1
|
Rubino V, Carriero F, Palatucci AT, Giovazzino A, Salemi F, Carrano R, Sabbatini M, Ruggiero G, Terrazzano G. T R3-56 and Treg Regulatory T Cell Subsets as Potential Indicators of Graft Tolerance Control in Kidney Transplant Recipients. Int J Mol Sci 2024; 25:10610. [PMID: 39408939 PMCID: PMC11477056 DOI: 10.3390/ijms251910610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Identification of early signatures of immune rejection represents a key challenge in the clinical management of kidney transplant. To address such an issue, we enrolled 53 kidney transplant recipients without signs of graft rejection, no infectious episodes and no change in the immunosuppressive regimen in the last 6 months. An extensive immune profile revealed increased activation of the T cells, a decreased amount and growth ability of the Treg and a higher level of the TR3-56 regulatory T cell subset, described by us as involved in the preferential control of cytotoxic T lymphocytes. In renal transplant recipients, the high level of the TR3-56 cells associates with a reduction in both the amount and the growth ability of the Treg. Moreover, when the transplanted subjects were categorised according to their stable or unstable disease status, as defined by changes in serum creatinine ≥0.2 mg/dL in two consecutive detections, a higher TR3-56 level and defective Treg growth ability were observed to characterise patients with unstable graft control. Further studies are required to substantiate the hypothesis that immune profiling, including TR3-56 evaluation, might represent a valuable diagnostic tool to identify patients at risk of developing significant anti-donor allo-immune responses.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Napoli, Italy; (V.R.); (A.G.)
| | - Flavia Carriero
- Dipartimento di Scienze Della Salute, Università Della Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (G.T.)
| | - Anna Teresa Palatucci
- Dipartimento di Scienze Della Salute, Università Della Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (G.T.)
| | - Angela Giovazzino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Napoli, Italy; (V.R.); (A.G.)
| | - Fabrizio Salemi
- Percorso Clinico Assistenziale in Nefrologia e Trapianto Renale, Azienda Ospedaliera Universitaria “Federico II”, 80131 Napoli, Italy; (F.S.); (R.C.)
| | - Rosa Carrano
- Percorso Clinico Assistenziale in Nefrologia e Trapianto Renale, Azienda Ospedaliera Universitaria “Federico II”, 80131 Napoli, Italy; (F.S.); (R.C.)
| | - Massimo Sabbatini
- Dipartimento di Sanità Pubblica, Sezione di Nefrologia, Università di Napoli “Federico II”, 80131 Napoli, Italy;
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Napoli, Italy; (V.R.); (A.G.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze Della Salute, Università Della Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (G.T.)
| |
Collapse
|
2
|
Kim KM, D'Elia AM, Rodell CB. Hydrogel-based approaches to target hypersensitivity mechanisms underlying autoimmune disease. Adv Drug Deliv Rev 2024; 212:115395. [PMID: 39004347 DOI: 10.1016/j.addr.2024.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Kenneth M Kim
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Ye D, Qu S, Yang Y, Wang Z, Wang Q, Liu W, Zhang F, Guan Q, Wang X, Zang J, Li X, Liu H, Yao R, Feng Z, Luan Z. Intrauterine desensitization enables long term survival of human oligodendrocyte progenitor cells without immunosuppression. iScience 2023; 26:106647. [PMID: 37168574 PMCID: PMC10165029 DOI: 10.1016/j.isci.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Immune rejection can be reduced using immunosuppressants which are not viable for premature infants. However, desensitization can induce immune tolerance for premature infants because of underdeveloped immune system. The fetuses of Wistar rats at 15-17 days gestation were injected via hOPCs-1 into brain, muscles, and abdomen ex utero and then returned while the fetuses of control without injection. After 6 weeks of desensitization, the brain and muscles were transplanted with hOPCs-1, hNSCs-1, and hOPCs-2. After 10 and 34 weeks of desensitization, hOPCs-1 and hNSCs-1 in desensitized groups was higher than that in the control group while hOPCs-2 were rejected. Treg, CD4CD28, CD8CD28, and CD45RC between the desensitization and the control group differed significantly. Inflammatory cells in group with hOPCs-1 and hNSCs-1 was lower than that in the control group. hOPCs-1 can differentiate into myelin in desensitized groups. Wistar rats with desensitization developed immune tolerance to desensitized and transplanted cells.
Collapse
Affiliation(s)
- Dou Ye
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Suqing Qu
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Yinxiang Yang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Zhaoyan Wang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Qian Wang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Weipeng Liu
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Fan Zhang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Qian Guan
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Xiaohua Wang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Jing Zang
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Xin Li
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
| | - Hengtao Liu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing 100191, China
| | - Ruiqin Yao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zhichun Feng
- Faculty of Pediatrics, The Seventh Medical Centre, Chinese PLA General Hospital, 100700 Beijing, China
| | - Zuo Luan
- Department of Pediatrics, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing 100037, China
- Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
4
|
Medina JD, Barber GF, Coronel MM, Hunckler MD, Linderman SW, Quizon MJ, Ulker V, Yolcu ES, Shirwan H, García AJ. A hydrogel platform for co-delivery of immunomodulatory proteins for pancreatic islet allografts. J Biomed Mater Res A 2022; 110:1728-1737. [PMID: 35841329 DOI: 10.1002/jbm.a.37429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
Type 1 diabetes (T1D), an autoimmune disorder in which the insulin-producing β-cells in the islets of Langerhans in the pancreas are destroyed, afflicts over 1.6 million Americans. Although pancreatic islet transplantation has shown promise in treating T1D, continuous use of required immunosuppression regimens limits clinical islet transplantation as it poses significant adverse effects on graft recipients and does not achieve consistent long-term graft survival with 50%-70% of recipients maintaining insulin independence at 5 years. T cells play a key role in graft rejection, and rebalancing pathogenic T effector and protective T regulatory cells can regulate autoimmune disorders and transplant rejection. The synergy of the interleukin-2 (IL-2) and Fas immunomodulatory pathways presents an avenue for eliminating the need for systemic immune suppression by exploiting IL-2's role in expanding regulatory T cells and leveraging Fas ligand (FasL) activity on antigen-induced cell death of effector T cells. Herein, we developed a hydrogel platform for co-delivering an analog of IL-2, IL-2D, and FasL-presenting microgels to achieve localized immunotolerance to pancreatic islets by targeting the upregulation of regulatory T cells and effector T cells simultaneously. Although this hydrogel provided for sustained, local delivery of active immunomodulatory proteins, indefinite allograft survival was not achieved. Immune profiling analysis revealed upregulation of target regulatory T cells but also increases in Granzyme B-expressing CD8+ T cells at the graft site. We attribute the failed establishment of allograft survival to these Granzyme B-expressing T cells. This study underscores the delicate balance of immunomodulatory components important for allograft survival - whose outcome can be dependent on timing, duration, modality of delivery, and disease model.
