1
|
Stepanova K, Toman M, Sinkorova J, Sinkora S, Pfeiferova S, Kupcova Skalnikova H, Abuhajiar S, Moutelikova R, Salat J, Stepanova H, Nechvatalova K, Leva L, Hermanova P, Kratochvilova M, Dusankova B, Sinkora M, Horak V, Hudcovic T, Butler JE, Sinkora M. Modified live vaccine strains of porcine reproductive and respiratory syndrome virus cause immune system dysregulation similar to wild strains. Front Immunol 2024; 14:1292381. [PMID: 38283357 PMCID: PMC10811158 DOI: 10.3389/fimmu.2023.1292381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. Background and objective We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. Methods We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. Results Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. Discussion and conclusion The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Salim Abuhajiar
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Vratislav Horak
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
2
|
Sinkora M, Toman M, Stepanova K, Stepanova H, Leva L, Sinkorova J, Moutelikova R, Salat J, Srutkova D, Schwarzer M, Sinkora S, Skalnikova HK, Nechvatalova K, Hudcovic T, Hermanova P, Pfeiferova S, Kratochvilova M, Kavanova L, Dusankova B, Sinkora MJ. The mechanism of immune dysregulation caused by porcine reproductive and respiratory syndrome virus (PRRSV). Microbes Infect 2023; 25:105146. [PMID: 37142116 DOI: 10.1016/j.micinf.2023.105146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
PRRSV is capable of evading the effective immune response, thus persisting in piglets and throughout the swine herd. We show here that PRRSV invades the thymus and causes depletion of T-cell precursors and alteration of the TCR repertoire. Developing thymocytes are affected during negative selection when they transit from the triple-negative to triple-positive stages at the corticomedullary junction just before entering the medulla. The restriction of repertoire diversification occurs in both helper and cytotoxic αβ-T cells. As a result, critical viral epitopes are tolerated, and infection becomes chronic. However, not all viral epitopes are tolerated. Infected piglets develop antibodies capable of recognizing PRRSV, but these are not virus neutralizing. Further analysis showed that the lack of an effective immune response against the critical viral structures results in the absence of a germinal center response, overactivation of T and B cells in the periphery, robust production of useless antibodies of all isotypes, and the inability to eliminate the virus. Overall, the results show how a respiratory virus that primarily infects and destroys myelomonocytic cells has evolved strategies to disrupt the immune system. These mechanisms may be a prototype for how other viruses can similarly modulate the host immune system.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Lenka Kavanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Marek Jr Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
3
|
Chen N, Li S, Tian Y, Li X, Li S, Li J, Qiu M, Sun Z, Xiao Y, Yan X, Lin H, Yu X, Tian K, Shang S, Zhu J. Chimeric HP-PRRSV2 containing an ORF2-6 consensus sequence induces antibodies with broadly neutralizing activity and confers cross protection against virulent NADC30-like isolate. Vet Res 2021; 52:74. [PMID: 34044890 PMCID: PMC8161975 DOI: 10.1186/s13567-021-00944-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/03/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the substantial genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV), commercial PRRS vaccines fail to provide sufficient cross protection. Previous studies have confirmed the existence of PRRSV broadly neutralizing antibodies (bnAbs). However, bnAbs are rarely induced by either natural infection or vaccination. In this study, we designed and synthesized a consensus sequence of PRRSV2 ORF2-6 genes (ORF2-6-CON) encoding all envelope proteins based on 30 representative Chinese PRRSV isolates. The ORF2-6-CON sequence shared > 90% nucleotide identities to all four lineages of PRRSV2 isolates in China. A chimeric virus (rJS-ORF2-6-CON) containing the ORF2-6-CON was generated using the avirulent HP-PRRSV2 JSTZ1712-12 infectious clone as a backbone. The rJS-ORF2-6-CON has similar replication efficiency as the backbone virus in vitro. Furthermore, pig inoculation and challenge studies showed that rJS-ORF2-6-CON is not pathogenic to piglets and confers better cross protection against the virulent NADC30-like isolate than a commercial HP-PRRS modified live virus (MLV) vaccine. Noticeably, the rJS-ORF2-6-CON strain could induce bnAbs while the MLV strain only induced homologous nAbs. In addition, the lineages of VDJ repertoires potentially associated with distinct nAbs were also characterized. Overall, our results demonstrate that rJS-ORF2-6-CON is a promising candidate for the development of a PRRS genetic engineered vaccine conferring cross protection.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yunfei Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xilin Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Latyshev OE, Eliseeva OV, Kostina LV, Alekseev KP, Khametova KM, Altaeva EG, Verkhovsky OA, Aliper TI, Grebennikova TV. [Assessment of immunogenic activity of the cloned human rotavirus A WA strain.]. Vopr Virusol 2021; 64:156-164. [PMID: 32163681 DOI: 10.36233/0507-4088-2019-64-4-156-164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/10/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Rotovirus infection (RVI) caused by the dsRNA-containing virus from genus Rotavirus, Reoviridae family, belonging to group A (RVA), is the cause of severe diarrhea in human and other mammalian species. Vaccination is the most effective way to reduce the incidence of RVI. At present, the effectiveness of using gnotobiotic piglets as a universal model for reproducing human rotavirus infection and assessing the quality of RVI vaccine preparations has been experimentally proven. OBJECTIVES Evaluation of immunogenic activity of the cloned RVA Wa strain in the new-born Vietnamese potbellied piglets trial. MATERIAL AND METHODS Development of viral preparations of the cloned human Wa strain PBA, development of human RVA rVP6, ELISA, polymerase chain reaction with reverse transcription, immunization and experimental infection of newborn piglets. RESULTS The article presents the results of the experiment on double immunization of newborn piglets with native virus preparations with the infection activity 5.5 lg TCID50/ml, 3 cm3 per dose, HRV with adjuvant 500 µg per dose and mock preparation (control group) followed with experimental inoculation of all animals with virulent virus strain Wa G1P[8] human RVA with infectious activity of 5.5 lg TCID50/ml in 5 cm3 dose. Development of clinical signs of disease and animal death were observed only in control group. RT-PCR system to detect RVA RNA in rectal swabs, samples of small intestine and peripheral lymph nodes was developed. ELISA based on obtained human RVA rVP6 was developed and results on RVA-specific IgG-antibodies in serum samples of experimental piglets are presented. CONCLUSION In the course of the research, a high immunogenic activity of the native and purified virus of the cloned Wa RVA strain Wa was established and the possibility of its use as the main component of the RVI vaccine was confirmed. The possibility of using conventional newborn pigs instead of gnotobiotic piglets as an experimental model was demonstrated.
