictly separated during B- and T-lymphocyte development, the reason for which was not known. Aberrant co-expression of ZAP70 with SYK was first identified in B-cell chronic lymphocytic leukemia (CLL) and is considered a biomarker of aggressive disease and poor clinical outcomes. We recently found that aberrant ZAP70 co-expression not only functions as an oncogenic driver in CLL but also in various other B-cell malignancies, including acute lymphoblastic leukemia (B-ALL) and mantle cell lymphoma. Thereby, aberrantly expressed ZAP70 redirects SYK and BCR-downstream signaling from NFAT towards activation of the PI3K-pathway. In the sole presence of SYK, pathological BCR-signaling in autoreactive or premalignant cells induces NFAT-activation and NFAT-dependent anergy and negative selection. In contrast, negative selection of pathological B-cells is subverted when ZAP70 diverts SYK from activation of NFAT towards tonic PI3K-signaling, which promotes survival instead of cell death. We discuss here how both B-cell malignancies and autoimmune diseases frequently evolve to harness this mechanism, highlighting the importance of developmental separation of the two kinases as an essential safeguard.
Collapse
Affiliation(s)
- Etienne Leveille
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lai N Chan
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abu-Sayeef Mirza
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale University, CT 06520, USA.
| |
Collapse
|
6
|
Tanaka S, Ise W, Baba Y, Kurosaki T. Silencing and activating anergic B cells. Immunol Rev 2021; 307:43-52. [PMID: 34908172 DOI: 10.1111/imr.13053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of central tolerance mechanisms, including clonal deletion and receptor editing to eliminate self-reactive B cells, moderately self-reactive cells still survive in the periphery (about 20% of peripheral B cells). These cells normally exist in a functionally silenced state called anergy; thus, anergy has been thought to contribute to tolerance by active-silencing of potentially dangerous B cells. However, a positive rationale for the existence of these anergic B cells has recently been suggested by discoveries that broadly neutralizing antibodies for HIV and influenza virus possess poly- and/or auto-reactivity. Given the conundrum of generating inherent holes in the immune repertoire, retaining weakly self-reactive BCRs on anergic B cells could allow these antibodies to serve as an effective defense against pathogens, particularly in the case of pathogens that mimic forbidden self-epitopes to evade the host immune system. Thus, anergic B cells should be brought into a silenced or activated state, depending on their contexts. Here, we review recent progress in our understanding of how the anergic B cell state is controlled in B cell-intrinsic and B cell-extrinsic ways.
Collapse
Affiliation(s)
- Shinya Tanaka
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wataru Ise
- Team of Host Defense, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
7
|
Erdei A, Kovács KG, Nagy-Baló Z, Lukácsi S, Mácsik-Valent B, Kurucz I, Bajtay Z. New aspects in the regulation of human B cell functions by complement receptors CR1, CR2, CR3 and CR4. Immunol Lett 2021; 237:42-57. [PMID: 34186155 DOI: 10.1016/j.imlet.2021.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The involvement of complement in the regulation of antibody responses has been known for long. By now several additional B cell functions - including cytokine production and antigen presentation - have also been shown to be regulated by complement proteins. Most of these important activities are mediated by receptors interacting with activation fragments of the central component of the complement system C3, such as C3b, iC3b and C3d, which are covalently attached to antigens and immune complexes. This review summarizes the role of complement receptors interacting with these ligands, namely CR1 (CD35), CR2 (CD21), CR3 (CD11b/CD18) and CR4 (CD11c/CD18) expressed by B cells in health and disease. Although we focus on human B lymphocytes, we also aim to call the attention to important differences between human and mouse systems.
Collapse
Affiliation(s)
- Anna Erdei
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.