Collapse
Affiliation(s)
- Juan D Medina
- Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Graham F Barber
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Maria M Coronel
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael D Hunckler
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen W Linderman
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Michelle J Quizon
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vahap Ulker
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Esma S Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Andrés J García
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Len’shina NA, Konev AN, Baten’kin AA, Bardina PS, Cherkasova EI, Kashina AV, Zagainova EV, Zagainov VE, Chesnokov SA. Alginate Functionalization for the Microencapsulation of Insulin Producing Cells. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Emerson AE, Slaby EM, Hiremath SC, Weaver JD. Biomaterial-based approaches to engineering immune tolerance. Biomater Sci 2021; 8:7014-7032. [PMID: 33179649 DOI: 10.1039/d0bm01171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of biomaterial-based therapeutics to induce immune tolerance holds great promise for the treatment of autoimmune diseases, allergy, and graft rejection in transplantation. Historical approaches to treat these immunological challenges have primarily relied on systemic delivery of broadly-acting immunosuppressive agents that confer undesirable, off-target effects. The evolution and expansion of biomaterial platforms has proven to be a powerful tool in engineering immunotherapeutics and enabled a great diversity of novel and targeted approaches in engineering immune tolerance, with the potential to eliminate side effects associated with systemic, non-specific immunosuppressive approaches. In this review, we summarize the technological advances within three broad biomaterials-based strategies to engineering immune tolerance: nonspecific tolerogenic agent delivery, antigen-specific tolerogenic therapy, and the emergent area of tolerogenic cell therapy.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | | | | | | |
Collapse
|
7
|
Targeting Dendritic Cells with Antigen-Delivering Antibodies for Amelioration of Autoimmunity in Animal Models of Multiple Sclerosis and Other Autoimmune Diseases. Antibodies (Basel) 2020; 9:antib9020023. [PMID: 32549343 PMCID: PMC7345927 DOI: 10.3390/antib9020023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
The specific targeting of dendritic cells (DCs) using antigen-delivering antibodies has been established to be a highly efficient protocol for the induction of tolerance and protection from autoimmune processes in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), as well as in some other animal disease models. As the specific mechanisms of such induced tolerance are being investigated, the newly gained insights may also possibly help to design effective treatments for patients. Here we review approaches applied for the amelioration of autoimmunity in animal models based on antibody-mediated targeting of self-antigens to DCs. Further, we discuss relevant mechanisms of immunological tolerance that underlie such approaches, and we also offer some future perspectives for the application of similar methods in certain related disease settings such as transplantation.
Collapse
|
8
|
Medina JD, Alexander M, Hunckler MD, Fernández-Yagüe MA, Coronel MM, Smink AM, Lakey JR, de Vos P, García AJ. Functionalization of Alginate with Extracellular Matrix Peptides Enhances Viability and Function of Encapsulated Porcine Islets. Adv Healthc Mater 2020; 9:e2000102. [PMID: 32255552 PMCID: PMC7598935 DOI: 10.1002/adhm.202000102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022]
Abstract
Translation of transplanted alginate-encapsulated pancreatic islets to treat type 1 diabetes has been hindered by inconsistent long-term efficacy. This loss of graft function can be partially attributed to islet dysfunction associated with the destruction of extracellular matrix (ECM) interactions during the islet isolation process as well as immunosuppression-associated side effects. This study aims at recapitulating islet-ECM interactions by the direct functionalization of alginate with the ECM-derived peptides RGD, LRE, YIGSR, PDGEA, and PDSGR. Peptide functionalization is controlled in a concentration-dependent manner and its presentation is found to be homogeneous across the microcapsule environment. Preweaned porcine islets are encapsulated in peptide-functionalized alginate microcapsules, and those encapsulated in RGD-functionalized alginate displays enhanced viability and glucose-stimulated insulin release. Effects are RGD-specific and not observed with its scrambled control RDG nor with LRE, YIGSR, PDGEA, and PDSGR. This study supports the sustained presentation of ECM-derived peptides in helping to maintain health of encapsulated pancreatic islets and may aid in prolonging longevity of encapsulated islet grafts.
Collapse
Affiliation(s)
- Juan D Medina
- Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Michael Alexander
- Department of Surgery, School of Medicine at UC Irvine, Irvine 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA
| | - Michael D Hunckler
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Marc A Fernández-Yagüe
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - María M Coronel
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Alexandra M Smink
- Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Jonathan R Lakey
- Surgery and Biomedical Engineering at UC Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA
| | - Paul de Vos
- Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Andrés J García
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
9
|
Abstract
The human major histocompatibility complex is a family of genes that encodes HLAs, which have a crucial role in defence against foreign pathogens and immune surveillance of tumours. In the context of transplantation, HLA molecules are polymorphic antigens that comprise an immunodominant alloreactive trigger for the immune response, resulting in rejection. Remarkable advances in knowledge and technology in the field of immunogenetics have considerably enhanced the safety of transplantation. However, access to transplantation among individuals who have become sensitized as a result of previous exposure to alloantigens is reduced proportional to the breadth of their sensitization. New approaches for crossing the HLA barrier in transplantation using plasmapheresis, intravenous immunoglobulin and kidney paired donation have been made possible by the relative ease with which even low levels of anti-HLA antibodies can now be detected and tracked. The development of novel protocols for the induction of tolerance and new approaches to immunomodulation was also facilitated by advances in HLA technology. Here, we review the progress made in understanding HLAs that has enabled organ transplantation to become a life-saving endeavour that is accessible even for sensitized patients. We also discuss novel approaches to desensitization, immunomodulation and tolerance induction that have the potential to further improve transplantation access and outcomes.
Collapse
|
10
|
Chen L, Zhang L, Zhu Z, He W, Gao L, Zhang W, Liu J, Huang A. Effects of IL-10- and FasL-overexpressing dendritic cells on liver transplantation tolerance in a heterotopic liver transplantation rat model. Immunol Cell Biol 2019; 97:714-725. [PMID: 30977930 DOI: 10.1111/imcb.12252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Acute rejection is the major determinant for the long-term survival of donor liver after liver transplantation (LT). The aim of this study was to examine the therapeutic potential of interleukin (IL)-10-FasL-overexpressing immature dendritic cells (imDCs) to induce local immunosuppression in liver grafts. imDCs derived from donors were transduced by lentiviral vectors expressing human IL-10 and/or Fas ligand (FasL) gene(s), and the expression of surface molecules and the ability to induce T-cell proliferation were measured. imDCs were intraperitoneally injected into recipient rats as a model of LT to examine the rejection grade [Banff rejection activity index (RAI)], liver functions [Alanine aminotransferase, Aspartate aminotransferase (AST) and total bilirubin (TBIL)] and post-transplant survival. IL-10 and FasL co-transduction of imDCs induced a greater reduction in CD80, CD86 and major histocompatibility complex class II (MHC II) expression, as well as T-cell proliferation, but increased levels of IL-10 and FasL in culture supernatants compared with mono-transduced or untransduced imDCs (P < 0.05). The infusion of co-transduced imDCs in LT recipients reduced RAI scores, decreased plasma AST and TBIL, and prolonged survival compared with mono-transduced or untransduced imDC-treated liver allografts. These findings demonstrated that the transfusion of IL-10-FasL/imDCs enhanced immune tolerance and prolonged the survival of liver allografts after LT. The immunomodulatory activity of IL-10- and FasL-modified imDCs might be a new therapeutic approach to prevent organ rejection in clinical transplantation.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Lina Zhang
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhu Zhu
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wubing He
- Provincial Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingyun Gao
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenmin Zhang
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingfeng Liu
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Divison of Hepatobiliary Surgery, Hepatic Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian, China.,Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Perico N, Casiraghi F, Todeschini M, Cortinovis M, Gotti E, Portalupi V, Mister M, Gaspari F, Villa A, Fiori S, Introna M, Longhi E, Remuzzi G. Long-Term Clinical and Immunological Profile of Kidney Transplant Patients Given Mesenchymal Stromal Cell Immunotherapy. Front Immunol 2018; 9:1359. [PMID: 29963053 PMCID: PMC6014158 DOI: 10.3389/fimmu.2018.01359] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
We report here the long-term clinical and immunological results of four living-donor kidney transplant patients given autologous bone marrow-derived mesenchymal stromal cells (MSCs) as part of a phase 1 study focused on the safety and feasibility of this cell therapy. According to study protocols implemented over time, based on initial early safety findings, the patients were given MSC at day 7 posttransplant (n = 2) or at day −1 pretransplant (n = 2) and received induction therapy with basiliximab and low-dose rabbit anti-thymocyte globulin (RATG) or RATG alone, and were maintained on low-dose ciclosporin (CsA)/mycophenolate mofetil (MMF). All MSC-treated patients had stable graft function during the 5- to 7-year follow-up, without increased susceptibility to infections or neoplasm. In three MSC recipients, but not historical control patients, circulating memory CD8+ T cell percentages remained lower than basal, coupled with persistent reduction of ex vivo donor-specific cytotoxicity. Two patients showed a long-lasting increase in the regulatory T cell/memory CD8+ T cell ratio, paralleled by high circulating levels of naïve and transitional B cells. In one of these two patients, CsA was successfully discontinued, and currently the low-dose MMF monotherapy is on the tapering phase. The study shows that MSC therapy is safe in the long term and could promote a pro-tolerogenic environment in selected patients. Extensive immunomonitoring of MSC-treated kidney transplant recipients could help selection of patients for safe withdrawal of maintenance immunosuppressive drugs (NCT00752479 and NCT02012153).