Collapse
Affiliation(s)
- O E Latyshev
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - O V Eliseeva
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - L V Kostina
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - K P Alekseev
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - K M Khametova
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - E G Altaeva
- Diagnostics and Prevention Research Institute for Human and Animal Diseases, Moscow, 123098, Russian Federation
| | - O A Verkhovsky
- Diagnostics and Prevention Research Institute for Human and Animal Diseases, Moscow, 123098, Russian Federation
| | - T I Aliper
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - T V Grebennikova
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation.,Peoples Frendship University of Russia, Moscow, 117198, Russian Federation
| |
Collapse
|
5
|
Butler JE, Sinkora M, Wang G, Stepanova K, Li Y, Cai X. Perturbation of Thymocyte Development Underlies the PRRS Pandemic: A Testable Hypothesis. Front Immunol 2019; 10:1077. [PMID: 31156633 PMCID: PMC6529568 DOI: 10.3389/fimmu.2019.01077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes immune dysregulation during the Critical Window of Immunological Development. We hypothesize that thymocyte development is altered by infected thymic antigen presenting cells (TAPCs) in the fetal/neonatal thymus that interact with double-positive thymocytes causing an acute deficiency of T cells that produces "holes" in the T cell repertoire allowing for poor recognition of PRRSV and other neonatal pathogens. The deficiency may be the result of random elimination of PRRSV-specific T cells or the generation of T cells that accept PRRSV epitopes as self-antigens. Loss of helper T cells for virus neutralizing (VN) epitopes can result in the failure of selection for B cells in lymph node germinal centers capable of producing high affinity VN antibodies. Generation of cytotoxic and regulatory T cells may also be impaired. Similar to infections with LDV, LCMV, MCMV, HIV-1 and trypanosomes, the host responds to the deficiency of pathogen-specific T cells and perhaps regulatory T cells, by "last ditch" polyclonal B cell activation. In colostrum-deprived PRRSV-infected isolator piglets, this results in hypergammaglobulinemia, which we believe to be a "red herring" that detracts attention from the thymic atrophy story, but leads to our second independent hypothesis. Since hypergammaglobulinemia has not been reported in PRRSV-infected conventionally-reared piglets, we hypothesize that this is due to the down-regulatory effect of passive maternal IgG and cytokines in porcine colostrum, especially TGFβ which stimulates development of regulatory T cells (Tregs).
Collapse
Affiliation(s)
- John E. Butler
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Yuming Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Bordet E, Frétaud M, Crisci E, Bouguyon E, Rault S, Pezant J, Pleau A, Renson P, Giuffra E, Larcher T, Bourge M, Bourry O, Boulesteix O, Langevin C, Schwartz-Cornil I, Bertho N. Macrophage-B Cell Interactions in the Inverted Porcine Lymph Node and Their Response to Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2019; 10:953. [PMID: 31130951 PMCID: PMC6510060 DOI: 10.3389/fimmu.2019.00953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Swine lymph nodes (LN) present an inverted structure compared to mouse and human, with the afferent lymph diffusing from the center to the periphery. This structure, also observed in close and distant species such as dolphins, hippopotamus, rhinoceros, and elephants, is poorly described, nor are the LN macrophage populations and their relationship with B cell follicles. B cell maturation occurs mainly in LN B cell follicles with the help of LN macrophage populations endowed with different antigen delivery capacities. We identified three macrophage populations that we localized in the inverted LN spatial organization. This allowed us to ascribe porcine LN MΦ to their murine counterparts: subcapsular sinus MΦ, medullary cord MΦ and medullary sinus MΦ. We identified the different intra and extrafollicular stages of LN B cells maturation and explored the interaction of MΦ, drained antigen and follicular B cells. The porcine reproductive and respiratory syndrome virus (PRRSV) is a major porcine pathogen that infects tissue macrophages (MΦ). PRRSV is persistent in the secondary lymphoid tissues and induces a delay in neutralizing antibodies appearance. We observed PRRSV interaction with two LN MΦ populations, of which one interacts closely with centroblasts. We observed BCL6 up-regulation in centroblast upon PRRSV infection, leading to new hypothesis on PRRSV inhibition of B cell maturation. This seminal study of porcine LN will permit fruitful comparison with murine and human LN for a better understanding of normal and inverted LN development and functioning.
Collapse
Affiliation(s)
- Elise Bordet
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Maxence Frétaud
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,INRA, EMERG'IN- Plateforme d'Infectiologie Expérimentale IERP- Domaine de Vilvert, Jouy-en-Josas, France
| | - Elisa Crisci
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Edwige Bouguyon
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Stéphane Rault
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Jérémy Pezant
- INRA, UE1277, Plate-Forme d'Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Alexis Pleau
- INRA, UE1277, Plate-Forme d'Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Patricia Renson
- Anses, Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie et Immunologie Porcines, Zoopôle, BP53, Ploufragan, France.,Université Bretagne Loire, Cité Internationale, Rennes, France
| | - Elisabetta Giuffra
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Mickael Bourge
- I2BC, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Olivier Bourry
- Anses, Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie et Immunologie Porcines, Zoopôle, BP53, Ploufragan, France.,Université Bretagne Loire, Cité Internationale, Rennes, France
| | - Olivier Boulesteix
- INRA, UE1277, Plate-Forme d'Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Christelle Langevin
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,INRA, EMERG'IN- Plateforme d'Infectiologie Expérimentale IERP- Domaine de Vilvert, Jouy-en-Josas, France
| | | | - Nicolas Bertho
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,BIOEPAR, INRA, Oniris, Nantes, France
| |
Collapse
|
7
|
Du L, Wang S, Zhu Y, Zhao H, Basit A, Yu X, Li Q, Sun X. Immunoglobulin heavy chain variable region analysis in dairy goats. Immunobiology 2018; 223:599-607. [PMID: 30025710 DOI: 10.1016/j.imbio.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/12/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Based on the goat genome database, we have annotated the genomic organization of the goat immunoglobulin heavy chain variable region. The goat IgH locus is present on seven genome scaffolds, and contains ten VH, three DH and six JH segments. After the exclusion of three shorter segments, the VH genes were divided into two gene families based on sequence similarity. By analyzing the IgH cDNA sequences, we further identified that VH2 (54.2%), DH1 (61.7%) and JH1 (60.5%) segments were most frequently utilized in the expression of the immunoglobulin variable region, and that point mutations introduced by somatic hypermutation were the major mutation present in these expressed variable region. Compared with human and horses, DH-DH fusion occurred at a higher frequency in goat V(D)J recombination. These results provided variable insights into goat immunoglobulin heavy chain variable region genome loci and repertoire diversity.
Collapse
Affiliation(s)
- Lijuan Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanjiao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Abdul Basit
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohui Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Guo N, Su M, Xie Z, Wang K, Yuan H, Li M, Li J, Liu M, Bai J, Liu J, Ouyang H, Pang D, Jiao H. Characterization and comparative analysis of immunoglobulin lambda chain diversity in a neonatal porcine model. Vet Immunol Immunopathol 2017; 195:84-91. [PMID: 29249323 DOI: 10.1016/j.vetimm.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022]
Abstract
To elucidate how antigen exposure and selection shape the porcine antibody repertoires, we investigated the immunoglobulin lambda light chain (IGL) gene repertoires of the binary cross-bred (Yorkshire×Landrace) pig at different developmental stages, pre-suckle neonate (0days), wean piglet (35days) and growing pig (75days) under normal farming conditions. Immunoglobulin lambda light transcript (IGLV-J-C) clones of the peripheral blood mononuclear cells (PBMCs) from these different developmental stages were assessed for IGL combination, junction and sequence diversity. Previous research has revealed that IGLV8 plays a major role in immunity during the early fetus stage and that IGLV3 accounts for 30% of the neonatal IGLV repertoires. Here, we found that the antibody profile exhibited salient features at different stages. The usage of the IGLV3-3 subclass gradually decreased during development, in contrast, the utilization of IGLV8 (IGLV8-10, IGLV8-13 and IGLV8-18), which started in the fetal stage, has increased in the growing stage. Moreover, the junction diversity, as measured by the IGLV hypervariable complementarity determining region 3 (CDR3L) lengths, was constant during the different stages. The complete junction mutation ratio clearly increased in the growing pig compared to that in the younger pig. Our data provide new insights into the postnatal porcine IGLV repertoires maturation which can lay the foundation for porcine antibody gene research.
