1
|
Wade-Vallance AK, Yang Z, Libang JB, Robinson MJ, Tarlinton DM, Allen CD. B cell receptor ligation induces IgE plasma cell elimination. J Exp Med 2023; 220:e20220964. [PMID: 36880536 PMCID: PMC9997509 DOI: 10.1084/jem.20220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
The proper regulation of IgE production safeguards against allergic disease, highlighting the importance of mechanisms that restrict IgE plasma cell (PC) survival. IgE PCs have unusually high surface B cell receptor (BCR) expression, yet the functional consequences of ligating this receptor are unknown. Here, we found that BCR ligation induced BCR signaling in IgE PCs followed by their elimination. In cell culture, exposure of IgE PCs to cognate antigen or anti-BCR antibodies induced apoptosis. IgE PC depletion correlated with the affinity, avidity, amount, and duration of antigen exposure and required the BCR signalosome components Syk, BLNK, and PLCγ2. In mice with a PC-specific impairment of BCR signaling, the abundance of IgE PCs was selectively increased. Conversely, BCR ligation by injection of cognate antigen or anti-IgE depleted IgE PCs. These findings establish a mechanism for the elimination of IgE PCs through BCR ligation. This has important implications for allergen tolerance and immunotherapy as well as anti-IgE monoclonal antibody treatments.
Collapse
Affiliation(s)
- Adam K. Wade-Vallance
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy B. Libang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus J. Robinson
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Christopher D.C. Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Nagaishi T, Watabe T, Kotake K, Kumazawa T, Aida T, Tanaka K, Ono R, Ishino F, Usami T, Miura T, Hirakata S, Kawasaki H, Tsugawa N, Yamada D, Hirayama K, Yoshikawa S, Karasuyama H, Okamoto R, Watanabe M, Blumberg RS, Adachi T. Immunoglobulin A-specific deficiency induces spontaneous inflammation specifically in the ileum. Gut 2022; 71:487-496. [PMID: 33963042 PMCID: PMC8809603 DOI: 10.1136/gutjnl-2020-322873] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although immunoglobulin A (IgA) is abundantly expressed in the gut and known to be an important component of mucosal barriers against luminal pathogens, its precise function remains unclear. Therefore, we tried to elucidate the effect of IgA on gut homeostasis maintenance and its mechanism. DESIGN We generated various IgA mutant mouse lines using the CRISPR/Cas9 genome editing system. Then, we evaluated the effect on the small intestinal homeostasis, pathology, intestinal microbiota, cytokine production, and immune cell activation using intravital imaging. RESULTS We obtained two lines, with one that contained a <50 base pair deletion in the cytoplasmic region of the IgA allele (IgA tail-mutant; IgAtm/tm) and the other that lacked the most constant region of the IgH α chain, which resulted in the deficiency of IgA production (IgA-/-). IgA-/- exhibited spontaneous inflammation in the ileum but not the other parts of the gastrointestinal tract. Associated with this, there were significantly increased lamina propria CD4+ T cells, elevated productions of IFN-γ and IL-17, increased ileal segmented filamentous bacteria and skewed intestinal microflora composition. Intravital imaging using Ca2+ biosensor showed that IgA-/- had elevated Ca2+ signalling in Peyer's patch B cells. On the other hand, IgAtm/tm seemed to be normal, suggesting that the IgA cytoplasmic tail is dispensable for the prevention of the intestinal disorder. CONCLUSION IgA plays an important role in the mucosal homeostasis associated with the regulation of intestinal microbiota and protection against mucosal inflammation especially in the ileum.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan .,Department of Advanced Therapeutics for GI Diseases, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Taro Watabe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kunihiko Kotake
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Research and Development Department, Ichibiki Co., Ltd, Nagoya, Aichi, Japan
| | - Toshihiko Kumazawa
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Research and Development Department, Ichibiki Co., Ltd, Nagoya, Aichi, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Ryuichi Ono
- Department of Epigenetics, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Current address: Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Takako Usami
