1
|
Todorova T, Boyadzhiev K, Dimitrov M, Parvanova P. Bee venom genotoxicity on Saccharomyces cerevisiae cells - The role of mitochondria and YAP1 transcription factor. Toxicology 2024; 503:153768. [PMID: 38442839 DOI: 10.1016/j.tox.2024.153768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
The present work aims to clarify the genotype differences of a model organism Saccharomyces cerevisiae in response to bee venom. The study evaluated various endpoints including cell survival, induction of physiologically active superoxide anions, mitotic gene conversion, mitotic crossing-over, reverse mutations, DNA double-strand breaks, and Ty1 retrotransposition. The role of the intact mitochondria and the YAP1 transcription factor was also evaluated. Our results indicate a genotype-specific response. The first experimental evidence has been provided that bee venom induces physiologically active superoxide anions and DNA double-strand breaks in S. cerevisiae. The lack of oxidative phosphorylation due to disrupted or missing mitochondrial DNA reduces but not diminishes the cytotoxicity of bee venom. The possible modes of action could be considered direct damage to membranes (cytotoxic effect) and indirect damage to DNA through oxidative stress (genotoxic effect). YAP1 transcription factor was not found to be directly involved in cell defense against bee venom treatment.
Collapse
Affiliation(s)
- Teodora Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria.
| | - Krassimir Boyadzhiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Martin Dimitrov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Petya Parvanova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| |
Collapse
|
2
|
Lee KS, Kim BY, Park MJ, Deng Y, Kim JM, Kim YH, Heo EJ, Yoon HJ, Lee KY, Choi YS, Jin BR. Bee Venom Induces Acute Inflammation through a H2O2-Mediated System That Utilizes Superoxide Dismutase. Toxins (Basel) 2022; 14:toxins14080558. [PMID: 36006220 PMCID: PMC9414663 DOI: 10.3390/toxins14080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Venoms from venomous arthropods, including bees, typically induce an immediate local inflammatory response; however, how venoms acutely elicit inflammatory response and which components induce an inflammatory response remain unknown. Moreover, the presence of superoxide dismutase (SOD3) in venom and its functional link to the acute inflammatory response has not been determined to date. Here, we confirmed that SOD3 in bee venom (bvSOD3) acts as an inducer of H2O2 production to promote acute inflammatory responses. In mouse models, exogenous bvSOD3 rapidly induced H2O2 overproduction through superoxides that are endogenously produced by melittin and phospholipase A2, which then upregulated caspase-1 activation and proinflammatory molecule secretion and promoted an acute inflammatory response. We also showed that the relatively severe noxious effect of bvSOD3 elevated a type 2 immune response and bvSOD3 immunization protected against venom-induced inflammation. Our findings provide a novel view of the mechanism underlying bee venom-induced acute inflammation and offer a new approach to therapeutic treatments for bee envenoming and bee venom preparations for venom therapy/immunotherapy.