Collapse
Affiliation(s)
- Nannan Guo
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Menghan Su
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zicong Xie
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Kankan Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Hongming Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Mengjing Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jianing Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Minghao Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jing Bai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jing Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Huping Jiao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
9
|
Abstract
We describe the domestication of the species, explore its value to agriculture and bioscience, and compare its immunoglobulin (Ig) genes to those of other vertebrates. For encyclopedic information, we cite earlier reviews and chapters. We provide current gene maps for the heavy and light chain loci and describe their polygeny and polymorphy. B-cell and antibody repertoire development is a major focus, and we present findings that challenge several mouse-centric paradigms. We focus special attention on the role of ileal Peyer's patches, the largest secondary lymphoid tissues in newborn piglets and a feature of all artiodactyls. We believe swine fetal development and early class switch evolved to provide natural secretory IgA antibodies able to prevent translocation of bacteria from the gut while the bacterial PAMPs drive development of adaptive immunity. We discuss the value of using the isolator piglet model to address these issues.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
10
|
Chen N, Trible BR, Rowland RRR. Amplification and selection of PRRSV-activated VDJ repertoires in pigs secreting distinct neutralizing antiboidies. Vet Immunol Immunopathol 2017; 189:53-57. [PMID: 28669387 DOI: 10.1016/j.vetimm.2017.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/25/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Neutralizing antibodies (nAbs) play an important role in protective immunity against porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, the characterization of PRRSV nAb repertoires is rarely investigated. In this study, we developed a swine VDJ amplification method and selection criteria for the characterization of PRRSV-activated VDJ repertoires. According to clonal expansion theory, two separated aliquots of lymph nodes from pigs producing different PRRSV nAbs were utilized to determine the activated B-cell repertoires. Swine VDJ repertoires from a mock-infected pig and PRRSV-infected pigs secreting no detectable nAbs, only homologous nAbs, and broad nAbs were amplified by a single pair of primers that could detect all seven major VDJ genes. The amplicons were cloned and sequenced to generate 385 VDJ sequences. Sequence alignment showed that the diversification of VDJ genes was mainly due to the variation in complementarity determining regions (CDRs), especially CDR3. Based on selection criteria, shared and abundant sequences were identified in two separated aliquots from PRRSV-infected pigs but not from the mock-infected pig, suggesting they were secreted from PRRSV-activated B cells. Thus, the amplification and selection method provide a potential alternative for the characterization of swine VDJ repertoires. However, additional experiments are required to determine whether the shared and abundant VDJ lineages identified in this study are PRRSV-specific or distinct neutralizing-antibodies-associated.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu 225009, PR China; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| | - Benjamin R Trible
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| |
Collapse
|
11
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Butler JE, Santiago-Mateo K, Wertz N, Sun X, Sinkora M, Francis DL. Antibody repertoire development in fetal and neonatal piglets. XXIV. Hypothesis: The ileal Peyer patches (IPP) are the major source of primary, undiversified IgA antibodies in newborn piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:340-351. [PMID: 27497872 DOI: 10.1016/j.dci.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
The ileal Peyers patches (IPP) of newborn germfree (GF) piglets were isolated into blind loops and the piglets colonized with a defined probiotic microflora. After 5 weeks, IgA levels in the intestinal lavage (IL) of loop piglets remained at GF levels and IgM comprised ∼70% while in controls, IgA levels were elevated 5-fold and comprised ∼70% of total Igs. Loop piglets also had reduced serum IgA levels suggesting the source of serum IgA had been interrupted. The isotype profile for loop contents was intermediate between that in the IL of GF and probiotic controls. Surprisingly, colonization alone did not result in repertoire diversification in the IPP. Rather, colonization promoted pronounced proliferation of fully switched IgA(+)IgM(-) B cells in the IPP that supply early, non-diversified "natural" SIgA antibodies to the gut lumen and a primary IgA response in serum.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - David L Francis
- Department of Veterinary Sciences, South Dakota State University, Brooking, SD, USA
| |
Collapse
|
13
|
Vale AM, Nobrega A, Schroeder HW. The role of evolutionarily conserved germ-line DH sequence in B-1 cell development and natural antibody production. Ann N Y Acad Sci 2015; 1362:48-56. [PMID: 26104486 DOI: 10.1111/nyas.12808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of N addition and variation in the site of VDJ joining, the third complementarity-determining region of the heavy chain (CDR-H3) is the most diverse component of the initial immunoglobulin antigen-binding site repertoire. A large component of the peritoneal cavity B-1 cell component is the product of fetal and perinatal B cell production. The CDR-H3 repertoire is thus depleted of N addition, which increases dependency on germ-line sequence. Cross-species comparisons have shown that DH gene sequence demonstrates conservation of amino acid preferences by reading frame. Preference for reading frame 1, which is enriched for tyrosine and glycine, is created both by rearrangement patterns and by pre-BCR and BCR selection. In previous studies, we have assessed the role of conserved DH sequence by examining peritoneal cavity B-1 cell numbers and antibody production in BALB/c mice with altered DH loci. Here, we review our finding that changes in the constraints normally imposed by germ-line-encoded amino acids within the CDR-H3 repertoire profoundly affect B-1 cell development, especially B-1a cells, and thus natural antibody immunity. Our studies suggest that both natural and somatic selection operate to create a restricted B-1 cell CDR-H3 repertoire.
Collapse
Affiliation(s)
- Andre M Vale
- Program in Immunobiology, Carlos Chagas Filho Institute of Biophysics
| | - Alberto Nobrega
- Department of Immunology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Harry W Schroeder
- Department of Medicine.,Department of Microbiology.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Abstract
Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the “critical window” of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the USA with comparative losses in most other countries. The causative agent is a single-stranded, positive-sense enveloped arterivirus (PRRSV) that infects macrophages and plasmacytoid dendritic cells. Despite the discovery of PRRSV in 1991 and the publication of >2,000 articles, the control of PRRS is problematic. Despite the large volume of literature on this disease, the cellular and molecular mechanisms describing how PRRSV dysregulates the host immune system are poorly understood. We know that PRRSV suppresses innate immunity and causes abnormal B cell proliferation and repertoire development, often lymphopenia and thymic atrophy. The PRRSV genome is highly diverse, rapidly evolving but amenable to the generation of many mutants and chimeric viruses for experimental studies. PRRSV only replicates in swine which adds to the experimental difficulty since no inbred well-defined animal models are available. In this article, we summarize current knowledge and apply it toward developing a series of provocative and testable hypotheses to explain how PRRSV immunomodulates the porcine immune system with the goal of adding new perspectives on this disease.