| | - Kristóf G Kovács
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Nagy-Baló
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - István Kurucz
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
8
|
Valeff N, Muzzio DO, Matzner F, Dibo M, Golchert J, Homuth G, Abba MC, Zygmunt M, Jensen F. B cells acquire a unique and differential transcriptomic profile during pregnancy. Genomics 2021; 113:2614-2622. [PMID: 34118379 DOI: 10.1016/j.ygeno.2021.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Pregnancy alters B cell development and function. B cell activation is initiated by antigens binding to the BCR leading to B cell survival, proliferation, antigen presentation and antibody production. We performed a genome-wide transcriptome profiling of splenic B cells from pregnant (P) and non-pregnant (NP) mice and identified 1136 genes exhibiting differential expression in B cells from P mice (625 up- and 511 down-regulated) compared to NP animals. In silico analysis showed that B cell activation through BCR seems to be lowered during pregnancy. RT-qPCR analysis confirmed these data. Additionally, B cells from pregnant women stimulated in vitro through BCR produced lower levels of inflammatory cytokines compared to non-pregnant women. Our results suggest that B cells acquire a state of hypo-responsiveness during gestation, probably as part of the maternal immune strategy for fetal tolerance but also open new avenues to understand why pregnant women are at highest risk for infections.
Collapse
Affiliation(s)
- Natalin Valeff
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
| | - Damian O Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, Medical Faculty, Greifswald University, Greifswald, Germany
| | - Franziska Matzner
- Research Laboratory, Department of Obstetrics and Gynecology, Medical Faculty, Greifswald University, Greifswald, Germany
| | - Marcos Dibo
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina
| | - Janine Golchert
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Martin C Abba
- Basic and Applied Immunological Research Center (CINIBA), School of Medical Science, National University of La Plata, La Plata, Argentina
| | - Marek Zygmunt
- Research Laboratory, Department of Obstetrics and Gynecology, Medical Faculty, Greifswald University, Greifswald, Germany
| | - Federico Jensen
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Medical Faculty, Buenos Aires University, Buenos Aires, Argentina; Centro Integrativo de Biología Y Química Aplicada, Universidad Bernardo O'Higgins, 8307993 Santiago, Chile.
| |
Collapse
|
9
|
Sadras T, Martin M, Kume K, Robinson ME, Saravanakumar S, Lenz G, Chen Z, Song JY, Siddiqi T, Oksa L, Knapp AM, Cutler J, Cosgun KN, Klemm L, Ecker V, Winchester J, Ghergus D, Soulas-Sprauel P, Kiefer F, Heisterkamp N, Pandey A, Ngo V, Wang L, Jumaa H, Buchner M, Ruland J, Chan WC, Meffre E, Martin T, Müschen M. Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Mol Cell 2021; 81:2094-2111.e9. [PMID: 33878293 DOI: 10.1016/j.molcel.2021.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.
Collapse
Affiliation(s)
- Teresa Sadras
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mickaël Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Mark E Robinson
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Supraja Saravanakumar
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Gal Lenz
- Department of Cancer Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhengshan Chen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tanya Siddiqi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Oksa
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Marie Knapp
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Jevon Cutler
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kadriye Nehir Cosgun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Lars Klemm
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Veronika Ecker
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Janet Winchester
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Dana Ghergus
- Department of Clinical Hematology, Hospices Civils de Lyon, Lyon, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nora Heisterkamp
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vu Ngo
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lili Wang
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Hassan Jumaa
- Department of Immunology, University of Ulm, Ulm, Germany
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Wing-Chung Chan
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Thierry Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France.
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Sana I, Mantione ME, Angelillo P, Muzio M. Role of NFAT in Chronic Lymphocytic Leukemia and Other B-Cell Malignancies. Front Oncol 2021; 11:651057. [PMID: 33869054 PMCID: PMC8047411 DOI: 10.3389/fonc.2021.651057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years significant progress has been made in the clinical management of chronic lymphocytic leukemia (CLL) as well as other B-cell malignancies; targeting proximal B-cell receptor signaling molecules such as Bruton Tyrosine Kinase (BTK) and Phosphoinositide 3-kinase (PI3Kδ) has emerged as a successful treatment strategy. Unfortunately, a proportion of patients are still not cured with available therapeutic options, thus efforts devoted to studying and identifying new potential druggable targets are warranted. B-cell receptor stimulation triggers a complex cascade of signaling events that eventually drives the activation of downstream transcription factors including Nuclear Factor of Activated T cells (NFAT). In this review, we summarize the literature on the expression and function of NFAT family members in CLL where NFAT is not only overexpressed but also constitutively activated; NFAT controls B-cell anergy and targeting this molecule using specific inhibitors impacts on CLL cell viability. Next, we extend our analysis on other mature B-cell lymphomas where a distinct pattern of expression and activation of NFAT is reported. We discuss the therapeutic potential of strategies aimed at targeting NFAT in B-cell malignancies not overlooking the fact that NFAT may play additional roles regulating the inflammatory microenvironment.