Collapse
Affiliation(s)
- Kwang-Sik Lee
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Bo-Yeon Kim
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Min-Ji Park
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Yijie Deng
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Jin-Myung Kim
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Yun-Hui Kim
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Eun-Jee Heo
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Hyung-Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea
| | - Kyeong-Yong Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea
| | - Yong-Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea
| | - Byung-Rae Jin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
- Correspondence: ; Tel.: +82-51-200-7594
| |
Collapse
|
3
|
Varol A, Sezen S, Evcimen D, Zarepour A, Ulus G, Zarrabi A, Badr G, Daştan SD, Orbayoğlu AG, Selamoğlu Z, Varol M. Cellular targets and molecular activity mechanisms of bee venom in cancer: recent trends and developments. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2024576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Serap Sezen
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul, Turkey
| | - Dilhan Evcimen
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Gönül Ulus
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Gamal Badr
- Department of Zoology, Faculty of Science, Laboratory of Immunology, Assiut University, Assiut, Egypt
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Asya Gülistan Orbayoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| | - Zeliha Selamoğlu
- Department Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
4
|
Abd El-Hameed AM, Abuelsaad ASA, Khalil A. Bee venom acupuncture therapy ameliorates neuroinflammatory alterations in a pilocarpine-induced epilepticus model. Metab Brain Dis 2021; 36:2047-2058. [PMID: 34138441 DOI: 10.1007/s11011-021-00766-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Bee venom (BV) is applied in different traditional medicinal therapies and is used worldwide to prevent and treat many acute and chronic diseases. Epilepsy has various neurological effects, e.g., epileptogenic insults; thus, it is considered a life-threatening condition. Seizures and their effects add to the burden of epilepsy because they can have health effects including residual disability and even premature mortality. The use of antiinflammatory drugs to treat epilepsy is controversial; therefore, the alternative nonchemical apitherapy benefits of BV were evaluated in the present study by assessing neuroinflammatory changes in a pilocarpine-induced epilepticus model. Levels of electrolytes, neurotransmitters, and mRNA expression for some gate channels were determined. Moreover, ELISA assays were conducted to detect pro- and anti-inflammatory cytokines, whereas RT-PCR was performed to assess mRNA expression of Foxp3 and CTLA-4. BV ameliorated the interruption in electrolytes and ions through voltage- and ligand-gated ion channels, and it limited neuronal excitability via rapid repolarization of action potentials. In addition, BV inhibited the high expression of proinflammatory cytokines. Acupuncture with BV was effective in preventing some of the deleterious consequences of epileptogenesis associated with high levels of glutamate and DOPA in the hippocampus. BV ameliorates changes in the expression of voltage-gated channels, rebalances blood electrolytes and neurotransmitters, and modulates the levels of pro- and anti-inflammatory cytokines. Thus, BV could reduce the progression of epileptogenesis as a cotherapy with other antiepileptic drugs.
Collapse
Affiliation(s)
| | - Abdelaziz S A Abuelsaad
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | - Abdelwahab Khalil
- Medical Entomology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
5
|
Naji KM, Al-Khatib BY, Al-Haj NS, D'souza MR. Hepatoprotective activity of melittin on isoniazid- and rifampicin-induced liver injuries in male albino rats. BMC Pharmacol Toxicol 2021; 22:39. [PMID: 34217369 PMCID: PMC8254969 DOI: 10.1186/s40360-021-00507-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background The present study investigated the ameliorative effect of melittin, a major polypeptide in the venom of honeybee (Apis mellifera), on isoniazid-(INH) and rifampicin-(RIF) induced hepatotoxicity in male albino rats. Method Thirty rats (140-200 g) were divided into five groups (n = 6): normal control (NC) received normal saline orally (NaCl, 0.9%; toxic (T) group received INH + RIF (each rat received 100 mg/kg, p.o.); melittin (Mel15, Mel30) groups (each rat received 15 or 30 μg/kg s.c); and normal recovery (NR) group received INH + RIF (each rat received 100 mg/kg, p.o.). Blood and liver samples were collected for biochemical, hematological and histopathological studies respectively. Results The administration of melittin was found to prevent the antitubercular drug-induced alterations in the diagnostic markers; reduced glutathione (GSH), direct bilirubin (DB), total bilirubin (TB), aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and total serum protein (TSP). Besides, hematological alterations were significantly high in Mel groups when compared to the toxic group. The NR group exhibited lower levels of DB, TB, ALP, LDH and TSP. In addition, treatment with melittin offered protection in the NR group with respect to MDA levels. Conclusion Evidence from this study suggests that melittin is beneficial for the prevention of acute hepatic failure in antitubercular drug-induced hepatoxicity and could be used as a potential therapeutic agent.