Collapse
|
15
|
Butler J. Collection, Handling, and Analysis of Specimens for Studies of Mucosal Immunity in Animals of Veterinary Importance. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.15003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Sinkora M, Sinkorova J. B Cell Lymphogenesis in Swine Is Located in the Bone Marrow. THE JOURNAL OF IMMUNOLOGY 2014; 193:5023-32. [DOI: 10.4049/jimmunol.1401152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Sinkora M, Butler JE, Lager KM, Potockova H, Sinkorova J. The comparative profile of lymphoid cells and the T and B cell spectratype of germ-free piglets infected with viruses SIV, PRRSV or PCV2. Vet Res 2014; 45:91. [PMID: 25186625 PMCID: PMC4156959 DOI: 10.1186/s13567-014-0091-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/18/2014] [Indexed: 12/16/2022] Open
Abstract
Lymphocyte subsets isolated from germ-free piglets experimentally infected with swine influenza virus (SIV), porcine reproductive and respiratory syndrome virus (PRRSV) or porcine circovirus type 2 (PCV2) were studied and the profile of these subsets among these three infections was monitored. Germ-free piglets were used since their response could be directly correlated to the viral infection. Because SIV infections are resolved even by colostrum-deprived neonates whereas PRRSV and PCV2 infections are not, SIV was used as a benchmark for an effectively resolved viral infection. PRRSV caused a large increase in the proportion of lymphocytes at the site of infection and rapid differentiation of B cells leading to a high level of Ig-producing cells but a severe reduction in CD2—CD21+ primed B cells. Unlike SIV and PCV2, PRRSV also caused an increase in terminally differentiated subset of CD2+CD8α+ γδ cells and polyclonal expansion of major Vβ families suggesting that non-specific helper T cells drive swift B cell activation. Distinct from infections with SIV and PRRSV, PCV2 infection led to the: (a) prevalence of MHC-II+ T cytotoxic cells, (b) restriction of the T helper compartment in the respiratory tract, (c) generation of a high proportion of FoxP3+ T cells in the blood and (d) selective expansion of IgA and IgE suggesting this virus elicits a mucosal immune response. Our findings suggest that PRRSV and PCV2 may negatively modulate the host immune system by different mechanisms which may explain their persistence.
Collapse
|
18
|
Azevedo MP, Vlasova AN, Saif LJ. Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease. Expert Rev Vaccines 2014; 12:169-81. [DOI: 10.1586/erv.13.3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Butler J, Wertz N, Sun X. Antibody repertoire development in fetal and neonatal piglets. XIV. Highly restricted IGKV gene usage parallels the pattern seen with IGLV and IGHV. Mol Immunol 2013; 55:329-36. [DOI: 10.1016/j.molimm.2013.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 01/17/2023]
|
20
|
Guo B, Lager KM, Schlink SN, Kehrli ME, Brockmeier SL, Miller LC, Swenson SL, Faaberg KS. Chinese and Vietnamese strains of HP-PRRSV cause different pathogenic outcomes in United States high health swine. Virology 2013; 446:238-50. [PMID: 24074587 DOI: 10.1016/j.virol.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 08/09/2013] [Indexed: 01/12/2023]
Abstract
An infectious clone of a highly pathogenic PRRSV strain from Vietnam (rSRV07) was prepared and was demonstrated to contain multiple amino acid differences throughout the genome when compared to Chinese highly pathogenic PRRSV strain rJXwn06. Virus rescued from the rSRV07 infectious clone was compared to rJXwn06 and US Type 2 prototype strain VR-2332 to examine the effects of virus genotype and phenotype on in vitro growth, and virus challenge dose on in vivo pathogenicity and host response. After swine inoculation at high- and low-doses of virus, rSRV07 was shown to replicate to an approximately 10-fold lower level in serum than rJXwn06, produced lower body temperatures than rJXwn06 and resulted in decreased mortality. Furthermore, a 9-plex cytokine panel revealed that the cytokine responses varied between different strains of PRRSV, as well as between tissues examined and by inoculum dose.
Collapse
Affiliation(s)
- Baoqing Guo
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Butler JE, Sinkora M. The enigma of the lower gut-associated lymphoid tissue (GALT). J Leukoc Biol 2013; 94:259-70. [PMID: 23695307 DOI: 10.1189/jlb.0313120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Artiodactyls possess GALT that appears in fetal life and is located at the extreme end of the ileum. These IPP contain mostly B cells and involute early in postnatal life. Rabbits have a similarly located lymphoid organ, called the sacculus rotundus. Studies in sheep and rabbits have led to the concept that the lower hindgut GALT represents primary lymphoid tissue for B cells and is necessary for normal B cell development, analogous to the bursa of Fabricius. This review traces the history of the observations and theories that have led to the existing concept concerning the role of lower GALT. We then review recent data from piglets with resected IPP that challenges the concept that the IPP is primary B cell lymphoid tissue and that artiodactyls and rabbits are members of the GALT group in the same context as gallinaceous birds. Eliminating the IPP as the primary lymphoid tissue for B cells leads to the hypothesis that the IPP acts as first-responder mucosal lymphoid tissue.
Collapse
Affiliation(s)
- John E Butler
- Institute of Microbiology AS CR, v.v.i., Doly 183, 54922 Novy Hradek, Czech Republic.