Collapse
Affiliation(s)
- Norberto Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | | | - Marta Todeschini
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Monica Cortinovis
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Eliana Gotti
- Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Valentina Portalupi
- Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marilena Mister
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Flavio Gaspari
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Alessandro Villa
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Sonia Fiori
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Martino Introna
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Elena Longhi
- Laboratory of Transplant Immunology, UOC Coordinamento Trapianti IRCCS Fondazione Ca' Granda - Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.,L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Tang J, Yang R, Lv L, Yao A, Pu L, Yin A, Li X, Yu Y, Nyberg SL, Wang X. Transforming growth factor-β-Expressing Mesenchymal Stem Cells Induce Local Tolerance in a Rat Liver Transplantation Model of Acute Rejection. Stem Cells 2016; 34:2681-2692. [PMID: 27333806 DOI: 10.1002/stem.2437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/09/2016] [Accepted: 05/28/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Jincao Tang
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
- Digestive Medical Center, the Second Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
| | - Renjie Yang
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
| | - Ling Lv
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
- Key Laboratory of Living Donor Liver Transplantation; Ministry of Public Health; Nanjing Jiangsu Province China
| | - Aihua Yao
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
- Key Laboratory of Living Donor Liver Transplantation; Ministry of Public Health; Nanjing Jiangsu Province China
| | - Liyong Pu
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
- Key Laboratory of Living Donor Liver Transplantation; Ministry of Public Health; Nanjing Jiangsu Province China
| | - Aihong Yin
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
- Key Laboratory of Living Donor Liver Transplantation; Ministry of Public Health; Nanjing Jiangsu Province China
| | - Xiangcheng Li
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
- Key Laboratory of Living Donor Liver Transplantation; Ministry of Public Health; Nanjing Jiangsu Province China
| | - Yue Yu
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
- Key Laboratory of Living Donor Liver Transplantation; Ministry of Public Health; Nanjing Jiangsu Province China
| | - Scott L. Nyberg
- Department of Surgery; Division of Experimental Surgery; Mayo Clinic; Rochester Minnesota USA
| | - Xuehao Wang
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu Province China
- Key Laboratory of Living Donor Liver Transplantation; Ministry of Public Health; Nanjing Jiangsu Province China
| |
Collapse
|
13
|
Tolerogenic Dendritic Cells on Transplantation: Immunotherapy Based on Second Signal Blockage. J Immunol Res 2015; 2015:856707. [PMID: 26543876 PMCID: PMC4620289 DOI: 10.1155/2015/856707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs), the most important professional antigen-presenting cells (APC), play crucial role in both immunity and tolerance. It is well known that DCs are able to mount immune responses against foreign antigens and simultaneously tolerate self-antigens. Since DCs can be modulated depending on the surrounding microenvironment, they can act as a bridge between innate and adaptive immunity. However, the mechanisms that support this dual role are not entirely clear. Recent studies have shown that DCs can be manipulated ex vivo in order to trigger their tolerogenic profile, what can be a tool to be used in clinical trials aiming the treatment of various diseases and the prevention of transplant rejection. In this sense, the blockage of costimulatory molecules on DC, in the attempt of inhibiting the second signal in the immunological synapse, can be considered as one of the main strategies under development. This review brings an update on current therapies using tolerogenic dendritic cells modulated with costimulatory blockers with the aim of reducing transplant rejection. However, although there are current clinical trials using tolerogenic DC to treat allograft rejection, the actual challenge is to modulate these cells in order to maintain a permanent tolerogenic profile.
Collapse
|
14
|
Bolton EM, Bradley JA. Avoiding immunological rejection in regenerative medicine. Regen Med 2015; 10:287-304. [DOI: 10.2217/rme.15.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the major goals of regenerative medicine is repair or replacement of diseased and damaged tissues by transfer of differentiated stem cells or stem cell-derived tissues. The possibility that these tissues will be destroyed by immunological rejection remains a challenge that can only be overcome through a better understanding of the nature and expression of potentially immunogenic molecules associated with cell replacement therapy and the mechanisms and pathways resulting in their immunologic rejection. This review draws on clinical experience of organ and tissue transplantation, and on transplantation immunology research to consider practical approaches for avoiding and overcoming the possibility of rejection of stem cell-derived tissues.
Collapse
Affiliation(s)
- Eleanor M Bolton
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John Andrew Bradley
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
15
|
Gracon ASA, Wilkes DS. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance. Hum Immunol 2014; 75:887-94. [PMID: 24979671 PMCID: PMC4357397 DOI: 10.1016/j.humimm.2014.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient's innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation.
Collapse
Affiliation(s)
- Adam S A Gracon
- Department of Surgery and Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Wilkes
- Departments of Medicine, Microbiology and Immunology, Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
Vanikar A. Transplantation tolerance; myth or reality? J Nephropathol 2014; 3:18-21. [PMID: 24644538 DOI: 10.12860/jnp.2014.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/27/2013] [Indexed: 11/20/2022] Open
Abstract
Implication for health policy/practice/research/medical education: Transplantation is now a well-accepted therapy for end organ failure. However the recipients are required to take life-long immunosuppression to prevent rejection. This leads to immunosuppression associated morbidity in the form of viral/ fungal/ bacterial infections in addition to causing financial burden on the system. Over a long run these patients are at high risk to develop malignancies.In spite of all these efforts, the graft is lost over 7-10 years to chronic graftattrition/ rejection. The only answer to this problem is "Transplant tolerance" which means stable allograft function while maintaining third party immuneresponse intact in absence of rejections on no immunosuppression. Since last 60 years transplanters across the globe are in search of this "Mackenna's gold". The following editorial discusses how far have we progressed in our search for the promised land of "Transplant Tolerance."
Collapse
Affiliation(s)
- Aruna Vanikar
- G.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre and Dr. H.L. Trivedi Institute of Transplantation Sciences, Civil Hospital Campus, Asarwa, Ahmedabad, India
| |
Collapse
|
17
|
Abstract
Organ transplantation appears today to be the best alternative to replace the loss of vital organs induced by various diseases. Transplants can, however, also be rejected by the recipient. In this review, we provide an overview of the mechanisms and the cells/molecules involved in acute and chronic rejections. T cells and B cells mainly control the antigen-specific rejection and act either as effector, regulatory, or memory cells. On the other hand, nonspecific cells such as endothelial cells, NK cells, macrophages, or polymorphonuclear cells are also crucial actors of transplant rejection. Last, beyond cells, the high contribution of antibodies, chemokines, and complement molecules in graft rejection is discussed in this article. The understanding of the different components involved in graft rejection is essential as some of them are used in the clinic as biomarkers to detect and quantify the level of rejection.