Collapse
Affiliation(s)
- Ilenia Sana
- Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy
| | | | - Piera Angelillo
- Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy.,Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Muzio
- Division of Experimental Oncology, San Raffaele Hospital IRCCS, Milano, Italy
| |
Collapse
|
11
|
Kovács KG, Mácsik-Valent B, Matkó J, Bajtay Z, Erdei A. Revisiting the Coreceptor Function of Complement Receptor Type 2 (CR2, CD21); Coengagement With the B-Cell Receptor Inhibits the Activation, Proliferation, and Antibody Production of Human B Cells. Front Immunol 2021; 12:620427. [PMID: 33868238 PMCID: PMC8047317 DOI: 10.3389/fimmu.2021.620427] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The positive coreceptor function of complement receptor type 2 [CR2 (CD21)] on B cells is generally accepted, although its role in the enhancement of antibody production had only been proven in mice. The importance of this phenomenon prompted reinvestigation of the functional consequences of coclustering CD21 and the B cell receptor (BCR) on primary human cells. We found that, at non-stimulatory concentrations of anti-IgG/A/M, coclustering the BCR and CR2 enhanced the Ca2+ response, while activation marker expression, cytokine production, proliferation, and antibody production were all inhibited upon the coengagement of CR2 and BCR on human B cells. Thus, the “textbook dogma” claiming that C3d acts as an adjuvant to enhance humoral immunity is relevant only to mice and not to humans.
Collapse
Affiliation(s)
- Kristóf G Kovács
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - János Matkó
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
12
|
Märklin M, Heitmann JS, Kauer J, Wirths S, Müller MR. Genetic loss of NFAT2 (NFATc1) impairs B cell development of B1 and B2 B cells. Cell Immunol 2020; 349:104048. [PMID: 32014271 DOI: 10.1016/j.cellimm.2020.104048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
Abstract
NFAT2 activity was shown to be of critical importance in B cell receptor signaling, development and proliferation; however its role in B cell development in the periphery is still not completely understood. We confirmed that NFAT2 deletion leads to impaired B1 B cell development, supported by our finding of limited B1 progenitors in the bone marrow and spleen of NFAT2 deficient mice. Moreover, we show for the first time that loss of NFAT2 increases immature B cells in particular transitional T2 and T3 as well as mature follicular B cells while marginal zone B cells are decreased. We further demonstrate that NFAT2 regulates the expression of B220, CD23, CD38, IgM/IgD and ZAP70 in murine B cells. In vivo analyses revealed decreased proliferation and increased apoptosis of NFAT2 deficient B cells. In summary, this study provides an extensive analysis of the role of NFAT2 in peripheral B lymphocyte development.
Collapse
Affiliation(s)
- Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany.
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Joseph Kauer
- University of Tübingen, Interfaculty Institute for Cell Biology, Dept. of Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Stefan Wirths
- Dept. of Hematology, Oncology and Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Martin R Müller
- Dept. of Hematology, Oncology and Immunology, University Hospital Tübingen, Tübingen, Germany; Dept. of Hematology, Oncology and Immunology, Klinikum Region Hannover, KRH Klinikum Siloah, Hannover, Germany.
| |
Collapse
|
13
|
Heesters BA, Carroll MC. The Role of Dendritic Cells in S. pneumoniae Transport to Follicular Dendritic Cells. Cell Rep 2016; 16:3130-3137. [PMID: 27653679 PMCID: PMC5790206 DOI: 10.1016/j.celrep.2016.08.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/24/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Affinity-mature B cells require cognate antigen, retained by follicular dendritic cells (FDCs), for clonal selection within germinal centers. Studies on how FDCs in lymphoid tissues acquire antigen have relied primarily on model protein antigens. To examine delivery of intact bacteria to FDCs, we used inactivated Streptococcus pneumonia (SP). We found that both medullary macrophages and a subset of SIGN-R1-positive dendritic cells (DCs) in the lymph node capture SP from the draining afferent lymphatics. The presence of DCs is required for initial complement activation, opsonization of the bacteria, and efficient transport of SP to FDCs. Moreover, we observed a major role for transport of bacteria to FDCs by naive B cells via a CD21-dependent pathway. We propose a mechanism by which efficient transport of SP to FDCs is dependent on DCs for initial binding and activation of complement and either direct transport to FDCs or transfer to naive B cells.