| | | |
Collapse
|
22
|
Jiang Z, Zhou X, Michal JJ, Wu XL, Zhang L, Zhang M, Ding B, Liu B, Manoranjan VS, Neill JD, Harhay GP, Kehrli ME, Miller LC. Reactomes of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus. PLoS One 2013; 8:e59229. [PMID: 23527143 PMCID: PMC3602036 DOI: 10.1371/journal.pone.0059229] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/13/2013] [Indexed: 01/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has devastated pig industries worldwide for many years. It is caused by a small RNA virus (PRRSV), which targets almost exclusively pig monocytes or macrophages. In the present study, five SAGE (serial analysis of gene expression) libraries derived from 0 hour mock-infected and 6, 12, 16 and 24 hours PRRSV-infected porcine alveolar macrophages (PAMs) produced a total 643,255 sequenced tags with 91,807 unique tags. Differentially expressed (DE) tags were then detected using the Bayesian framework followed by gene/mRNA assignment, arbitrary selection and manual annotation, which determined 699 DE genes for reactome analysis. The DAVID, KEGG and REACTOME databases assigned 573 of the DE genes into six biological systems, 60 functional categories and 504 pathways. The six systems are: cellular processes, genetic information processing, environmental information processing, metabolism, organismal systems and human diseases as defined by KEGG with modification. Self-organizing map (SOM) analysis further grouped these 699 DE genes into ten clusters, reflecting their expression trends along these five time points. Based on the number one functional category in each system, cell growth and death, transcription processes, signal transductions, energy metabolism, immune system and infectious diseases formed the major reactomes of PAMs responding to PRRSV infection. Our investigation also focused on dominant pathways that had at least 20 DE genes identified, multi-pathway genes that were involved in 10 or more pathways and exclusively-expressed genes that were included in one system. Overall, our present study reported a large set of DE genes, compiled a comprehensive coverage of pathways, and revealed system-based reactomes of PAMs infected with PRRSV. We believe that our reactome data provides new insight into molecular mechanisms involved in host genetic complexity of antiviral activities against PRRSV and lays a strong foundation for vaccine development to control PRRS incidence in pigs.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail: (ZJ) (ZJ); (LCM) (LM)
| | - Xiang Zhou
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Xiao-Lin Wu
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lifan Zhang
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ming Zhang
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Bo Ding
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Bang Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Hubei, China
| | - Valipuram S. Manoranjan
- Department of Mathematics, Washington State University, Pullman, Washington, United States of America
| | - John D. Neill
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Gregory P. Harhay
- Animal Health Research Unit, United States Meat Animal Research Center, United States Department of Agriculture, Agricultural Research Service, Clay Center, Nebraska, United States of America
| | - Marcus E. Kehrli
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Laura C. Miller
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
- * E-mail: (ZJ) (ZJ); (LCM) (LM)
| |
Collapse
|
23
|
Sun X, Wertz N, Lager KM, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XV. Porcine circovirus type 2 infection differentially affects serum IgG levels and antibodies to ORF2 in piglets free from other environmental factors. Vaccine 2012; 31:141-8. [PMID: 23142304 DOI: 10.1016/j.vaccine.2012.10.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/16/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen in the porcine respiratory disease complex (PRDC) and its persistence may be due to dysregulation of systemic immunity. We examined this contention using isolator piglets. We present data on Ig levels in serum and bronchio-alveolar lavage (BAL), on antibody response to PCV2 and to TNP conjugates used as model antigens in 48 PCV2-infected isolator piglets. We compared these to data from TNP-immunized isolator piglets colonized with a probiotic flora, those infected with swine influenza (S-FLU) and those infected with porcine respiratory and reproductive syndrome virus (PRRSV). We found that PCV2 infection does not cause generalized hypergammaglobulinemia that characterizes PRRSV infections, but causes an unexplained increase in serum IgA. All animals had serum IgG to the ORF2 gene product of PCR2, but neither IgA nor IgG anti-ORF2 responses in BAL. PCV2 infection is a poor adjuvant since only natural anti-TNP antibodies were found. Unexpectedly, immunization appeared to result in lower Ig levels and lower anti-ORF2 responses. There was extreme variation in serum Ig levels in response to infection that could in part be traced to genetic and gender differences. These data suggest that non-replicating vaccines are unlikely to result in a significant primary antibody response but may prime the system for a secondary antibody and cytotoxic response following actual infection. In any case, developers may have to contend with significant genetic differences in the response of piglets to PCV2.
Collapse
Affiliation(s)
- XiuZhu Sun
- Department of Microbiology, Carver College of Medicine, Iowa City, IA, United States
| | | | | | | |
Collapse
|
24
|
Effect of the host cell line on the vaccine efficacy of an attenuated porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2012; 148:116-25. [DOI: 10.1016/j.vetimm.2012.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/17/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
25
|
Butler JE, Wertz N. The porcine antibody repertoire: variations on the textbook theme. Front Immunol 2012; 3:153. [PMID: 22754553 PMCID: PMC3384076 DOI: 10.3389/fimmu.2012.00153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
The genes encoding the heavy and light chains of swine antibodies are organized in the same manner as in other eutherian mammals. There are ∼30 VH genes, two functional DH genes and one functional JH gene, 14-60 Vκ genes, 5 Jκ segments, 12-13 functional Vλ genes, and two functional Jλ genes. The heavy chain constant regions encode the same repertoire of isotypes common to other eutherian mammals. The piglet models offers advantage over rodent models since the fetal repertoire develops without maternal influences and the precocial nature of their multiple offspring allows the experimenter to control the influences of environmental and maternal factors on repertoire development postnatally. B cell lymphogenesis in swine begins in the fetal yolk sac at 20 days of gestation (DG), moves to the fetal liver at 30 DG and eventually to the bone marrow which dominates until birth (114 DG) and to at least 5 weeks postpartum. There is no evidence that the ileal Peyers patches are a site of B cell lymphogenesis or are required for B cell maintenance. Unlike rodents and humans, light chain rearrangement begins first in the lambda locus; kappa rearrangements are not seen until late gestation. Dissimilar to lab rodents and more in the direction of the rabbit, swine utilize a small number of VH genes to form >90% of their pre-immune repertoire. Diversification in response to environmental antigen does not alter this pattern and is achieved by somatic hypermutation (SHM) of the same small number of VH genes. The situation for light chains is less well studied, but certain Vκ and Jκ and Vλ and Jλ are dominant in transcripts and in contrast to rearranged heavy chains, there is little junctional diversity, less SHM, and mutations are not concentrated in CDR regions. The transcribed and secreted pre-immune antibodies of the fetus include mainly IgM, IgA, and IgG3; this last isotype may provide a type of first responder mucosal immunity. Development of functional adaptive immunity is dependent on bacterial MAMPs or MAMPs provided by viral infections, indicating the importance of innate immunity for development of adaptive immunity. The structural analysis of Ig genes of this species indicate that especially the VH and Cγ gene are the result of tandem gene duplication in the context of genomic gene conversion. Since only a few of these duplicated VH genes substantially contribute to the antibody repertoire, polygeny may be a vestige from a time before somatic processes became prominently evolved to generate the antibody repertoire. In swine we believe such duplications within the genome have very limited functional significance and their occurrence is therefore overrated.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | |
Collapse
|
26
|
Stěpánová K, Sinkora M. The expression of CD25, CD11b, SWC1, SWC7, MHC-II, and family of CD45 molecules can be used to characterize different stages of γδ T lymphocytes in pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:728-740. [PMID: 22100879 DOI: 10.1016/j.dci.2011.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
The expression of selected molecules was chosen to study porcine γδ lymphocytes and their CD2/CD8 subsets in different lymphoid organs in vivo and in vitro. Results indicate that many γδ T cells can constitutively express CD25 and MHC-II and that the frequency of γδ T cells positive for CD25, CD11b, SWC1 and SWC7 can be increased by stimulation. A diversified TCRδ repertoire was found inside CD25(+), CD11b(+), SWC1(-) and CD45RA(-) cells. Ontogenetic studies revealed various age and/or colonization dependency for expression of all studied molecules except of SWC7. Findings generally indicate that CD25 represent an activation molecule that probably marks a functionally distinct subsets, expression of CD11b is perhaps connected to early functions of naive γδ T cells in the periphery, SWC1 is lineage specific marker, SWC7 may represent an activation molecule with intrinsic or transient expression, and the expression of CD45RA/RC most likely defines naive and terminally differentiated cells.