Collapse
Affiliation(s)
- Aurélie Moreau
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN, CHU de Nantes 44093, France
| | | | | | | |
Collapse
|
18
|
Stem cells versus donor specific transfusions for tolerance induction in living donor renal transplantation: a single-center experience. Transplantation 2013; 95:155-60. [PMID: 23263505 DOI: 10.1097/tp.0b013e3182752bcc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND We undertook this study to define the role of stem cell transplantation (SCT) versus donor-specific transfusion (DST) in tolerance induction and sustenance in living donor renal transplantation (LDRT). METHODS In this prospective three-armed trial in LDRT with 13 patients each in demographically well-balanced groups, tolerance induction protocol (TIP) was used with SCT in group 1, DST in group 2, and no induction in group 3. Tolerance induction protocol consisted of SCT/DST under conditioning with bortezomib, methylprednisone, rituximab, and rabbit antithymocyte globulin. Transplantation was performed with prednisone in groups 1 and 2 and with triple immunosuppression in group 3, if lymphocyte/flow crossmatch was negative; and if donor-specific antibodies (DSAs) were absent in the first 2 groups. Posttransplant monitoring included serum creatinine (SCr), peripheral T-regulatory cells (pTregs)(127/CD4+/25), and DSA for groups 1 and 2; DSA was eliminated in group 3. Rescue IS was started with rise of SCr/DSA/ rejection. RESULTS Tolerance induction protocol was safe. Over a mean follow-up of 2 years, no patient/graft was lost in groups 1 and 2. One patient of group 3 lost graft to noncompliance. Protocol biopsies were unremarkable. Rejections were noted in six patients of group 1, five of group 2, and seven of group 3. Donor-specific antibodies were elevated in three patients of both groups. Mean SCr of all groups was similar; however, pTregs were increased posttransplant in groups 1 and 2 versus group 3. Group 1 had sustained rise in pTregs. CONCLUSION Stem cell transplantation and DST are useful for immunosuppression minimization in LDRT with sustained generation of pTregs with SCT.
Collapse
|
19
|
Abstract
Successful allogeneic hematopoietic stem cell transplantation (HSCT) and solid organ transplantation require development of a degree of immune tolerance against allogeneic antigens. T lymphocytes play a critical role in allograft rejection, graft failure, and graft-versus-host disease (GVHD). T-cell tolerance occurs by two different mechanisms: (1) depletion of self-reactive T cells during their maturation in the thymus (central tolerance), and (2) suppression/elimination of self-reactive mature T cells in the periphery (peripheral tolerance). Induction of transplant tolerance improves transplantation outcomes. Adoptive immunotherapy with immune suppressor cells including regulatory T cells, natural killer (NK)-T cells, veto cells, and facilitating cells are promising therapies for modulation of immune tolerance. Achieving mixed chimerism with the combination of thymic irradiation and T-cell-depleting antibodies, costimulatory molecule blockade with/without inhibitory signal activation, and elimination of alloreactive T cells with varying methods including pre- or post-transplant cyclophosphamide administration appear to be effective in inducing transplant tolerance.
Collapse
Affiliation(s)
- Onder Alpdogan
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|
20
|
Huurman VAL, van der Torren CR, Gillard P, Hilbrands R, van der Meer-Prins EPMW, Duinkerken G, Gorus FK, Claas FHJ, Keymeulen B, Roelen DL, Pipeleers DG, Roep BO. Immune responses against islet allografts during tapering of immunosuppression--a pilot study in 5 subjects. Clin Exp Immunol 2012; 169:190-8. [PMID: 22774994 DOI: 10.1111/j.1365-2249.2012.04605.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Transplantation of isolated islet of Langerhans cells has great potential as a cure for type 1 diabetes but continuous immune suppressive therapy often causes considerable side effects. Tapering of immunosuppression in successfully transplanted patients would lower patients' health risk. To identify immune biomarkers that may prove informative in monitoring tapering, we studied the effect of tapering on islet auto- and alloimmune reactivity in a pilot study in five transplant recipients in vitro. Cytokine responses to the graft were measured using Luminex technology. Avidity of alloreactive cytotoxic T Lymphocytes (CTL) was determined by CD8 blockade. The influence of immunosuppression was mimicked by in vitro replenishment of tacrolimus and MPA, the active metabolite of mycophenolate mofetil. Tapering of tacrolimus was generally followed by decreased C-peptide production. T-cell autoreactivity increased in four out of five patients during tapering. Overall alloreactive CTL precursor frequencies did not change, but their avidity to donor mismatches increased significantly after tapering (P = 0·035). In vitro addition of tacrolimus but not MPA strongly inhibited CTL alloreactivity during tapering and led to a significant shift to anti-inflammatory graft-specific cytokine production. Tapering of immunosuppression is characterized by diverse immune profiles that appear to relate inversely to plasma C-peptide levels. Highly avid allospecific CTLs that are known to associate with rejection increased during tapering, but could be countered by restoring immune suppression in vitro. Immune monitoring studies may help guiding tapering of immunosuppression after islet cell transplantation, even though we do not have formal prove yet that the observed changes reflect direct effects of immune suppression on immunity.
Collapse
Affiliation(s)
- V A L Huurman
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW In recent years there has been increased interest in understanding the physiology and function of regulatory T cells. In this review we focus on the characterization of regulatory T-cell subsets and their potential therapeutic use in organ transplantation. RECENT FINDINGS Regulatory T cells can play an instrumental role in the establishment of operational tolerance to allografts. The level of expression and the extent of posttranslational acetylation of the regulatory T-cell specific transcription factor Foxp3 are important modulators of their suppressive activity. Low expression of CD127 can be used as a novel marker to define pure regulatory T-cell populations and the expression of CD45RA on CD4CD25 regulatory T cells characterizes a population with a more stable phenotype upon expansion in vitro. Interleukin-35 is a recently discovered immunosuppressive cytokine secreted by CD4CD25 regulatory T cells. Although the presence of allospecific memory T cells in the pretransplant period and the use of immunosuppressants might interfere with the effectiveness of regulatory T-cell-based therapies, encouraging results indicate that the immunosuppressive drug rapamycin does not affect the expansion and function of regulatory T cells and could be included in a combined therapy. SUMMARY Important advances have been made towards establishing regulatory T cells as a viable therapy in transplantation and the first clinical trials using human regulatory T cells are currently underway. There are, however, important limitations and safety issues that have to be addressed before this therapy can be fully translated into the clinic.
Collapse
|
22
|
Wisgerhof HC, Wolterbeek R, Haasnoot GW, Claas FHJ, de Fijter JW, Willemze R, Bouwes Bavinck JN. The risk of cancer is not increased in patients with multiple kidney transplantations. Transpl Immunol 2012; 27:189-94. [PMID: 22709939 DOI: 10.1016/j.trim.2012.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND The aim of this study was to investigate whether the number of transplantations, as a marker of the graft rejection status of the patient, is associated with an increased risk of malignancies. METHODS In a cohort study, 1213 patients, receiving a kidney transplantation between 1966 and 1995 at the Leiden University Medical Center, were analyzed. All cutaneous squamous cell carcinoma and internal malignancies, which had developed between 1966 and 2007, were recorded. The influence of number of transplantations, age, sex and time on immunosuppression on the risk of squamous cell carcinoma and internal malignancies was investigated by time-dependent multivariate Cox's proportional hazard models. RESULTS Of the 1213 kidney transplant recipients, 319 received a second kidney, 78 a third; 13 of them a fourth and 4 of them a fifth transplantation. After adjustment for potentially confounding factors, including age, sex and years on immunosuppressive therapy we did not detect an increased risk of cancer in patients with multiple transplantations. On the contrary, patients with three or more transplantations had a 1.6-fold decreased risk of squamous cell carcinomas and a 3.6-fold decreased risk of internal malignancies. CONCLUSION We conclude that kidney transplant recipients with three or more transplantations do not have an increased risk of cutaneous squamous cell carcinoma and internal malignancies.