- Laboratory of Recombinant Animals, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Satomi Hirakata
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Hiroko Kawasaki
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Naoya Tsugawa
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Daiki Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan,Current address: Department of Cellular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan,Advanced Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan,Advanced Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Richard S Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan .,Current address: Department of Precision Health, Medical Research Institute, TMDU, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
3
|
Preparation and Functional Identification of a Novel Conotoxin QcMNCL-XIII0.1 from Conus quercinus. Toxins (Basel) 2022; 14:toxins14020099. [PMID: 35202127 PMCID: PMC8877388 DOI: 10.3390/toxins14020099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
Conotoxins are tools used by marine Conus snails to hunt and are a significant repository for marine drug research. Conotoxins highly selectively coordinate different subtypes of various ion channels, and a few have been used in pain management. Although more than 8000 conotoxin genes have been found, the biological activity and function of most have not yet been examined. In this report, we selected the toxin gene QcMNCL-XIII0.1 from our previous investigation and studied it in vitro. First, we successfully prepared active recombinant QcMNCL-XIII0.1 using a TrxA (Thioredoxin A)-assisted folding expression vector based on genetic engineering technology. Animal experiments showed that the recombinant QcMNCL-XIII0.1 exhibited nerve conduction inhibition similar to that of pethidine hydrochloride. With flow cytometry combined fluorescent probe Fluo-4 AM, we found that 10 ng/μL recombinant QcMNCL-XIII0.1 inhibited the fluorescence intensity by 31.07% in the 293T cell model transfected with Cav3.1, implying an interaction between α1G T-type calcium channel protein and recombinant QcMNCL-XIII0.1. This toxin could be an important drug in biomedical research and medicine for pain control.
Collapse
|
4
|
Yamaki K, Terashi M, Yamamoto S, Fujiwara R, Inoue JI, Shimizu K, Yanagita S, Doi Y, Kimura KI, Kotani K, Sugihara M, Koyama Y. Immunoglobulin a suppresses B cell receptor-mediated activation of mouse B cells with differential inhibition of signaling molecules. Immunopharmacol Immunotoxicol 2021; 44:76-86. [PMID: 34844505 DOI: 10.1080/08923973.2021.2006216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT We previously reported that monoclonal mouse immunoglobulin (Ig) A, OA-4, attenuates sensitization in mice by suppressing B cell activation. OBJECTIVE Here, it is demonstrated for the first time that mouse IgA inhibits mouse B cell activation in vitro under natural conditions (i.e. in the absence of chemical, physical, and genetic modifications of IgA and B cells). MATERIALS AND METHODS Mouse splenocytes were stimulated with anti-B cell receptor (BCR) antibody or lipopolysaccharide (LPS) in the presence or absence of OA-4. Splenic B cell proliferation and the activation of several intracellular signaling molecules were measured. RESULTS Anti-BCR antibody-induced proliferation was markedly inhibited by OA-4 or the commercially available mouse IgA S107, whereas LPS-induced proliferation was weakly attenuated by a high concentration of OA-4. Moreover, OA-4 markedly decreased the anti-BCR antibody-induced phosphorylation of p44/42 mitogen-activated protein kinase (ERK) and CD22 and decreased phosphorylated phospholipase (PLC) γ2 and intracellular Ca2+ levels moderately, whereas protein kinase B (Akt) phosphorylation was not affected by OA-4. The MAPK/ERK kinase-ERK and phosphoinositide 3-kinase-Akt pathways were found to play a role in the proliferation of splenocytes induced by anti-BCR antibody based on experiments with their inhibitors. In contrast to that in splenic B cells, ERK phosphorylation induced by anti-BCR antibody in A20 cells was not inhibited by OA-4. The modulatory effects of IgA were different among the cell types and signaling pathways. CONCLUSION IgA is a potential immunoregulatory drug utilizing new mechanisms that affect splenic B cells but not A20 lymphomas.