Collapse
Affiliation(s)
- Balthasar A Heesters
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Teixeira LK, Carrossini N, Sécca C, Kroll JE, DaCunha DC, Faget DV, Carvalho LDS, de Souza SJ, Viola JPB. NFAT1 transcription factor regulates cell cycle progression and cyclin E expression in B lymphocytes. Cell Cycle 2016; 15:2346-59. [PMID: 27399331 DOI: 10.1080/15384101.2016.1203485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.
Collapse
Affiliation(s)
- Leonardo K Teixeira
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Nina Carrossini
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Cristiane Sécca
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - José E Kroll
- b Brain Institute, Federal University of Rio Grande do Norte (UFRN) , Natal , Brazil
| | - Déborah C DaCunha
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Douglas V Faget
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Lilian D S Carvalho
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Sandro J de Souza
- b Brain Institute, Federal University of Rio Grande do Norte (UFRN) , Natal , Brazil
| | - João P B Viola
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| |
Collapse
|
15
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
16
|
Variable induction of PRDM1 and differentiation in chronic lymphocytic leukemia is associated with anergy. Blood 2014; 123:3277-85. [PMID: 24637363 DOI: 10.1182/blood-2013-11-539049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite antigen engagement and intact B-cell-receptor (BCR) signaling, chronic lymphocytic leukemia (CLL) cells fail to undergo terminal differentiation. We hypothesized that such failure may be due to anergy, as CLL cells exhibit variable levels of nonresponsiveness to surface IgM stimulation that is reversible in vitro. Moreover, anergy is associated with reduced differentiation capacity in normal B cells. We investigated responses of CLL cells to two potent differentiation-promoting agents, IL-21 and cytosine guanine dinucleotide-enriched oligo-deoxynucleotides. The induction of PR domain-containing protein 1 (PRDM1; also known as Blimp-1), a critical regulator of plasmacytic differentiation, by these agents was closely correlated but varied between individual cases, despite functionally intact IL-21 receptor- and Toll-like receptor 9-mediated signal transducer and activator of transcription 3, and nuclear factor-κB pathways. PRDM1 induction was inversely correlated with the extent of anergy as measured by the ability to mobilize intracellular Ca(2+) following BCR crosslinking. PRDM1 responsiveness was associated with other markers of differentiation and proliferation but not with differences in apoptosis. The ability to induce PRDM1 did correlate with differential transcriptional and epigenetic regulation of the PRDM1 gene. These studies extend our understanding of CLL pathobiology, demonstrating that reduced differentiation capacity may be a consequence of anergy. Epigenetic drugs may offer possibilities to reactivate PRDM1 expression as part of novel differentiation therapy approaches.
Collapse
|
17
|
NFATc2 (NFAT1) assists BCR-mediated anergy in anti-insulin B cells. Mol Immunol 2014; 62:321-8. [PMID: 24507801 DOI: 10.1016/j.molimm.2014.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 01/03/2023]
Abstract
NFAT transcription factors play critical roles in both the activation and repression of T and B lymphocyte responses. To understand the role of NFATc2 (NFAT1) in the maintenance of tolerance for anti-insulin B cells, functionally inactive NFATc2 (NFATc2(-/-)) was introduced into C57BL/6 mice that harbor anergic anti-insulin 125Tg B cells. The production and peripheral maturation of anti-insulin B cells into follicular and marginal zone subsets was not altered by the absence of functional NFATc2. Surface B cell receptor expression levels, important for tonic signaling and altered by anergy, were not altered in any spleen B cell subset. The levels of anti-insulin antibodies were not different in 125Tg/B6/NFATc2(-/-) mice and the anti-insulin response remained silenced following T cell dependent immunization. However, studies addressing in vitro proliferation reveal the anergic state of 125Tg B cells is relieved in 125Tg/B6/NFATc2(-/-) B cells in response to BCR stimulation. In contrast, anergy is not released in 125Tg/B6/NFATc2(-/-) B cells following stimulation with anti-CD40. The relief of anergy to BCR stimulation in 125Tg/B6/NFATc2(-/-) B cells is associated with increased transcription of both NFATc1 and NFATc3 while expression of these NFATs does not change in anti-IgM stimulated 125Tg/B6/NFATc2(+/+) B cells. The data suggest that NFATc2 plays a subtle and selective role in maintaining anergy for BCR stimulation by repressing the transcription of other NFAT family members.