Collapse
Affiliation(s)
- Hermina C Wisgerhof
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
23
|
Gorantla VS, Brandacher G, Schneeberger S, Zheng XX, Donnenberg AD, Losee JE, Lee WPA. Favoring the risk-benefit balance for upper extremity transplantation--the Pittsburgh Protocol. Hand Clin 2011; 27:511-20, ix-x. [PMID: 22051391 DOI: 10.1016/j.hcl.2011.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Upper extremity transplantation is an innovative reconstructive strategy with potential of immediate clinical application and the most near-term pay-off for select amputees, allowing reintegration into employment and society. Routine applicability and widespread impact of such strategies for the upper extremity amputees with devastating limb loss could be enabled by implementation of cellular therapies that integrate and unify the concepts of transplant tolerance induction with those of reconstructive transplantation. Such therapies offer the promise of minimizing the risks, maximizing the benefits and optimizing outcomes of these innovative procedures.
Collapse
Affiliation(s)
- Vijay S Gorantla
- Pittsburgh Reconstructive Transplantation Program, Division of Plastic Surgery, Department of Surgery, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu Y, Huang X, Li Y, Li C, Hu X, Xue C, Meng F, Zhou P. Ursolic acid promotes robust tolerance to cardiac allografts in mice. Clin Exp Immunol 2011; 164:282-8. [PMID: 21391985 PMCID: PMC3087921 DOI: 10.1111/j.1365-2249.2011.04333.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2011] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor (NF)-κB is an important molecule in T cell activation. Our previous work has found that T cell-restricted NF-κB super-repressor (IκBαΔN-Tg) mice, expressing an inhibitor of NF-κB restricted to the T cell compartment, can permanently accept fully allogeneic cardiac grafts and secondary donor skin grafts. In this study, we explore if transient NF-κB inhibition by a small molecular inhibitor could induce permanent graft survival. Ursolic acid, a small molecular compound, dose-dependently inhibited T cell receptor (TCR)-triggered NF-κB nuclear translocation and T cell activation in vitro. In vivo, ursolic acid monotherapy prolonged significantly the survival of cardiac allograft in mice. Assisted with donor-specific transfusion (DST) on day 0, ursolic acid promoted 84·6% of first cardiac grafts to survive for more than 150 days. While the mice with long-term surviving grafts (LTS) did not reject the second donor strain hearts for more than 100 days without any treatment, they all promptly rejected the third-party strain hearts within 14 days. Interestingly, this protocol did not result in an increased proportion of CD4(+) CD25(+) forkhead box P3(+) regulatory T cells in splenocytes. That adoptive transfer experiments also did not support regulation was the main mechanism in this model. Splenocytes from LTS showed reduced alloreactivity to donor antigen. However, depletion of CD4(+) CD25(+) regulatory T cells did not alter the donor-reactivity of LTS splenocytes. These data suggest that depletion of donor-reactive T cells may play an important role in this protocol.
Collapse
Affiliation(s)
- Y Liu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Clinical significance of regulatory T-cell-related gene expression in peripheral blood after renal transplantation. Transplantation 2011; 91:191-8. [PMID: 21157405 DOI: 10.1097/tp.0b013e3181ffbab4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Regulatory T cells (Tregs) have been suggested to be deeply associated with immune tolerance and long-term graft survival in transplantation. Some recipients with stable graft function (ST) could possibly minimize immunosuppression during the maintenance period. However, effective assays for assessing the suitability of patients have yet to be established. The purpose of this study was to elucidate the clinical relevance of Treg-related gene expression such as forkhead box P3 (Foxp3) in peripheral blood after renal transplantation. METHODS Several key molecules related to the function of immune cells such as Treg, including Foxp3, transforming growth factor-β, cytotoxic T-lymphocyte antigen-4, chemokine receptor 7, toll-like receptor 4, granzyme B, T-bet, GATA3, RORC, α1,2-mannosidase, and proteasome subunit β 10 were examined in the peripheral blood of 272 renal transplant recipients by quantitative real-time reverse-transcriptase polymerase chain reaction. The expression levels were compared between recipients with chronic rejection and ST. RESULTS Foxp3 messenger RNA (mRNA) levels were reduced immediately after transplantation and gradually recovered. Pretransplantation levels were closely correlated with 1 year posttransplantation levels. Recipients with chronic rejection had significantly lower levels of Foxp3, chemokine receptor 7, and granzyme B mRNA, and higher levels of toll-like receptor 4 and proteasome subunit β 10 mRNA compared with those with ST, although Foxp3 was the most relevant marker. CONCLUSION There is a possibility that monitoring mRNA expression levels of Treg-related molecules in peripheral blood might offer useful information on patient selection and early detection of rejection when immunosuppression minimization strategy is implemented in renal transplantation.
Collapse
|
26
|
Jovanovic V, Giacomelli L, Sivozhelezov V, Degauque N, Lair D, Soulillou JP, Pechkova E, Nicolini C, Brouard S. AKT1 leader gene and downstream targets are involved in a rat model of kidney allograft tolerance. J Cell Biochem 2011; 111:709-19. [PMID: 20607729 DOI: 10.1002/jcb.22757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tolerance is the so-called "Holy Grail" of transplantation but achieving this state is proving a major challenge, particularly in the clinical settings. This tolerance state can be induced in rodent models using a variety of maneuvers. This phenomenon is classically characterized by donor specificity (recipients accept a secondary donor-specific allograft but reject third-party allograft) as well as by the absence of chronic rejection lesion. We previously showed that administration and anti-donor anti-class II serum on the day of transplantation induce tolerance to a kidney allograft in the LEW-1W to LEW-1A strain combination. In this study, we used DNA microarrays to compare gene patterns involved in anti-donor anti-class II tolerated or untreated syngeneic kidney transplants in this strain combination. Statistical and non-statistical analyses were combined with ab initio analysis, using the recently developed leader gene approach, to shed new light on this phenomenon. Theoretical and experimental results suggest that tolerance and rejection outcome may be in large part determined by low expression variations of some genes, which can form a core gene network around specific genes such as Rac1, NFKB1, RelA, AKT1, IKBKB, BCL2, BCLX, and CHUK. Through this model, we showed that AKT1 gene, WNT pathway and NO synthesis are strictly connected to each other and may play an important role in kidney tolerance and rejection processes, with AKT1 gene being the center of this complex network of interactions.
Collapse
Affiliation(s)
- Vojislav Jovanovic
- Institut National de la Santé Et de la Recherche Médicale INSERM U643, Institut de Transplantation et de Recherche en Transplantation ITERT, Nantes F-44093, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cooles FAH, Isaacs JD. Treating to re-establish tolerance in inflammatory arthritis - lessons from other diseases. Best Pract Res Clin Rheumatol 2010; 24:497-511. [PMID: 20732648 DOI: 10.1016/j.berh.2010.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapeutic tolerance embraces the concept of 'switching off' immunopathology by specifically targeting elements of the immune system. It has been achievable in preclinical models of transplantation and auto-immunity for more than two decades; however, previous attempts to translate to the clinic have been unsuccessful. Nonetheless, an improved understanding of tolerance mechanisms, along with novel therapeutic agents and strategies, are starting to bear fruit in a number of disease areas. True tolerance is achievable in transplantation settings, and long-term remissions can be induced in various auto-immune and atopic conditions. Equivalent outcomes should be achievable in inflammatory arthritis, although this may require an improved understanding of the immune dysregulation that is intrinsic to rheumatoid arthritis (RA), and better definitions of RA autoantigens. Biomarkers of tolerance induction would rapidly advance the field in all therapeutic areas. This article summarises the advances made in other therapeutic areas, and the lessons learned that we can now apply to RA.