Collapse
Affiliation(s)
- Kouya Yamaki
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Masato Terashi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Saori Yamamoto
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Rei Fujiwara
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Jun-Ichi Inoue
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Kishi Shimizu
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Sakura Yanagita
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Yuma Doi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Kei-Ichiro Kimura
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Kayo Kotani
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Mai Sugihara
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
5
|
Vanshylla K, Bartsch C, Hitzing C, Krümpelmann L, Wienands J, Engels N. Grb2 and GRAP connect the B cell antigen receptor to Erk MAP kinase activation in human B cells. Sci Rep 2018; 8:4244. [PMID: 29523808 PMCID: PMC5844867 DOI: 10.1038/s41598-018-22544-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
The B cell antigen receptor (BCR) employs enzymatically inactive adaptor proteins to facilitate activation of intracellular signaling pathways. In animal model systems, adaptor proteins of the growth factor receptor-bound 2 (Grb2) family have been shown to serve critical functions in lymphocytes. However, the roles of Grb2 and the Grb2-related adaptor protein (GRAP) in human B lymphocytes remain unclear. Using TALEN-mediated gene targeting, we show that in human B cells Grb2 and GRAP amplify signaling by the immunoglobulin tail tyrosine (ITT) motif of mIgE-containing BCRs and furthermore connect immunoreceptor tyrosine-based activation motif (ITAM) signaling to activation of the Ras-controlled Erk MAP kinase pathway. In contrast to mouse B cells, BCR-induced activation of Erk in human B cells is largely independent of phospholipase C-ɣ activity and diacylglycerol-responsive members of Ras guanine nucleotide releasing proteins. Together, our results demonstrate that Grb2 family adaptors are critical regulators of ITAM and ITT signaling in naïve and IgE-switched human B cells.
Collapse
Affiliation(s)
- Kanika Vanshylla
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Caren Bartsch
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Christoffer Hitzing
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Laura Krümpelmann
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Jürgen Wienands
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany
| | - Niklas Engels
- University Medical Center Goettingen, Institute of Cellular & Molecular Immunology, Humboldtallee 34, 37073, Goettingen, Germany.
| |
Collapse
|
6
|
Ramadani F, Bowen H, Upton N, Hobson PS, Chan YC, Chen JB, Chang TW, McDonnell JM, Sutton BJ, Fear DJ, Gould HJ. Ontogeny of human IgE-expressing B cells and plasma cells. Allergy 2017; 72:66-76. [PMID: 27061189 PMCID: PMC5107308 DOI: 10.1111/all.12911] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Background IgE‐expressing (IgE+) plasma cells (PCs) provide a continuous source of allergen‐specific IgE that is central to allergic responses. The extreme sparsity of IgE+ cells in vivo has confined their study almost entirely to mouse models. Objective To characterize the development pathway of human IgE+PCs and to determine the ontogeny of human IgE+PCs. Methods To generate human IgE+ cells, we cultured tonsil B cells with IL‐4 and anti‐CD40. Using FACS and RT‐PCR, we examined the phenotype of generated IgE+ cells, the capacity of tonsil B‐cell subsets to generate IgE+PCs and the class switching pathways involved. Results We have identified three phenotypic stages of IgE+PC development pathway, namely (i) IgE+germinal centre (GC)‐like B cells, (ii) IgE+PC‐like ‘plasmablasts’ and (iii) IgE+PCs. The same phenotypic stages were also observed for IgG1+ cells. Total tonsil B cells give rise to IgE+PCs by direct and sequential switching, whereas the isolated GC B‐cell fraction, the main source of IgE+PCs, generates IgE+PCs by sequential switching. PC differentiation of IgE+ cells is accompanied by the down‐regulation of surface expression of the short form of membrane IgE (mIgES), which is homologous to mouse mIgE, and the up‐regulation of the long form of mIgE (mIgEL), which is associated with an enhanced B‐cell survival and expressed in humans, but not in mice. Conclusion Generation of IgE+PCs from tonsil GC B cells occurs mainly via sequential switching from IgG. The mIgEL/mIgES ratio may be implicated in survival of IgE+ B cells during PC differentiation and allergic disease.