Collapse
Affiliation(s)
- Kateřina Stěpánová
- Department of Immunology and Gnotobiology, Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic, Doly 183, 54922 Novy Hradek, Czech Republic
| | | |
Collapse
|
27
|
Antibody repertoire development in fetal and neonatal piglets. XXIII: fetal piglets infected with a vaccine strain of PRRS Virus display the same immune dysregulation seen in isolator piglets. Vaccine 2012; 30:3646-52. [PMID: 22465749 DOI: 10.1016/j.vaccine.2012.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 01/22/2023]
Abstract
The Ig levels and antibody repertoire diversification in fetal piglets infected with an attenuated Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) were measured. Serum Ig levels were greatly elevated in PRRSV-infected fetuses; IgG was elevated >50-fold, IgM>5-15-fold and IgA>2-fold compared to control fetuses. Their IgM to IgG to IgA profile was the same as that in isolator piglets infected for the same period with wild-type PRRSV. Fetal animals showed less repertoire diversification than even isolator piglets that were maintained germfree (GF) while the repertoire diversification index (RDI) for PRRSV-infected isolator piglets was 10-fold higher and comparable to littermates infected with swine influenza (S-FLU). However, when expressed as the RDI:Ig ratio, infected fetuses appeared 10-fold less capable of repertoire diversification than uninfected littermates and GF isolator piglets. Compared to S-FLU isolator piglets that resolve the infection, the RDI:Ig of PRRSV-infected isolator piglets was 100-fold lower. Overall, infection of fetuses with an attenuated virus shows the same immune dysregulation seen postnatally in wild type infected isolator piglets, indicating that: (a) attenuation did not alter the ability of the virus to cause dysregulation and (b) the isolator infectious model reflects the fetal disease.
Collapse
|
28
|
Gauger PC, Lager KM, Vincent AL, Opriessnig T, Kehrli ME, Cheung AK. Postweaning multisystemic wasting syndrome produced in gnotobiotic pigs following exposure to various amounts of porcine circovirus type 2a or type 2b. Vet Microbiol 2011; 153:229-39. [PMID: 21684696 DOI: 10.1016/j.vetmic.2011.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 11/25/2022]
Abstract
In late 2005, a postweaning, high mortality syndrome spread rapidly through finishing barns in swine dense areas of the United States. Diagnostic investigations consistently detected porcine circovirus type 2 (PCV2) from diseased tissues. Subsequent genetic analysis revealed that the infectious agent was a PCV2 type termed "PCV2b". Prior to late 2004, only the PCV2a type, but not PCV2b, had been reported in North America. In this communication, we produce severe postweaning multisystemic wasting syndrome (PMWS) in gnotobiotic pigs using infectious PCV2a and PCV2b generated from DNA clones constructed from field isolates identified in the 2005 outbreak. Clinical signs exhibited by diseased pigs included anorexia, dyspnea and listlessness. Mortality was typically observed within 12h of onset of dyspnea. The most striking microscopic lesions in affected animals were severe hepatic necrosis and depletion of germinal centers in lymph nodes with associated abundant PCV2 viral antigen. Clinical signs and lesions observed in these studies were comparable to those reported in experiments with gnotobiotic pigs inoculated with a PCV2a isolate while concurrently receiving immune-stimulation or co-infection with porcine parvovirus or torque teno virus. The animals in these studies were confirmed to be free of detectable porcine parvovirus, porcine reproductive and respiratory syndrome virus, bovine viral diarrhea virus, swine hepatitis E virus, and aerobic and anaerobic bacteria. Seven out of 24 PCV2 inoculated pigs had a detectable congenital torque teno virus infection with no correlation to clinical disease. Thus, in these studies, both PCV2a and PCV2b isolates were singularly capable of inducing high mortality in the absence of any detectable infectious co-factor.
Collapse
Affiliation(s)
- P C Gauger
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA
| | | | | | | | | | | |
Collapse
|
29
|
Faaberg KS, Kehrli ME, Lager KM, Guo B, Han J. In vivo growth of porcine reproductive and respiratory syndrome virus engineered nsp2 deletion mutants. Virus Res 2010; 154:77-85. [PMID: 20673840 PMCID: PMC7114397 DOI: 10.1016/j.virusres.2010.07.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/15/2010] [Accepted: 07/20/2010] [Indexed: 12/19/2022]
Abstract
Prior studies on PRRSV strain VR-2332 non-structural protein 2 (nsp2) had shown that as much as 403 amino acids could be removed from the hypervariable region without losing virus viability in vitro. We utilized selected nsp2 deletion mutants to examine in vivo growth. Young swine (4 pigs/group; 5 control swine) were inoculated intramuscularly with one of 4 nsp2 deletion mutants (rΔ727–813, rΔ543–726, rΔ324–523, rΔ324–726) or full-length recombinant virus (rVR-2332). Serum samples were collected on various days post-inoculation and analyzed by HerdChek* ELISA, PRRSV real time RT-PCR, gamma interferon (IFN-γ) ELISA, and nucleotide sequence analysis of the entire nsp2 coding region. Tracheobronchial lymph node weight compared to body weight was recorded for each animal and used as a clinical measurement of viral pathogenesis. Results showed that all deletion mutants grew less robustly than full-length recombinant virus, yet all but the large deletion virus (rΔ324–726) recovered to parental viral RNA levels by study end. Swine receiving the rΔ727–813 mutants had a significant decrease in lymph node enlargement compared to rVR-2332. While swine infection with rVR-2332 caused a rapid rise in serum IFN-γ levels, the IFN-γ protein produced by infection with 3 of the 4 deletion mutant viruses was significantly reduced, perhaps due to differences in viral growth kinetics. The rΔ543–726 nsp2 mutant virus, although growth impaired, mimicked rVR-2332 in inducing a host serum IFN-γ response but exhibited a 2-week delay. Targeted sequencing showed that all deletions were stable in the region coding for nsp2 after one swine passage. The data suggested that the selected nsp2 deletion mutants were growth attenuated in swine, altered the induction of serum IFN-γ, an innate cytokine of unknown function in PRRSV clearance, and pointed to a domain that may influence tracheobronchial lymph node size.
Collapse
Affiliation(s)
- Kay S Faaberg
- Virus and Prion Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
30
|
Kitikoon P, Vincent AL, Jones KR, Nilubol D, Yu S, Janke BH, Thacker BJ, Thacker EL. Vaccine efficacy and immune response to swine influenza virus challenge in pigs infected with porcine reproductive and respiratory syndrome virus at the time of SIV vaccination. Vet Microbiol 2009; 139:235-44. [DOI: 10.1016/j.vetmic.2009.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|
31
|
Abstract
Summary: The interface between successful pathogens and their hosts is often a tenuous balance. In acute viral infections, this balance involves induction and inhibition of innate responses. Foot‐and‐mouth disease virus (FMDV) is considered one of the most contagious viruses known and is characterized by rapid induction of clinical disease in cloven hoofed animals exposed to infection. Viral shedding is extensive before the equally rapid resolution of acute disease. This positive strand RNA virus is an extremely successful pathogen, due in part to the ability to interrupt the innate immune response. Previous reviews have described the inhibition of cellular innate responses in the infected cell both in vitro and in vivo. Here, we present a review of virus inhibition of cells that are a source of antiviral function in swine. Particularly in the case of dendritic cells and natural killer cells, the virus has evolved mechanisms to interrupt the normal function of these important mediators of innate function, even though these cells are not infected by the virus. Understanding how this virus subverts the innate response will provide valuable information for the development of rapidly acting biotherapeutics to use in response to an outbreak of FMDV.