Collapse
Affiliation(s)
- Faye A H Cooles
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|
28
|
Inflammation and the balance of Treg and Th17 cells in transplant rejection and tolerance. Curr Opin Organ Transplant 2010; 15:411-5. [PMID: 20613526 DOI: 10.1097/mot.0b013e32833b7929] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Inflammation of the allograft, occurring as a consequence of hypoxia and ischemia/reperfusion injury, adversely influences short-term and long-term transplant outcomes. Thus far, imbalance of tissue-protective Treg and tissue-destructive Th17 cells has been confirmed in a number of tissue-inflammatory states, including autoimmune disease. Hence, benefits of tilting Treg-Th17 equilibrium toward dominance of Tregs may promote transplant tolerance. RECENT FINDINGS Adverse graft inflammation creates extreme resistance to the induction of donor-specific tolerance. Proinflammatory cytokines, when abundantly expressed within the graft and draining lymph nodes, prevent commitment of donor-activated T cells into graft-protective, T-regulatory phenotype, while fostering generation of donor-reactive Th1, Th2 or Th17 effector subsets. In addition, the inflammatory milieu may destabilize the program of both natural and induced Tregs, converting them into inflammatory, effector-like phenotypes. Therefore permanent, Treg-dependent acceptance of an allograft may not be achieved without limiting adverse tissue inflammation. SUMMARY Balance of graft-protective regulatory and graft-destructive effector T cells largely depends on the balance of proinflammatory and anti-inflammatory cytokines in the milieu, in which donor-directed T-cell response occurs. In the absence of proinflammatory cytokines, the constitutive expression of TGF-beta may guide recipient T cells into a tissue-protective, pro-tolerant mode. Therefore, targeting adverse tissue inflammation may represent a powerful means to tilt antidonor immunity towards tolerance.
Collapse
|
29
|
Whitlock EL, Myckatyn TM, Tong AY, Yee A, Yan Y, Magill CK, Johnson PJ, Mackinnon SE. Dynamic quantification of host Schwann cell migration into peripheral nerve allografts. Exp Neurol 2010; 225:310-9. [PMID: 20633557 DOI: 10.1016/j.expneurol.2010.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/24/2010] [Accepted: 07/07/2010] [Indexed: 12/21/2022]
Abstract
Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs.
Collapse
Affiliation(s)
- Elizabeth L Whitlock
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mathew JM, Ciancio G, Burke GW, Garcia-Morales RO, Rosen A, Wang E, Gomez CI, Blomberg BB, Fuller L, Esquenazi V, Ricordi C, Miller J. Immune "tolerance profiles" in donor bone marrow infused kidney transplant patients using multiple ex vivo functional assays. Hum Immunol 2010; 71:566-76. [PMID: 20153397 DOI: 10.1016/j.humimm.2010.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 11/25/2022]
Abstract
Ex vivo identification of donor-specific unresponsiveness in organ transplant recipients is important for immunosuppression (IS) minimization. We tested three groups of stable living, related-donor kidney transplant patients up to 11 years postoperatively, i.e., 20 haploidenticals with donor bone marrow cell (DBMC) infusions, eight noninfused haploidentical controls (haplo controls), and 11 HLA-identical controls (HLA-id), using multiple ex vivo immune assays. We observed that no patients developed donor-specific antibodies. The majority showed donor-specific CTL unresponsiveness from year 1 onward. Thirteen of 20 DBMC recipients became specifically donor MLR nonreactive. Depletion of donor cells in DBMC recipients still MLR reactive increased donor-specific reactivity by 75% +/- 36% (p = 0.04). Adding them back in low concentration caused antigen specific inhibition. The frequencies of ELISPOT granzyme-B and interferon-gamma-producing cells somewhat paralleled the CTL and MLR responses. In the trans vivo DTH, 14 of 19 DBMC recipients demonstrated donor-specific unresponsiveness and 16 of 19 showed "linked suppression," vs none of eight and one of eight haplo controls and vs six of 10 and one of 10 HLA-ids, respectively. Most importantly, when all six assays were performed simultaneously, 10 of 18 DBMC, five of 10 HLA-ids, and no haplo controls were specifically donor unresponsive long term. We propose that a cluster analysis combining these assays will reveal tolerant recipients in whom IS minimization may safely be tested. This appears to have occurred in many DBMC-infused recipients.
Collapse
Affiliation(s)
- James M Mathew
- Department of Surgery and Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Miao CH, Harmeling BR, Ziegler SF, Yen BC, Torgerson T, Chen L, Yau RJ, Peng B, Thompson AR, Ochs HD, Rawlings DJ. CD4+FOXP3+ regulatory T cells confer long-term regulation of factor VIII-specific immune responses in plasmid-mediated gene therapy-treated hemophilia mice. Blood 2009; 114:4034-44. [PMID: 19713458 PMCID: PMC2774545 DOI: 10.1182/blood-2009-06-228155] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/11/2009] [Indexed: 02/07/2023] Open
Abstract
Gene transfer of a factor VIII (FVIII) plasmid into hemophilia A (HemA) mice achieved supraphysiologic FVIII expression, but triggered production of high-titer FVIII-specific antibodies and loss of functional FVIII activity. To test whether FVIII-specific regulatory T cells (Tregs) can modulate immune responses against FVIII, we developed a HemA mouse model in which all T cells overexpressed Foxp3 (HemA/Foxp3-Tg). FVIII plasmid therapy did not induce antibody production in HemA/Foxp3-Tg mice. CD4(+)Foxp3(+) T cells isolated from plasmid-treated HemA/Foxp3-Tg mice significantly suppressed proliferation of FVIII-stimulated CD4(+) effector T cells. The percentage of CD4(+) T cells expressing CD25, glucocorticoid-induced tumor necrosis factor receptor, and cytotoxic T lymphocyte antigen 4 increased significantly in spleen and peripheral blood for 9 weeks. Mice receiving adoptively transferred Tregs from FVIII-exposed HemA/Foxp3-Tg mice produced significantly reduced antibody titers compared with controls after initial challenge with FVIII plasmid and second challenge 16 weeks after first plasmid treatment. Adoptively transferred Tregs engrafted and distributed at 2% to 4% in the Treg compartment of blood, lymph nodes, and spleens of the recipient mice and induced activation of endogenous Tregs; the engraftment decreased to negligible levels over 8 to 12 weeks. Antigen-specific Tregs can provide long-lasting protection against immune responses in vivo and limit recall responses induced by a second challenge via infectious tolerance.
Collapse
Affiliation(s)
- Carol H Miao
- Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
De Serres SA, Sayegh MH, Najafian N. Immunosuppressive Drugs and Tregs: A Critical Evaluation! Clin J Am Soc Nephrol 2009; 4:1661-9. [DOI: 10.2215/cjn.03180509] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Abstract
PURPOSE OF REVIEW In the last decade, microarray technology has revolutionized biological research by allowing the screening of tens of thousands of genes simultaneously. This article reviews recent studies in organ transplantation using microarrays and highlights the issues that should be addressed in order to use microarrays in diagnosis of rejection. RECENT FINDINGS Microarrays have been useful in identifying potential biomarkers for chronic rejection in peripheral blood mononuclear cells, novel pathways for induction of tolerance, and genes involved in protecting the graft from the host immune system. Microarray analysis of peripheral blood mononuclear cells from chronic antibody-mediated rejection has identified potential noninvasive biomarkers. In a recent study, correlation of pathogenesis-based transcripts with histopathologic lesions is a promising step towards inclusion of microarrays in clinics for organ transplants. SUMMARY Despite promising results in diagnosis of histopathologic lesions using microarrays, the low dynamic range of microarrays and large measured expression changes within the probes for the same gene continue to cast doubts on their readiness for diagnosis of rejection. More studies must be performed to resolve these issues. Dominating expression of globin genes in whole blood poses another challenge for identification of noninvasive biomarkers. In addition, studies are also needed to demonstrate effects of different immunosuppression therapies and their outcomes.