Collapse
|
18
|
Pathak S, Ma S, Shukla V, Lu R. A role for IRF8 in B cell anergy. THE JOURNAL OF IMMUNOLOGY 2013; 191:6222-30. [PMID: 24218455 DOI: 10.4049/jimmunol.1301169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
B cell central tolerance is a process through which self-reactive B cells are removed from the B cell repertoire. Self-reactive B cells are generally removed by receptor editing in the bone marrow and by anergy induction in the periphery. IRF8 is a critical transcriptional regulator of immune system development and function. A recent study showed that marginal zone B cell and B1 B cell populations are dramatically increased in IRF8-deficient mice, indicating that there are B cell-developmental defects in the absence of IRF8. In this article, we report that mice deficient for IRF8 produced anti-dsDNA Abs. Using a hen egg lysozyme double-transgenic model, we further demonstrate that B cell anergy was breached in IRF8-deficient mice. Although anergic B cells in the IRF8-proficient background were blocked at the transitional stage of development, anergic B cells in the IRF8-deficient background were able to mature further, which allowed them to regain responses to Ag stimulation. Interestingly, our results show that IRF8-deficient B cells were more sensitive to Ag stimulation and were resistant to Ag-induced cell death. Moreover, our results show that IRF8 was expressed at a high level in the anergic B cells, and an elevated level of IRF8 promoted apoptosis in the transitional B cells. Thus, our findings reveal a previously unrecognized function of IRF8 in B cell anergy induction.
Collapse
Affiliation(s)
- Simanta Pathak
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
| | | | | | | |
Collapse
|
19
|
Serfling E, Avots A, Klein-Hessling S, Rudolf R, Vaeth M, Berberich-Siebelt F. NFATc1/αA: The other Face of NFAT Factors in Lymphocytes. Cell Commun Signal 2012; 10:16. [PMID: 22764736 PMCID: PMC3464794 DOI: 10.1186/1478-811x-10-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022] Open
Abstract
In effector T and B cells immune receptor signals induce within minutes a rise of intracellular Ca++, the activation of the phosphatase calcineurin and the translocation of NFAT transcription factors from cytosol to nucleus. In addition to this first wave of NFAT activation, in a second step the occurrence of NFATc1/αA, a short isoform of NFATc1, is strongly induced. Upon primary stimulation of lymphocytes the induction of NFATc1/αA takes place during the G1 phase of cell cycle. Due to an auto-regulatory feedback circuit high levels of NFATc1/αA are kept constant during persistent immune receptor stimulation. Contrary to NFATc2 and further NFATc proteins which dampen lymphocyte proliferation, induce anergy and enhance activation induced cell death (AICD), NFATc1/αA supports antigen-mediated proliferation and protects lymphocytes against rapid AICD. Whereas high concentrations of NFATc1/αA can also lead to apoptosis, in collaboration with NF-κB-inducing co-stimulatory signals they support the survival of mature lymphocytes in late phases after their activation. However, if dysregulated, NFATc1/αA appears to contribute to lymphoma genesis and - as we assume - to further disorders of the lymphoid system. While the molecular details of NFATc1/αA action and its contribution to lymphoid disorders have to be investigated, NFATc1/αA differs in its generation and function markedly from all the other NFAT proteins which are expressed in lymphoid cells. Therefore, it represents a prime target for causal therapies of immune disorders in future.
Collapse
Affiliation(s)
- Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Andris Avots
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Ronald Rudolf
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Martin Vaeth
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Friederike Berberich-Siebelt
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| |
Collapse
|
20
|
Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat Immunol 2010; 11:427-34. [PMID: 20305659 DOI: 10.1038/ni.1856] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/12/2010] [Indexed: 12/17/2022]
Abstract
A major pathway for B cell acquisition of lymph-borne particulate antigens relies on antigen capture by subcapsular sinus macrophages of the lymph node. Here we tested whether this mechanism is also important for humoral immunity to inactivated influenza virus. By multiple approaches, including multiphoton intravital imaging, we found that antigen capture by sinus-lining macrophages was important for limiting the systemic spread of virus but not for the generation of influenza-specific humoral immunity. Instead, we found that dendritic cells residing in the lymph node medulla use the lectin receptor SIGN-R1 to capture lymph-borne influenza virus and promote humoral immunity. Thus, our results have important implications for the generation of durable humoral immunity to viral pathogens through vaccination.