Collapse
Affiliation(s)
- Khalid Mohammed Naji
- Department of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen. .,Department of Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
| | | | - Nora Saif Al-Haj
- Department of Biology, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Myrene R D'souza
- Department of Biochemistry, Mount Carmel College, Bengaluru, India
| |
Collapse
|
6
|
Kreinest T, Volkmer I, Staege MS. Melittin Increases Cisplatin Sensitivity and Kills KM-H2 and L-428 Hodgkin Lymphoma Cells. Int J Mol Sci 2020; 22:ijms22010343. [PMID: 33396195 PMCID: PMC7795649 DOI: 10.3390/ijms22010343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023] Open
Abstract
Hodgkin lymphoma (HL) is neoplasia with high cure rates. However, not all patients can be cured with the current treatment. Chemo-resistance of tumor cells is one factor involved in treatment failure. In addition to its pore-forming activity on lipid bilayer membranes, the toxin melittin from bee venom is an inhibitor of several cancer-related signaling pathways. Moreover, melittin analogs have been shown to inhibit the activity of ATP binding cassette (ABC) transporters which are known to play important roles in the chemo-resistance of tumor cells. Therefore, we tested the toxicity of melittin for HL cell lines KM-H2 and L-428 and whether melittin can increase the chemo-sensitivity of cisplatin-resistant HL cells. We found high toxicity of melittin for KM-H2 and L-428 cells. In co-cultures with normal blood cells, melittin preferentially killed KM-H2 and L-428 cells. In addition, we observed increased cisplatin sensitivity of chemo-resistant L-428 cells after treatment with melittin. ABC transporter activity was not reduced after treatment with melittin. Our data suggest that melittin or melittin analogs might be promising agents for the future development of treatment strategies for HL patients with resistant disease.
Collapse
|
7
|
Aufschnaiter A, Kohler V, Khalifa S, Abd El-Wahed A, Du M, El-Seedi H, Büttner S. Apitoxin and Its Components against Cancer, Neurodegeneration and Rheumatoid Arthritis: Limitations and Possibilities. Toxins (Basel) 2020; 12:E66. [PMID: 31973181 PMCID: PMC7076873 DOI: 10.3390/toxins12020066] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 02/03/2023] Open
Abstract
Natural products represent important sources for the discovery and design of novel drugs. Bee venom and its isolated components have been intensively studied with respect to their potential to counteract or ameliorate diverse human diseases. Despite extensive research and significant advances in recent years, multifactorial diseases such as cancer, rheumatoid arthritis and neurodegenerative diseases remain major healthcare issues at present. Although pure bee venom, apitoxin, is mostly described to mediate anti-inflammatory, anti-arthritic and neuroprotective effects, its primary component melittin may represent an anticancer therapeutic. In this review, we approach the possibilities and limitations of apitoxin and its components in the treatment of these multifactorial diseases. We further discuss the observed unspecific cytotoxicity of melittin that strongly restricts its therapeutic use and review interesting possibilities of a beneficial use by selectively targeting melittin to cancer cells.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, 106 91 Stockholm, Sweden;
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden; (V.K.); (S.K.)
| | - Shaden Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden; (V.K.); (S.K.)
| | - Aida Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, 12627 Giza, Egypt;
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116024, China;
| | - Hesham El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt
- International Research Center for Food nutrition and safety, Jiangsu University, Zhenjiang 212013, China
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden; (V.K.); (S.K.)
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| |
Collapse
|
8
|
Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat Commun 2019; 10:574. [PMID: 30718511 PMCID: PMC6361944 DOI: 10.1038/s41467-019-08538-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/30/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are responsible for the immunologic tolerance of liver which is a common site for visceral metastases, suggesting its potential role as an target for cancer immunotherapy. However, targeted modulation of LSECs is still not achieved thus far. Here, we report LSECs are specifically targeted and modulated by melittin nanoparticles (α-melittin-NPs). Intravital imaging shows that LSECs fluoresce within 20 s after intravenous injection of α-melittin-NPs. α-melittin-NPs trigger the activation of LSECs and lead to dramatic changes of cytokine/chemokine milieu in the liver, which switches the hepatic immunologic environment to the activated state. As a result, α-melittin-NPs resist the formation of metastatic lesions with high efficiency. More strikingly, the survival rate reaches 80% in the spontaneous liver metastatic tumor model. Our research provides support for the use of α-melittin-NPs to break LSEC-mediated immunologic tolerance, which opens an avenue to control liver metastasis through the immunomodulation of LSECs. Liver sinusoidal endothelial cells are known to promote immune tolerance in liver. Here, the authors target these cells using melittin nanoparticles and show alterations in the liver immune environment and suppression of liver metastases.