Collapse
Affiliation(s)
- F. Ramadani
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - H. Bowen
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - N. Upton
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - P. S. Hobson
- Division of Asthma; Allergy and Lung Biology; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - Y.-C. Chan
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - J.-B. Chen
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - T. W. Chang
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - J. M. McDonnell
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - B. J. Sutton
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - D. J. Fear
- Division of Asthma; Allergy and Lung Biology; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - H. J. Gould
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| |
Collapse
|
7
|
Yang Z, Robinson MJ, Chen X, Smith GA, Taunton J, Liu W, Allen CDC. Regulation of B cell fate by chronic activity of the IgE B cell receptor. eLife 2016; 5. [PMID: 27935477 PMCID: PMC5207771 DOI: 10.7554/elife.21238] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022] Open
Abstract
IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE+ B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE+ germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE+ GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses. DOI:http://dx.doi.org/10.7554/eLife.21238.001 Antibodies are proteins that recognize and bind to specific molecules, and so help the immune system to defend the body against foreign substances that are potentially harmful. In some cases, harmless substances – such as pollen, dust or food – can trigger this response and lead to an allergic reaction. A type of antibody called immunoglobulin E (IgE) is particularly likely to trigger an allergic response. In general, immune cells called plasma cells produce antibodies and release them into the body. However, in B cells – the cells from which plasma cells develop – the antibodies remain on the surface of the cells. Here, the antibody acts as a “receptor” that allows the B cell to tell when its antibody has bound to a specific substance. Generally, B cells only activate when their B cell receptors bind to a specific substance. This binding triggers signals inside the cell that determine its fate – such as whether it will develop into a plasma cell. Recent studies have shown that B cells that have IgE on their surface (IgE+ B cells) are predisposed to develop rapidly into plasma cells. To investigate why this is the case, Yang et al. have now studied B cells both in cell culture and in mice. The results show that the IgE B cell receptor autonomously signals to the cell even when it is not bound to a specific substance, in a manner that differs from other types of B cell receptors. This increases the likelihood that the IgE+ B cell will develop into a plasma cell and limits the competitive fitness of IgE+ B cells. These findings provide new insights into how IgE responses are regulated by the B cell receptor. The next step will be to determine, at a molecular level, the basis for the autonomous signaling produced by the IgE B cell receptor when it is not bound to a specific substance. It will then be possible to investigate how this mechanism compares with the way that signals are normally transmitted when a B cell receptor binds to a specific substance. DOI:http://dx.doi.org/10.7554/eLife.21238.002
Collapse
Affiliation(s)
- Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, United States
| | - Marcus J Robinson
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, United States
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, United States.,Department of Anatomy, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
8
|
Self-Restrained B Cells Arise following Membrane IgE Expression. Cell Rep 2015; 10:900-909. [PMID: 25683713 DOI: 10.1016/j.celrep.2015.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/21/2014] [Accepted: 01/08/2015] [Indexed: 11/20/2022] Open
Abstract
Among immunoglobulins (Igs), IgE can powerfully contribute to antimicrobial immunity and severe allergy despite its low abundance. IgE protein and gene structure resemble other Ig classes, making it unclear what constrains its production to thousand-fold lower levels. Whether class-switched B cell receptors (BCRs) differentially control B cell fate is debated, and study of the membrane (m)IgE class is hampered by its elusive in vivo expression. Here, we demonstrate a self-controlled mIgE+ B cell stage. Primary or transfected mIgE+ cells relocate the BCRs into spontaneously internalized lipid rafts, lose mobility to chemokines, and change morphology. We suggest that combined proapoptotic mechanisms possibly involving Hax1 prevent mIgE+ memory lymphocyte accumulation. By uncoupling in vivo IgE switching from cytokine and antigen stimuli, we show that these features are independent from B cell stimulation and instead result from mIgE expression per se. Consequently, few cells survive IgE class switching, which might ensure minimal long-term IgE memory upon differentiation into plasma cells.