Collapse
|
21
|
Perl A. Systems biology of lupus: mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity 2010; 43:32-47. [PMID: 20001421 PMCID: PMC4020422 DOI: 10.3109/08916930903374774] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Systemic lupus erythematosus (SLE) is characterized by the dysfunction of T cells, B cells, and dendritic cells, the release of pro-inflammatory nuclear materials from necrotic cells, and the formation of antinuclear antibodies (ANA) and immune complexes of ANA with DNA, RNA, and nuclear proteins. Activation of the mammalian target of rapamycin (mTOR) has recently emerged as a key factor in abnormal activation of T and B cells in SLE. In T cells, increased production of nitric oxide and mitochondrial hyperpolarization (MHP) were identified as metabolic checkpoints upstream of mTOR activation. mTOR controls the expression T-cell receptor-associated signaling proteins CD4 and CD3zeta through increased expression of the endosome recycling regulator Rab5 and HRES-1/Rab4 genes, enhances Ca2+ fluxing and skews the expression of tyrosine kinases both in T and B cells, and blocks the expression of Foxp3 and the generation of regulatory T cells. MHP, increased activity of mTOR, Rab GTPases, and Syk kinases, and enhanced Ca2+ flux have emerged as common T and B cell biomarkers and targets for treatment in SLE.
Collapse
Affiliation(s)
- Andras Perl
- Division of Rheumatology, Departments of Medicine and Microbiology and Immunology, College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
22
|
Haylett RS, Koch N, Rink L. MHC class II molecules activate NFAT and the ERK group of MAPK through distinct signaling pathways in B cells. Eur J Immunol 2009; 39:1947-55. [PMID: 19544309 DOI: 10.1002/eji.200838992] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MHC class II (MHC-II) molecules are capable of transducing signals with the help of associated molecules. Although the search to find associated molecules over the past few years has been fruitful, it remains clear that not all signaling components and their mechanisms of action have been identified. In this study, we investigated calcium and MAPK signaling pathways using the BJAB and Raji human B cell lines. We demonstrate that calcium mobilization is an isotype-independent event that triggers the dephosphorylation of NFAT. We also show that BCR activation followed by MHC-II ligation increases the activation of NFAT. This signaling pathway differs from MHC-II-mediated MAP activation, where MEK1/2 and ERK1/2 phosphorylation are isotype-specific events, which correspond to the induction of c-Fos and formation of AP-1. Future studies should elucidate the intertwined, intricate signaling cascades triggered by BCR and MHC-II leading to humoral immune responses.
Collapse
|
23
|
Perl A, Fernandez DR, Telarico T, Doherty E, Francis L, Phillips PE. T-cell and B-cell signaling biomarkers and treatment targets in lupus. Curr Opin Rheumatol 2009; 21:454-64. [PMID: 19550330 PMCID: PMC4047522 DOI: 10.1097/bor.0b013e32832e977c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus is characterized by the production of antinuclear autoantibodies and dysfunction of T-cells, B-cells, and dendritic cells. Here, we review newly recognized genetic factors and mechanisms that underlie abnormal intracellular signal processing and intercellular communication within the immune system in systemic lupus erythematosus. RECENT FINDINGS Activation of the mammalian target of rapamycin plays a pivotal role in abnormal activation of T and B-cells in systemic lupus erythematosus. In T-cells, increased production of nitric oxide and mitochondrial hyperpolarization were identified as metabolic checkpoints upstream of mammalian target of rapamycin activation. Mammalian target of rapamycin controls the expression T-cell receptor-associated signaling proteins CD4 and CD3zeta through increased expression of the endosome recycling regulator HRES-1/Rab4 gene, mediates enhanced Ca2+ fluxing and skews the expression of tyrosine kinases both in T and B-cells, and blocks the expression of Foxp3 and the expansion of regulatory T-cells. Mitochondrial hyperpolarization and the resultant ATP depletion predispose T-cells to necrosis, thus promoting the dendritic cell activation, antinuclear autoantibody production, and inflammation. SUMMARY Mitochondrial hyperpolarization, increased activity of mammalian target of rapamycin and Syk kinases, enhanced receptor recycling and Ca2+ flux have emerged as common T and B-cell biomarkers and targets for treatment in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Andras Perl