Collapse
|
9
|
Alqarni AM, Ferro VA, Parkinson JA, Dufton MJ, Watson DG. Effect of Melittin on Metabolomic Profile and Cytokine Production in PMA-Differentiated THP-1 Cells. Vaccines (Basel) 2018; 6:vaccines6040072. [PMID: 30322119 PMCID: PMC6313865 DOI: 10.3390/vaccines6040072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/25/2022] Open
Abstract
Melittin, the major active peptide of honeybee venom (BV), has potential for use in adjuvant immunotherapy. The immune system response to different stimuli depends on the secretion of different metabolites from macrophages. One potent stimulus is lipopolysaccharide (LPS), a component isolated from gram-negative bacteria, which induces the secretion of pro-inflammatory cytokines in macrophage cell cultures. This secretion is amplified when LPS is combined with melittin. In the present study, pure melittin was isolated from whole BV by flash chromatography to obtain pure melittin. The ability of melittin to enhance the release of tumour necrosis factor-α (TNF-α), Interleukin (IL-1β, IL-6, and IL-10) cytokines from a macrophage cell line (THP-1) was then assessed. The response to melittin and LPS, applied alone or in combination, was characterised by metabolic profiling, and the metabolomics results were used to evaluate the potential of melittin as an immune adjuvant therapy. The addition of melittin enhanced the release of inflammatory cytokines induced by LPS. Effective chromatographic separation of metabolites was obtained by liquid chromatography-mass spectrometry (LC-MS) using a ZIC-pHILIC column and an ACE C4 column. The levels of 108 polar and non-polar metabolites were significantly changed (p ˂ 0.05) following cell activation by the combination of LPS and melittin when compared to untreated control cells. Overall, the findings of this study suggested that melittin might have a potential application as a vaccine adjuvant.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - John A Parkinson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Mark J Dufton
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
10
|
Choe JY, Kim SK. Melittin inhibits osteoclast formation through the downregulation of the RANKL-RANK signaling pathway and the inhibition of interleukin-1β in murine macrophages. Int J Mol Med 2017; 39:539-548. [PMID: 28204822 PMCID: PMC5360391 DOI: 10.3892/ijmm.2017.2876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/23/2016] [Indexed: 01/05/2023] Open
Abstract
Melittin is a major toxic component of bee venom (Apis mellifera). It is not known whether melittin is involved in bone metabolism and osteoclastogenesis. The aim of this study was to determine the role of melittin in the regulation of osteoclastogenesis. In vitro osteoclastogenesis assays were performed using mouse RAW 264.7 cells and bone marrow-derived macrophages (BMMs) treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Morphologic and functional analyses for osteoclast-like multinucleated cells (MNCs) were performed by tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and pit formation methods. The gene expression of TRAP, cathepsin K, matrix metalloproteinase-9 (MMP-9) and carbonic anhydrase II was measured by reverse transcription-quantitative PCR. The protein expression levels of mitogen-activated protein kinases (MAPKs), the p65 subunit of nuclear factor-κB (NF-κB), c-Fos, c-Jun, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), TNF receptor-associated factor-6 (TRAF6), and interleukin-1β (IL-1β) were assessed by western blot analysis. Melittin inhibited the mRNA expression of TRAP, cathepsin K, MMP-9 and carbonic anhydrase II in RANKL-stimulated RAW 264.7 cells. The increased protein expression of TRAF6, p-extracellular signal-regulated kinase (ERK), p-JNK, p-p65, p-c-Fos and NFATc1 induced by RANKL was significantly suppressed in the RAW 264.7 cells treated with melittin. A synergistic effect of IL-1β on the formation of RANKL-induced osteoclast-like MNCs was found in two experimental cells. The increased expression of IL-1β following the stimulation of RAW 264.7 cells with RANKL activated TRAF6, p-ERK, p-JNK, p-p65, p-c-Fos and NFATc1. These effects were attenuated by the downregulation of IL-1β using siRNA against IL-1β, and also by treatment with melittin. On the whole, the findings of this study demonstrate that melittin inhibits the formation of osteoclast-like MNCs by interfering with the RANKL-RANK signaling pathway.