Collapse
Affiliation(s)
- William T Golde
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944-0848, USA.
| | | | | |
Collapse
|
32
|
Silva-Campa E, Flores-Mendoza L, Reséndiz M, Pinelli-Saavedra A, Mata-Haro V, Mwangi W, Hernández J. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus. Virology 2009; 387:373-9. [PMID: 19304305 DOI: 10.1016/j.virol.2009.02.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 12/31/2008] [Accepted: 02/21/2009] [Indexed: 11/16/2022]
Abstract
Delayed development of virus-specific immune response has been observed in pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results showed that PRRSV-infected DCs significantly increased Foxp3(+)CD25(+) T cells, an effect that was reversible by IFN-alpha treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the expressed cytokines suggested that the induction of Foxp3(+)CD25(+) T cells is dependent on TGF-beta but not IL-10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected. Importantly, our results showed that the induced Foxp3(+)CD25(+) T cells were able to suppress the proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3(+)CD25(+) T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype depended, at least in part, on PRRSV viability because IFN-alpha treatment or virus inactivation reversed these effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the porcine immune system.
Collapse
Affiliation(s)
- Erika Silva-Campa
- Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, Mexico
| | | | | | | | | | | | | |
Collapse
|
33
|
Butler JE, Lager KM, Splichal I, Francis D, Kacskovics I, Sinkora M, Wertz N, Sun J, Zhao Y, Brown WR, DeWald R, Dierks S, Muyldermans S, Lunney JK, McCray PB, Rogers CS, Welsh MJ, Navarro P, Klobasa F, Habe F, Ramsoondar J. The piglet as a model for B cell and immune system development. Vet Immunol Immunopathol 2009; 128:147-70. [PMID: 19056129 PMCID: PMC2828348 DOI: 10.1016/j.vetimm.2008.10.321] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The ability to identify factors responsible for disease in all species depends on the ability to separate those factors which are environmental from those that are intrinsic. This is particularly important for studies on the development of the adaptive immune response of neonates. Studies on laboratory rodents or primates have been ambiguous because neither the effect of environmental nor maternal factors on the newborn can be controlled in mammals that: (i) transmit potential maternal immunoregulatory factors in utero and (ii) are altricial and cannot be reared after birth without their mothers. Employing the newborn piglet model can address each of these concerns. However, it comes at the price of having first to characterize the immune system of swine and its development. This review focuses on the porcine B cell system, especially on the methods used for its characterization in fetal studies and neonatal piglets. Understanding these procedures is important in the interpretation of the data obtained. Studies on neonatal piglets have (a) provided valuable information on the development of the adaptive immune system, (b) lead to important advances in evolutionary biology, (c) aided our understanding of passive immunity and (d) provided opportunities to use swine to address specific issues in veterinary and biomedical research and immunotherapy. This review summarizes the history of the development of the piglet as a model for antibody repertoire development, thus providing a framework to guide future investigators.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
PRRSV-induced immune dysregulation selects B cells with hydrophobic HCDR3s for expansion. Vet Immunol Immunopathol 2009. [DOI: 10.1016/j.vetimm.2008.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Butler JE, Zhao Y, Sinkora M, Wertz N, Kacskovics I. Immunoglobulins, antibody repertoire and B cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:321-333. [PMID: 18804488 DOI: 10.1016/j.dci.2008.06.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 05/26/2023]
Abstract
Swine share with most placental mammals the same five antibody isotypes and same two light chain types. Loci encoding lambda, kappa and Ig heavy chains appear to be organized as they are in other mammals. Swine differ from rodents and primates, but are similar to rabbits in using a single VH family (VH3) to encode their variable heavy chain domain, but not the family used by cattle, another artiodactyl. Distinct from other hoofed mammals and rodents, Ckappa:Clambda usage resembles the 1:1 ratio seen in primates. Since IgG subclasses diversified after speciation, same name subclass homologs do not exist among swine and other mammals unless very closely related. Swine possess six putative IgG subclasses that appear to have diversified by gene duplication and exon shuffle while retaining motifs that can bind to FcgammaRs, FcRn, C1q, protein A and protein G. The epithelial chorial placenta of swine and the precosial nature of their offspring have made piglets excellent models for studies on fetal antibody repertoire development and on the postnatal role of gut colonization, maternal colostrum and neonatal infection on the development of adaptive immunity during the "critical window" of immunological development. This chapter traces the study of the humoral immune system of this species through its various eras of discovery and compiles the results in tables and figures that should be a useful reference for educators and investigators.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, USA.
| | | | | | | | | |
Collapse
|
36
|
Sinkora M, Butler JE. The ontogeny of the porcine immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:273-83. [PMID: 18762210 PMCID: PMC7103207 DOI: 10.1016/j.dci.2008.07.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 05/22/2023]
Abstract
Cellular and humoral aspects of the immune response develop sequentially in the fetus. During the ontogeny, the pluripotent stem cells emerge and differentiate into all hematopoietic lineages. Basic questions including the identification of the first lympho-hematopoietic sites, the origin of T and B lymphocytes, the development of different subpopulations of alphabeta T, gammadelta T and B lymphocytes as well as development of innate immunity and the acquisition of full immunological capacities are discussed here for swine and compared with other species. The description of related topics such as fertilization, morphogenesis, maternal-fetal-neonatal physiology and early neonatal development are also discussed.
Collapse
Affiliation(s)
- Marek Sinkora
- Department of Immunology and Gnotobiology, Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Doly 183, 54922 Nový Hrádek, Czech Republic.
| | | |
Collapse
|
37
|
Isolator and other neonatal piglet models in developmental immunology and identification of virulence factors. Anim Health Res Rev 2009; 10:35-52. [DOI: 10.1017/s1466252308001618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe postnatal period is a ‘critical window’, a time when innate and passive immunity protect the newborn mammal while its own adaptive immune system is developing. Neonatal piglets, especially those reared in isolators, provide valuable tools for studying immunological development during this period, since environmental factors that cause ambiguity in studies with conventional animals are controlled by the experimenter. However, these models have limited value unless the swine immune system is first characterized and the necessary immunological reagents developed. Characterization has revealed numerous features of the swine immune system that did not fit mouse paradigms but may be more generally true for most mammals. These include fetal class switch recombination that is uncoupled from somatic hypermutation, the relative importance of the molecular mechanisms used to develop the antibody repertoire, the role of gut lymphoid tissue in that process, and the limited heavy chain repertoire but diverse IgG subclass repertoire. Knowledge gained from studies of adaptive immunity in isolator-reared neonatal pigs suggests that isolator piglets can be valuable in identification of virulence factors that are often masked in studies using conventional animals.