Collapse
|
34
|
Abstract
Rapid advances have been made in decreasing acute rejection rates and improving short-term graft survival in kidney transplant recipients. Whether these advances ultimately will lead to a commensurate improvement in long-term survival is not yet known. In recent years, greater attention has been placed on defining the precise etiology of graft loss, determining how far and with what agents we can minimize immunosuppression, and delineating the nature of both T-cell-mediated as well as antibody-mediated rejection. In addition, with the growing disparity of available organs and patients in need of a transplant, greater attention has been placed on optimizing allocation. In this minireview, we will focus on developments over the last couple of years, paying particular attention to insights, studies and observations that may attempt to elucidate some of these open questions.
Collapse
Affiliation(s)
- Karl L. Womer
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bruce Kaplan
- Departments of Medicine, Surgery, and Pharmacology, University of Arizona School of Medicine, Tucson, AZ
| |
Collapse
|
35
|
Expression of regulatory T-cell-related molecule genes and clinical outcome in kidney transplant recipients. Transplantation 2009; 87:857-63. [PMID: 19300189 DOI: 10.1097/tp.0b013e318199fa57] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Naturally occurring regulatory T cells have been associated with long-term allograft survival. We investigated whether gene transcripts of Treg-related molecules are upregulated or downregulated in kidney transplant recipients with different clinical outcomes and may serve as markers of operative tolerance. METHODS Expression levels of transcription factor (forkhead box P3 [FOXP3], t-bet, and GATA3), regulatory molecule (cytotoxic T-lymphocyte antigen-4, glucocorticoid-induced tumor necrosis factor receptor-related protein, tribbles protein-1, and transforming growth factor-beta), and chemokine receptor (CCR7 and CXCR4) genes were measured in kidney graft recipients with long-term (> or = 9 years) stable renal function (LTS) or chronic rejection (ChrRx). Patients on dialysis and healthy individuals served as controls. RESULTS The level of FOXP3 transcripts was lower in ChrRx patients than in LTS patients (P<0.01). The highest transforming growth factor-beta transcripts were observed in ChrRx and the highest CCR7 and CXCR4 transcripts were observed in LTS patients. In LTS patients, FOXP3 gene expression was associated with CXCR4 gene expression (P=0.015). FOXP3 and CCR7 transcript levels were higher in LTS patients without calcineurin inhibitor therapy than in LTS patients with calcineurin inhibitors. CONCLUSION Our results suggest that high expression of FOXP3 and chemokine receptor genes in LTS patients are possible indicators of a regulatory process that contributes to long-term allograft acceptance. Markers that were increased in LTS patients were found to be decreased in ChrRx patients, suggesting that rejection may partly be the result of a lack of this regulatory process. FOXP3 and CCR7 and CXCR4 transcripts might be used as markers to distinguish patients who developed long-term allograft acceptance from patients who are prone to ChrRx.
Collapse
|
36
|
Win TS, Rehakova S, Negus MC, Saeb-Parsy K, Goddard M, Conlon TM, Bolton EM, Bradley JA, Pettigrew GJ. Donor CD4 T cells contribute to cardiac allograft vasculopathy by providing help for autoantibody production. Circ Heart Fail 2009; 2:361-9. [PMID: 19808360 DOI: 10.1161/circheartfailure.108.827139] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The development of autoantibody after heart transplantation is increasingly associated with poor graft outcome, but what triggers its development and whether it has a direct causative role in graft rejection is not clear. Here, we study the development of antinuclear autoantibody in an established mouse model of heart allograft vasculopathy. METHODS AND RESULTS Humoral vascular changes, including endothelial complement staining, were present in bm12 heart grafts, explanted 50 days after transplantation. Alloantibody was not detectable, but long-lasting autoantibody responses developed in C57BL/6 recipients from the third week after transplantation. No autoantibody was generated if donor CD4 T cells were depleted before heart graft retrieval or in recipients that lacked B-cell major histocompatibility complex class II expression, indicating that humoral autoimmunity is a consequence of donor CD4 T-cell allorecognition of the major histocompatibility complex class II complex on recipient autoreactive B cells. An effector role for autoantibody in graft rejection was confirmed by abrogation of humoral vascular rejection, and attenuation of vasculopathy, in B-cell deficient recipients and by development of vascular obliteration and accelerated rejection in recipients primed for autoantibody before transplantation. CONCLUSIONS Passenger CD4 T cells within heart transplants can contribute to allograft vasculopathy by providing help to recipient B cells for autoantibody generation.
Collapse
Affiliation(s)
- Thet Su Win
- Department of Surgery, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Facial Subunit Composite Tissue Allografts in Nonhuman Primates: I. Technical and Immunosuppressive Requirements for Prolonged Graft Survival. Plast Reconstr Surg 2009; 123:493-501. [DOI: 10.1097/prs.0b013e3181954edd] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Huurman VAL, Velthuis JHL, Hilbrands R, Tree TIM, Gillard P, van der Meer-Prins PMW, Duinkerken G, Pinkse GGM, Keymeulen B, Roelen DL, Claas FHJ, Pipeleers DG, Roep BO. Allograft-specific cytokine profiles associate with clinical outcome after islet cell transplantation. Am J Transplant 2009; 9:382-8. [PMID: 19067657 DOI: 10.1111/j.1600-6143.2008.02479.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Islet cell transplantation can cure type 1 diabetes, but allograft rejection and recurrent autoimmunity may contribute to decreasing insulin independence over time. In this study we report the association of allograft-specific proliferative and cytokine profiles with clinical outcome. Peripheral blood mononuclear cells were obtained of 20 islet recipients. Cytokine values in mixed lymphocyte cultures (MLC) were determined using stimulator cells with graft-specific HLA class II. Qualitative and quantitative cytokine profiles were determined before and after islet transplantation, blinded from clinical outcome. Cytotoxic T Lymphocyte precursor (CTLp) assays were performed to determine HLA class I alloreactivity. Allograft-specific cytokine profiles were skewed toward a Th2 or regulatory (Treg) phenotype after transplantation in insulin-independent, but not in insulin-requiring recipients. IFNgamma/IL10 ratio and MLC proliferation decreased after transplantation in insulin-independent recipients (p = 0.006 and p = 0.01, respectively). Production of the Treg cytokine IL10 inversely correlated with proliferation in alloreactive MLC (p = 0.008) and CTLp (p = 0.005). Production of IL10 combined with low-MLC reactivity associated significantly with insulin independence. The significant correlation between allograft-specific cytokine profiles and clinical outcome may reflect the induction of immune regulation in successfully transplanted recipients. Islet donor-specific IL10 production correlates with low alloreactivity and superior islet function.
Collapse
Affiliation(s)
- V A L Huurman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Eikmans M, Roelen DL, Claas FHJ. Molecular monitoring for rejection and graft outcome in kidney transplantation. ACTA ACUST UNITED AC 2008; 2:1365-79. [DOI: 10.1517/17530050802600683] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Yolcu ES, Gu X, Lacelle C, Zhao H, Bandura-Morgan L, Askenasy N, Shirwan H. Induction of tolerance to cardiac allografts using donor splenocytes engineered to display on their surface an exogenous fas ligand protein. THE JOURNAL OF IMMUNOLOGY 2008; 181:931-9. [PMID: 18606644 DOI: 10.4049/jimmunol.181.2.931] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The critical role played by Fas ligand (FasL) in immune homeostasis renders this molecule an attractive target for immunomodulation to achieve tolerance to auto- and transplantation Ags. Immunomodulation with genetically modified cells expressing FasL was shown to induce tolerance to alloantigens. However, genetic modification of primary cells in a rapid, efficient, and clinically applicable manner proved challenging. Therefore, we tested the efficacy of donor splenocytes rapidly and efficiently engineered to display on their surface a chimeric form of FasL protein (SA-FasL) for tolerance induction to cardiac allografts. The i.p. injection of ACI rats with Wistar-Furth rat splenocytes displaying SA-FasL on their surface resulted in tolerance to donor, but not F344 third-party cardiac allografts. Tolerance was associated with apoptosis of donor reactive T effector cells and induction/expansion of CD4(+)CD25(+)FoxP3(+) T regulatory (Treg) cells. Treg cells played a critical role in the observed tolerance as adoptive transfer of sorted Treg cells from long-term graft recipients into naive unmanipulated ACI rats resulted in indefinite survival of secondary Wistar-Furth grafts. Immunomodulation with allogeneic cells rapidly and efficiently engineered to display on their surface SA-FasL protein provides an effective and clinically applicable means of cell-based therapy with potential application to regenerative medicine, transplantation, and autoimmunity.