Collapse
Affiliation(s)
- Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Arthritis and Autoimmunity Research Center, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Arthritis and Autoimmunity Research Center, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
11
|
Woods N, Niwasabutra K, Acevedo R, Igoli J, Altwaijry N, Tusiimire J, Gray A, Watson D, Ferro V. Natural Vaccine Adjuvants and Immunopotentiators Derived From Plants, Fungi, Marine Organisms, and Insects. IMMUNOPOTENTIATORS IN MODERN VACCINES 2017. [PMCID: PMC7148613 DOI: 10.1016/b978-0-12-804019-5.00011-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Immunopotentiators derived from different natural sources are under investigation with varying success. This chapter gives an overview of developments from plants, fungi, marine organisms, and insects. Plant-derived immune stimulators consist of a diverse range of small molecules or large polysaccharides. Notable examples that have been assessed in both preclinical and clinical trials include saponins, tomatine, and inulin. Similarly, fungi produce a range of potential candidate molecules, with β-glucans showing the most promise. Other complex molecules that have established adjuvant activity include α-galactosylceramide (originally obtained from a marine sponge), chitosan (commonly produced from chitin from shrimps), and peptides (found in bee venom). Some organisms, for example, endophytic fungi and bees, produce immunostimulants using compounds obtained from plants. The main challenges facing this type of research and tools being developed to overcome them are examined.
Collapse
Affiliation(s)
- N. Woods
- University of Strathclyde, Glasgow, Scotland
| | | | | | - J. Igoli
- University of Strathclyde, Glasgow, Scotland,University of Agriculture, Makurdi, Benue State, Nigeria
| | | | | | - A.I. Gray
- University of Strathclyde, Glasgow, Scotland
| | - D.G. Watson
- University of Strathclyde, Glasgow, Scotland
| | - V.A. Ferro
- University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
12
|
Gajski G, Čimbora-Zovko T, Rak S, Osmak M, Garaj-Vrhovac V. Antitumour action on human glioblastoma A1235 cells through cooperation of bee venom and cisplatin. Cytotechnology 2016; 68:1197-205. [PMID: 25916941 PMCID: PMC4960167 DOI: 10.1007/s10616-015-9879-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/15/2015] [Indexed: 01/06/2023] Open
Abstract
Cisplatin (cDDP) is one of the most widely used anticancer-drugs in both therapy and research. However, cDDP-resistance is the greatest obstacle for the successful treatment of cancer patients. In the present study, the possible joint anticancer effect of bee venom (BV), as a natural toxin, and cDDP towards human glioblastoma A1235 cells was evaluated. Treatment with BV alone in concentrations of 2.5-30 μg/ml displayed dose-dependent cytotoxicity towards A1235 cells, as evaluated with different cytotoxicity assays (MTT, Cristal violet and Trypan blue exclusion assay), with an IC50 value of 22.57 μg/ml based on the MTT results. Furthermore, BV treatment induced necrosis, which was confirmed by typical morphological features and fast staining with ethidium-bromide dye. Pre-treatment with BV induced cell sensitization to cDDP, indicating that BV could improve the killing effect of selected cells when combined with cDDP. The isobologram method used to determine the extent of synergism in combining two agents to examine their possible therapeutic effect showed that combined treatment induced an additive and/or synergistic effect towards selected cells depending on the concentration of both. Hence, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. The obtained results indicate that joint treatment with BV could be useful from the point of minimizing the cDDP concentration during chemotherapy, thus reducing and/or postponing the development of drug resistance. Our data, in accordance with previously reported results, suggests that BV could be used in the development of a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Tamara Čimbora-Zovko