Collapse
|
9
|
Laffleur B, Denis-Lagache N, Péron S, Sirac C, Moreau J, Cogné M. AID-induced remodeling of immunoglobulin genes and B cell fate. Oncotarget 2015; 5:1118-31. [PMID: 24851241 PMCID: PMC4012742 DOI: 10.18632/oncotarget.1546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Survival and phenotype of normal and malignant B lymphocytes are critically dependent on constitutive signals by the B cell receptor (BCR) for antigen. In addition, either antigen ligation of the BCR or various mitogenic stimuli result in B cell activation and induction of activation-induced deaminase (AID). AID activity can in turn mediate somatic hypermutation (SHM) of immunoglobulin (Ig) V regions and also deeply remodel the Ig heavy chain locus through class switch recombination (CSR) or locus suicide recombination (LSR). In addition to changes linked to affinity for antigen, modifying the class/isotype (i.e. the structure and function) of the BCR or suddenly deleting BCR expression also modulates the fate of antigen-experienced B cells.
Collapse
|
10
|
Yang Z, Sullivan BM, Allen CDC. Fluorescent in vivo detection reveals that IgE(+) B cells are restrained by an intrinsic cell fate predisposition. Immunity 2012; 36:857-72. [PMID: 22406270 DOI: 10.1016/j.immuni.2012.02.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/30/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
IgE antibodies may be protective in parasite immunity, but their aberrant production can lead to allergic disease and life-threatening anaphylaxis. Despite the importance of IgE regulation, few studies have directly examined the B cells that express IgE, because these cells are rare and difficult to detect. Here, we describe fluorescent IgE reporter mice and validate a flow cytometry procedure to allow sensitive and specific identification of IgE-expressing B cells in vivo. Similar to IgG1(+) cells, IgE(+) B cells differentiated into germinal center (GC) B cells and plasma cells (PCs) during primary immune responses to a T cell-dependent hapten-protein conjugate and the helminth Nippostrongylus brasiliensis. However, the participation of IgE(+) B cells in GCs was transient. IgE(+) B cells had an atypical propensity to upregulate the transcription factor Blimp-1 and undergo PC differentiation. Most IgE(+) PCs were short lived and showed reduced affinity maturation, revealing intrinsic mechanisms that restrict the IgE antibody response.
Collapse
Affiliation(s)
- Zhiyong Yang
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
11
|
Adachi T, Harumiya S, Takematsu H, Kozutsumi Y, Wabl M, Fujimoto M, Tedder TF. CD22 serves as a receptor for soluble IgM. Eur J Immunol 2011; 42:241-7. [PMID: 21956693 DOI: 10.1002/eji.201141899] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/16/2011] [Accepted: 09/20/2011] [Indexed: 01/01/2023]
Abstract
CD22 (Siglec-2) is a B-cell membrane-bound lectin that recognizes glycan ligands containing α2,6-linked sialic acid (α2,6Sia) and negatively regulates signaling through the B-cell Ag receptor (BCR). Although CD22 has been investigated extensively, its precise function remains unclear due to acting multiple phases. Here, we demonstrate that CD22 is efficiently activated in trans by complexes of Ag and soluble IgM (sIgM) due to the presence of glycan ligands on sIgM. This result strongly suggests sIgM as a natural trans ligand for CD22. Also, CD22 appears to serve as a receptor for sIgM, which induces a negative feedback loop for B-cell activation similar to the Fc receptor for IgG (FcγRIIB).
Collapse
Affiliation(s)
- Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wysocka J, Zelazowska-Rutkowska B, Ratomski K, Skotnicka B, Hassmann-Poznańska E. [Evaluation of percentage of lymphocytes B with expression of co-receptors CD 40, CD22 and CD72 in hypertrophied adenoid at children with otitis media with effusion]. Otolaryngol Pol 2010; 63:504-8. [PMID: 20198985 DOI: 10.1016/s0030-6657(09)70169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION In hypertrophied adenoid lymphocytes B make up about 60% all lymphocytes. When the lymphocytes B come in interaction with antigens this membranes signal be passed through their receptor (BCR) to interior of cell. This signal affect modulation on gene expression, activation from which depends activation, anergy or apoptosis of lymphocyte B. Accompany BCR co-receptors regulate his functions influence stimulate or inhibitive. To the most important co-receptors stepping out on lymphocyte B belong: CD40, CD22, CD72. AIM OF STUDY The aim of study was evaluation of lymphocytes B (CD19) with co-expression with CD72 and CD40 receptors in hypertrophied adenoid with at children with otitis media with effusion. MATERIAL An investigation was executed in hypertrophied adenoids with or without otitis media with effusion. METHODS By flow cytometry percentage of lymphocytes B with co-receptors CD 40, CD22 and CD72 in was analyzed. RESULTS The percentages of CD19+CD72+ lymphocytes in the group of children with adenoid hypertrophy and exudative otitis media were lower as compared to the reference group. However, the percentages of CD19+CD22+, CD19+CD40+ in the study group was approximate to the reference group. CONCLUSIONS The lower percentage of lymphocytes B CD72 + near approximate percentages of lymphocytes B CD40+ and BCD22+ at children with otitis media with effusion can be the cause of incorrect humoral response in hypertrophied adenoid at children. Maybe it is cause reduced spontaneous production IgA and IgG through lymphocyte at children with otitis media with effusion.