Collapse
Affiliation(s)
- Esma S Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Horne PH, Lunsford KE, Walker JP, Koester MA, Bumgardner GL. Recipient Immune Repertoire and Engraftment Site Influence the Immune Pathway Effecting Acute Hepatocellular Allograft Rejection. Cell Transplant 2008; 17:829-44. [DOI: 10.3727/096368908786516792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As novel acute allograft rejection mechanisms are being discovered, determining the conditions that promote or subvert these distinct rejection pathways is important to interpret the clinical relevance of these pathways for specific recipient groups as well as specific tissue and organ transplants. We have employed a versatile hepatocellular allograft model to analyze how the host immune repertoire and immune locale influences the phenotype of the rejection pathway. In addition, we investigated how peripheral monitoring of cellular and humoral immune parameters correlates with the activity of a specific rejection pathway. Complete MHC mismatched hepatocellular allografts were transplanted into immune competent CD4-deficient, CD8-deficient, or C57BL/6 hosts to focus on CD8-dependent, CD4-dependent, or combined CD4 and CD8-dependent alloimmunity, respectively. Hepatocellular allografts were transplanted to the liver or kidney subcapsular space to investigate the influence of the immune locale on each rejection pathway. The generation of donor-reactive DTH, alloantibody, and allospecific cytotoxicity was measured to assess both cellular and humoral immunity. Graft-infiltrating lymphocytes were phenotyped and enumerated in each recipient group. In the presence of CD8+ T cells, cytolytic cellular activity is the dominant mechanism of graft destruction and is amplified in the presence of CD4+ T cells. The absence of CD8+ T cells (CD8 KO) results in potent humoral immunity as reflected by high levels of cytotoxic alloantibody and graft rejection with similar kinetics. Transplant to the liver compared to the kidney site is distinguished by more rapid kinetics of rejection and alloimmunity, which is predominately cell mediated rather than a mix of both humoral and cell-mediated immunity. These studies define several rejection mechanisms occurring in distinct immune conditions, highlighting the plasticity of acute allograft rejection responses and the need to design specific monitoring strategies for these pathways to allow dynamic immune assessment of clinical transplant recipients and targeted immunotherapies.
Collapse
Affiliation(s)
- Phillip H. Horne
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Keri E. Lunsford
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Jon P. Walker
- Division of Digestive Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Mitchel A. Koester
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University Medical Center, Columbus, OH, USA
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
42
|
El-Sayegh S, Sayegh MH, Bennett WM. Renal Transplantation: What's New? Clin J Am Soc Nephrol 2008. [DOI: 10.2215/cjn.02190508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Yeh H, Markmann JF. Tolerance: it's in your blood. Clin Immunol 2008; 127:121-2. [PMID: 18405862 DOI: 10.1016/j.clim.2008.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/02/2008] [Indexed: 11/28/2022]
|
44
|
Jovanovic V, Dugast AS, Heslan JM, Ashton-Chess J, Giral M, Degauque N, Moreau A, Pallier A, Chiffoleau E, Lair D, Usal C, Smit H, Vanhove B, Soulillou JP, Brouard S. Implication of matrix metalloproteinase 7 and the noncanonical wingless-type signaling pathway in a model of kidney allograft tolerance induced by the administration of anti-donor class II antibodies. THE JOURNAL OF IMMUNOLOGY 2008; 180:1317-25. [PMID: 18209025 DOI: 10.4049/jimmunol.180.3.1317] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rats, tolerance to MHC-incompatible renal allografts can be induced by the administration of anti-donor class II Abs on the day of transplantation. In this study we explored the mechanisms involved in the maintenance phase of this tolerance by analyzing intragraft gene expression profiles by microarray in long-term accepted kidneys. Comparison of the gene expression patterns of tolerated to syngeneic kidneys revealed 5,954 differentially expressed genes (p < 0.05). Further analysis of this gene set revealed a key role for the wingless-type (WNT) signaling pathway, one of the pivotal pathways involved in cell regulation that has not yet been implicated in transplantation. Several genes within this pathway were significantly up-regulated in the tolerated grafts, particularly matrix metalloproteinase 7 (MMP7; fold change > 40). Analysis of several other pathway-related molecules indicated that MMP7 overexpression was the result of the noncanonical WNT signaling pathway. MMP7 expression was restricted to vascular smooth muscle cells and was specific to anti-class II Ab-induced tolerance, as it was undetectable in other models of renal and heart transplant tolerance and chronic rejection induced across the same strain combination. These results suggest a novel role for noncanonical WNT signaling in maintaining kidney transplant tolerance in this model, with MMP7 being a key target. Determining the mechanisms whereby MMP7 contributes to transplant tolerance may help in the development of new strategies to improve long-term graft outcome.
Collapse
Affiliation(s)
- Vojislav Jovanovic
- INSERM U643, Institut de Transplantation et de Recherche en Transplantation, Centre Hospitalier Universitaire du Nantes, 30 Boulevard Jean Monnet, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Saas P, Courivaud C, Bamoulid J, Garnache-Ottou F, Seilles E, Ducloux D. Surveillance biologique des patients transplantés rénaux : vers une prévision des complications associées à l’immunosuppression ? ANNALES PHARMACEUTIQUES FRANÇAISES 2008; 66:115-21. [DOI: 10.1016/j.pharma.2008.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 03/26/2008] [Indexed: 12/31/2022]
|
47
|
Jovanovic V, Lair D, Soulillou JP, Brouard S. Transfer of tolerance to heart and kidney allografts in the rat model. Transpl Int 2008; 21:199-206. [DOI: 10.1111/j.1432-2277.2007.00599.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Joffre O, Santolaria T, Calise D, Al Saati T, Hudrisier D, Romagnoli P, van Meerwijk JPM. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med 2007; 14:88-92. [PMID: 18066074 DOI: 10.1038/nm1688] [Citation(s) in RCA: 431] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 10/25/2007] [Indexed: 12/23/2022]
Abstract
A major challenge in transplantation medicine is controlling the very strong immune responses to foreign antigens that are responsible for graft rejection. Although immunosuppressive drugs efficiently inhibit acute graft rejection, a substantial proportion of patients suffer chronic rejection that ultimately leads to functional loss of the graft. Induction of immunological tolerance to transplants would avoid rejection and the need for lifelong treatment with immunosuppressive drugs. Tolerance to self-antigens is ensured naturally by several mechanisms; one major mechanism depends on the activity of regulatory T lymphocytes. Here we show that in mice treated with clinically acceptable levels of irradiation, regulatory CD4+CD25+Foxp3+ T cells stimulated in vitro with alloantigens induced long-term tolerance to bone marrow and subsequent skin and cardiac allografts. Regulatory T cells specific for directly presented donor antigens prevented only acute rejection, despite hematopoietic chimerism. By contrast, regulatory T cells specific for both directly and indirectly presented alloantigens prevented both acute and chronic rejection. Our findings demonstrate the potential of appropriately stimulated regulatory T cells for future cell-based therapeutic approaches to induce lifelong immunological tolerance to allogeneic transplants.
Collapse
Affiliation(s)
- Olivier Joffre
- Institut National de la Santé et de la Recherche Médicale, U563, Tolerance and Autoimmunity section, Toulouse, F-31300 France
| | | | | | | | | | | | | |
Collapse
|