Collapse
|
38
|
Schelonka RL, Zemlin M, Kobayashi R, Ippolito GC, Zhuang Y, Gartland GL, Szalai A, Fujihashi K, Rajewsky K, Schroeder HW. Preferential use of DH reading frame 2 alters B cell development and antigen-specific antibody production. THE JOURNAL OF IMMUNOLOGY 2009; 181:8409-15. [PMID: 19050258 DOI: 10.4049/jimmunol.181.12.8409] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All jawed vertebrates limit use of D(H) reading frames (RFs) that are enriched for hydrophobic amino acids. In BALB/c mice, DFL16.1 RF2 encodes valine and isoleucine. To test whether increased use of RF2 affects B cell function, we examined B cell development and Ab production in mice with an IgH allele (DeltaD-DmicroFS) limited to use of a single, frameshifted DFL61.1 gene segment. We compared the results of these studies to wild-type mice, as well as those previously obtained in mice limited to use of either a single normal D(H) or a single inverted D(H) that forces use of arginine in CDR-H3. All three of the mouse strains limited to a single D(H) produced fewer immature B cells than wild type. However, whereas mice limited to a single normal D(H) achieved normal B cell numbers in the periphery, mice forced to preferentially use RF2 had reduced numbers of mature B cells in the spleen and bone marrow, mirroring the pattern previously observed in mice enriched for charged CDR-H3s. There were two exceptions. B cells in the mice using RF2 normally populated the marginal zone and peritoneal cavity, whereas mice using inverted RF1 had increased numbers of marginal zone B cells and decreased numbers of B1a cells. When challenged with several T-dependent or T-independent Ags, Ag-specific Ab titers in the mice forced to use RF2 were altered. These findings indicate that B cell development and Ag-specific Ab production can be heavily influenced by the global amino acid content of the CDR-H3 repertoire.
Collapse
Affiliation(s)
- Robert L Schelonka
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Role of Toll-like receptors in activation of porcine alveolar macrophages by porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:360-5. [PMID: 19144789 DOI: 10.1128/cvi.00269-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Control of virus replication initially depends on rapid activation of the innate immune response. Toll-like receptor (TLR) ligands are potent inducers of innate immunity against viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV), a positive-sense RNA virus, initiates infection in porcine alveolar macrophages (PAMs), elicits weak immune responses, and establishes a persistent infection. To understand the role of single-stranded RNA and double-stranded RNA (dsRNA) intermediates in eliciting host immunity, we sought to determine if TLRs, particularly those that respond to viral molecular patterns, are involved in PRRSV infection. Activation of TLR3 in PAMs with dsRNA increased gene expression for alpha interferon and suppressed PRRSV infectivity. In contrast, TLR4 activation by the treatment of PAMs with lipopolysaccharide did not influence PRRSV infectivity.
Collapse
|
40
|
Porcine IgG: structure, genetics, and evolution. Immunogenetics 2008; 61:209-30. [PMID: 19048248 DOI: 10.1007/s00251-008-0336-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Eleven genomic porcine Cgamma gene sequences are described that represent six putative subclasses that appear to have originated by gene duplication and exon shuffle. The genes previously described as encoding porcine IgG1 and IgG3 were shown to be the IgG1(a) and IgG1(b) allelic variants of the IGHG1 gene, IgG2a and IgG2b are allelic variants of the IGHG2 gene, while "new" IgG3 is monomorphic, has an extended hinge, is structurally unique, and appears to encode the most evolutionarily conserved porcine IgG. IgG5(b) differs most from its putative allele, and its C(H)1 domain shares sequence homology with the C(H)1 of IgG3. Four animals were identified that lacked either IgG4 or IgG6. Alternative splice variants were also recovered, some lacking the C(H)1 domain and potentially encoding heavy chain only antibodies. Potentially, swine can transcribe >20 different Cgamma chains. A comparison of mammalian Cgamma gene sequences revealed that IgG diversified into subclasses after speciation. Thus, the effector functions for the IgG subclasses of each species should not be extrapolated from "same name subclasses" in other species. Sequence analysis identified motifs likely to interact with Fcgamma receptors, FcRn, protein A, protein G, and C1q. These revealed IgG3 to be most likely to activate complement and bind FcgammaRs. All except IgG5(a) and IgG6(a) should bind to FcgammaRs, while all except IgG6(a) and the putative IgG5 subclass proteins should bind well to porcine FcRn, protein A, and protein G.
Collapse
|
41
|
Cohn M. A hypothesis accounting for the paradoxical expression of the D gene segment in the BCR and the TCR. Eur J Immunol 2008; 38:1779-87. [PMID: 18546143 PMCID: PMC2682786 DOI: 10.1002/eji.200738089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The D gene segment expressed in both the TCR and the BCR has a challenging behavior that begs interpretation. It is incorporated in three reading frames in the rearranged transcription unit but is expressed in antigen-selected cells in a preferred frame. Why was it so important to waste 2/3 of newborn cells? The hypothesis is presented that the D region is framework playing a role in both the TCR and the BCR by determining whether a signal is transmitted to the cell upon interaction with a cognate ligand. This assumption operates in determining haplotype exclusion for the BCR and in regulating the signaling orientation for the TCR. Relevant data as well as a definitive experiment challenging the validity of this hypothesis, are discussed.
Collapse
MESH Headings
- Animals
- Antibody Diversity/genetics
- Antibody Diversity/immunology
- Biological Evolution
- Gene Expression
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Reading Frames
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Melvin Cohn
- Conceptual Immunology Group, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Butler JE, Wertz N, Weber P, Lager KM. Porcine Reproductive and Respiratory Syndrome Virus Subverts Repertoire Development by Proliferation of Germline-Encoded B Cells of All Isotypes Bearing Hydrophobic Heavy Chain CDR3. THE JOURNAL OF IMMUNOLOGY 2008; 180:2347-56. [DOI: 10.4049/jimmunol.180.4.2347] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Butler JE, Sinkora M. The isolator piglet: a model for studying the development of adaptive immunity. Immunol Res 2008; 39:33-51. [PMID: 17917054 DOI: 10.1007/s12026-007-0062-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/28/2022]
Abstract
The period from late gestation to weaning in neonatal mammals is a critical window when the adaptive immune system develops and replaces the protection temporarily provided by passive immunity and pre-adaptive antibodies. It is also when oral tolerance to dietary antigen and the distinction between commensal and pathogenic gut bacteria becomes established resulting in immune homeostasis. The reproductive biology of swine provides a unique model for distinguishing the effects of different factors on immune development during this critical period because all extrinsic factors are controlled by the experimenter. This chapter reviews this early stage of development and the usefulness of the piglet model for understanding events during this transitional stage. The review also describes the major features of the porcine immune system and the immune stimulatory and dysregulatory factors that act during this period. The value of the model to medical science in such areas as food allergy, organ transplantation, cystic fibrosis and the production of humanized antibodies for immuno-therapy is discussed.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology and Interdisciplinary Graduate Immunology Program, University of Iowa, 3-550 BSB, 51 Newton Rd, Iowa City, IA 52242, USA.
| | | |
Collapse
|