- Division of Rheumatology, Department of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York 13210, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Kumar KR, Mohan C. Understanding B-cell tolerance through the use of immunoglobulin transgenic models. Immunol Res 2007; 40:208-23. [DOI: 10.1007/s12026-007-8008-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Gwack Y, Feske S, Srikanth S, Hogan PG, Rao A. Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 2007; 42:145-56. [PMID: 17572487 DOI: 10.1016/j.ceca.2007.03.007] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 03/20/2007] [Accepted: 03/21/2007] [Indexed: 02/04/2023]
Abstract
In cells of the immune system that are stimulated by antigen or antigen-antibody complexes, Ca(2+) entry from the extracellular medium is driven by depletion of endoplasmic reticulum Ca(2+) stores and occurs through specialized store-operated Ca(2+) channels known as Ca(2+)-release-activated Ca(2+) (CRAC) channels. The process of store-operated Ca(2+) influx is essential for short-term as well as long-term responses by immune-system cells. Short-term responses include mast cell degranulation and killing of target cells by effector cytolytic T cells, whereas long-term responses typically involve changes in gene transcription and include T and B cell proliferation and differentiation. Transcription downstream of Ca(2+) influx is in large part funneled through the transcription factor nuclear factor of activated T cells (NFAT), a heavily phosphorylated protein that is cytoplasmic in resting cells, but that enters the nucleus when dephosphorylated by the calmodulin-dependent serine/threonine phosphatase calcineurin. The importance of the Ca(2+)/calcineurin/NFAT signalling pathway for lymphocyte activation is underscored by the finding that the underlying defect in a family with a hereditary severe combined immune deficiency (SCID) syndrome is a defect in CRAC channel function, store-operated Ca(2+) entry, NFAT activation and transcription of cytokines, chemokines and many other NFAT target genes whose transcription is essential for productive immune defence. We recently used a two-pronged genetic approach to identify Orai1 as the pore subunit of the CRAC channel. On the one hand, we initiated a positional cloning approach in which we utilised genome-wide single nucleotide polymorphism (SNP) mapping to identify the genomic region linked to the mutant gene in the SCID family described above. In parallel, we used a genome-wide RNAi screen in Drosophila to identify critical regulators of NFAT nuclear translocation and store-operated Ca(2+) entry. These approaches, together with subsequent mutational and electrophysiological analyses, converged to identify human Orai1 as a pore subunit of the CRAC channel and as the gene product mutated in the SCID patients.
Collapse
Affiliation(s)
- Yousang Gwack
- Department of Pathology, Harvard Medical School, The CBR Institute for Biomedical Research, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Bandyopadhyay S, Soto-Nieves N, Macián F. Transcriptional regulation of T cell tolerance. Semin Immunol 2007; 19:180-7. [PMID: 17387022 PMCID: PMC1978193 DOI: 10.1016/j.smim.2007.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/16/2007] [Indexed: 01/16/2023]
Abstract
Self-reactive T cells that escape negative selection in the thymus must be kept under control in the periphery. Mechanisms of peripheral tolerance include deletion or functional inactivation of self-reactive T cells and mechanisms of dominant tolerance mediated by regulatory T cells. In the absence of costimulation, T cell receptor (TCR) engagement results in unopposed calcium signaling that leads to the activation of a cell-intrinsic program of inactivation, which makes T cells hyporesponsive to subsequent stimulations. The activation of this program in anergic T cells is a consequence of the induction of a nuclear factor of activated T cells (NFAT)-dependent program of gene expression. Recent studies have offered new insights into the mechanisms responsible for the implementation and maintenance of T cell anergy and have provided evidence that the proteins encoded by the genes upregulated in anergic T cells are responsible for the implementation of anergy by interfering with TCR signaling or directly inhibiting cytokine gene transcription.
Collapse
Affiliation(s)
- Sanmay Bandyopadhyay
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|