Collapse
Affiliation(s)
- Jolanta Wysocka
- Zakad Laboratoryjnej Diagnostyki Pediatrycznej Uniwersytetu Medycznego w Białymstoku
| | | | | | | | | |
Collapse
|
13
|
Premature replacement of mu with alpha immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation. Proc Natl Acad Sci U S A 2010; 107:3064-9. [PMID: 20133609 DOI: 10.1073/pnas.0912393107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sequentially along B cell differentiation, the different classes of membrane Ig heavy chains associate with the Ig alpha/Ig beta heterodimer within the B cell receptor (BCR). Whether each Ig class conveys specific signals adapted to the corresponding differentiation stage remains debated. We investigated the impact of the forced expression of an IgA-class receptor throughout murine B cell differentiation by knocking in the human C alpha Ig gene in place of the S mu region. Despite expression of a functional BCR, homozygous mutant mice showed a partial developmental blockade at the pro-B/pre-BI and large pre-BII cell stages, with decreased numbers of small pre-BII cells. Beyond this stage, peripheral B cell compartments of reduced size developed and allowed specific antibody responses, whereas mature cells showed constitutive activation and a strong commitment to plasma cell differentiation. Secreted IgA correctly assembled into polymers, associated with the murine J chain, and was transported into secretions. In heterozygous mutants, cells expressing the IgA allele competed poorly with those expressing IgM from the wild-type allele and were almost undetectable among peripheral B lymphocytes, notably in gut-associated lymphoid tissues. Our data indicate that the IgM BCR is more efficient in driving early B cell education and in mucosal site targeting, whereas the IgA BCR appears particularly suited to promoting activation and differentiation of effector plasma cells.
Collapse
|
14
|
Man RY, Onodera T, Komatsu E, Tsubata T. Augmented B lymphocyte response to antigen in the absence of antigen-induced B lymphocyte signaling in an IgG-transgenic mouse line. PLoS One 2010; 5:e8815. [PMID: 20098688 PMCID: PMC2809105 DOI: 10.1371/journal.pone.0008815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 11/27/2009] [Indexed: 01/09/2023] Open
Abstract
IgG-containing B cell antigen receptor (IgG-BCR), the BCR mostly expressed on memory B cells, contains a distinct signaling function from IgM-BCR or IgD-BCR expressed on naïve B cells. Because naïve B cells transgenic for IgG exhibit augmented response to antigens similar to memory B cells, the distinct signaling function of IgG-BCR appears to play a role in augmented antibody responses of memory B cells. However, how IgG-BCR signaling augments B cell responses is not yet well understood. Here we demonstrate that B cells from IgG-transgenic mice are anergic with defect in generation of BCR signaling upon BCR ligation. However, these IgG-transgenic B cells generate markedly augmented antibody response to a T cell-dependent antigen, probably due to hyper-responsiveness to a T cell-derived signal through CD40. Both BCR signaling defect and augmented response to CD40 ligation are partially restored in xid IgG-transgenic mice in which BCR signaling is down-modulated due to a loss-of-function mutation in the tyrosine kinase Btk crucial for BCR signaling. Thus, IgG-BCR induces augmented B cell responses in the absence of antigen-induced BCR signaling probably through high ligand-independent BCR signaling that may “idle” B cells to make them ready to respond to T cell help. This finding strongly suggests a crucial role of ligand-independent signaling in receptor function.
Collapse
Affiliation(s)
- Rong-Yong Man
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taishi Onodera
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Emi Komatsu
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Tsubata
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
15
|
Achatz-Straussberger G, Zaborsky N, Königsberger S, Feichtner S, Lenz S, Peckl-Schmid D, Lamers M, Achatz G. Limited humoral immunoglobulin E memory influences serum immunoglobulin E levels in blood. Clin Exp Allergy 2009; 39:1307-13. [PMID: 19489847 DOI: 10.1111/j.1365-2222.2009.03278.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The switch of B cells expressing membrane-bound Igs, which serve as antigen receptors, to antibody-secreting plasmablasts and finally to non-dividing, long-lived plasma cells (PCs) lacking an antigen receptor, marks the terminal differentiation of a B cell. Antibody-secreting PCs represent the key cell type for the maintenance of a proactive humoral immunological memory. Although some populations of long-lived PCs persist in the spleen, most of them return to their 'place of birth' and travel to the bone marrow or invade inflamed tissues, where they survive up to several months in survival niches as resident, immobile cells. Existing data strongly support the notion that isotype-specific receptor signalling influences the migration behaviour of plasmablasts to the bone marrow. The recent observation in the murine system that the immigration of plasmablasts and the final differentiation to long-lived PCs in the bone marrow is dependent on the expressed B-cell isotype and the related expression of chemokine receptors leads to the conclusion that during a T-helper type 2 (Th2)-mediated immune response in wild type mice, IgE plasmablasts do not have the same chance to contribute to long-lived PC memory as IgG1 plasmablasts. The overall limited humoral IgE memory additionally restricts the quantity of IgE Igs in the serum.
Collapse
|
16
|
Adachi T, Tsubata T. FRET-based Ca2+ measurement in B lymphocyte by flow cytometry and confocal microscopy. Biochem Biophys Res Commun 2008; 367:377-82. [DOI: 10.1016/j.bbrc.2007.12.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/20/2007] [Indexed: 11/29/2022]
|
17
|
Kimura N, Ohmori K, Miyazaki K, Izawa M, Matsuzaki Y, Yasuda Y, Takematsu H, Kozutsumi Y, Moriyama A, Kannagi R. Human B-lymphocytes express alpha2-6-sialylated 6-sulfo-N-acetyllactosamine serving as a preferred ligand for CD22/Siglec-2. J Biol Chem 2007; 282:32200-7. [PMID: 17728258 DOI: 10.1074/jbc.m702341200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CD22/Siglec-2, an important inhibitory co-receptor on B-lymphocytes, is known to recognize alpha2-6-sialylated glycan as a specific ligand. Here we propose that the alpha2-6-sialylated and 6-GlcNAc-sulfated determinant serves as a preferred ligand for CD22 because the binding of a human B-cell line to CD22 was almost completely abrogated after incubating the cells with NaClO3, an inhibitor of cellular sulfate metabolism, and was also significantly inhibited by a newly generated monoclonal antibody specific to the alpha2-6-sialylated 6-sulfo-N-acetyllactosamine (LacNAc) determinant (KN343, murine IgM). The alpha2-6-sialylated 6-sulfo-LacNAc determinant defined by the antibody was significantly expressed on a majority of normal human peripheral B-lymphocytes as well as follicular B-lymphocytes in peripheral lymph nodes. The determinant was also expressed in endothelial cells of high endothelial venules of secondary lymphoid tissues, including lymph nodes, tonsils, and intestine-associated lymphoid tissues, more strongly than on B-lymphocytes, suggesting a role for CD22 in B-cell interaction with blood vessels and trafficking. These results indicate that the alpha2-6-sialylated 6-sulfo-LacNAc determinant serves as an endogenous ligand for human CD22 and suggest the possibility that 6-GlcNAc sulfation as well as alpha2-6-sialylation may regulate CD22/Siglec-2 functions in humans.
Collapse
Affiliation(s)
- Naoko Kimura
- Department of Molecular Pathology, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|