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Sanjica Rak
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Maja Osmak
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
13
|
Effect of Bee Venom and Its Fractions on the Release of Pro-Inflammatory Cytokines in PMA-Differentiated U937 Cells Co-Stimulated with LPS. Vaccines (Basel) 2016; 4:vaccines4020011. [PMID: 27104574 PMCID: PMC4931628 DOI: 10.3390/vaccines4020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/20/2023] Open
Abstract
The venom of Apis mellifera (honey bee) has been reported to play a role in immunotherapy, but existing evidence to support its immuno-modulatory claims is insufficient. Four fractions from whole bee venom (BV) were separated using medium pressure liquid chromatography. Their ability to induce the production of cytokines TNFα, IL-1β and IL-6 in phorbol-12-myristate-13-acetate (PMA)-treated U937 cells was assessed. The levels of the three cytokines produced by stimulation with the four fractions and crude BV without LPS were not significantly different from negative control values. However, co-stimulation of the cells with LPS and Fraction 4 (F-4) induced a 1.6-fold increase in TNF-α level (p < 0.05) compared to LPS alone. Likewise, LPS-induced IL-1β production was significantly synergised in the presence of F-1 (nine-fold), F-2 (six-fold), F-3 (four-fold) and F-4 (two-fold) fractions, but was only slightly enhanced with crude BV (1.5-fold) relative to LPS. Furthermore, the LPS-stimulated production of IL-6 was not significantly increased in cells co-treated with F-2 and F-3, but the organic fraction (F-4) showed an inhibitory effect (p < 0.05) on IL-6 production. The latter was elucidated by NMR spectroscopy and found to contain(Z)-9-eicosen-1-ol. The effects observed with the purified BV fractions were more marked than those obtained with the crude sample.
Collapse
|
14
|
Pessenda G, Silva LC, Campos LB, Pacello EM, Pucca MB, Martinez EZ, Barbosa JE. Human scFv antibodies (Afribumabs) against Africanized bee venom: Advances in melittin recognition. Toxicon 2016; 112:59-67. [DOI: 10.1016/j.toxicon.2016.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 01/27/2023]
|
15
|
Gajski G, Domijan AM, Žegura B, Štern A, Gerić M, Novak Jovanović I, Vrhovac I, Madunić J, Breljak D, Filipič M, Garaj-Vrhovac V. Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon 2016; 110:56-67. [DOI: 10.1016/j.toxicon.2015.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
|
16
|
Seo HJ, Lee J. Serum sickness reaction with skin involvement induced by bee venom injection therapy. Asia Pac Allergy 2015; 5:230-3. [PMID: 26539406 PMCID: PMC4630462 DOI: 10.5415/apallergy.2015.5.4.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/09/2015] [Indexed: 11/22/2022] Open
Abstract
Bee venom injection therapy is an alternative treatment sometimes used for chronic inflammatory diseases, including rheumatoid arthritis and multiple sclerosis, to reduce pain. Several chemical components of bee venom have anti-inflammatory effects, and apitoxin, one of the mixed components, has been used for pain prevention therapy. However, there have been no large-scale investigations regarding the efficacy or side effects or apitoxin. In this study, a case of serum sickness reaction that developed after receiving bee venom injection therapy is reported.
Collapse
Affiliation(s)
- Hyun-Jung Seo
- Division of Respiratory-Allergy Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea
| | - Junehyuk Lee
- Division of Respiratory-Allergy Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea
| |
Collapse
|
17
|
Gajski G, Čimbora-Zovko T, Rak S, Rožman M, Osmak M, Garaj-Vrhovac V. Combined antitumor effects of bee venom and cisplatin on human cervical and laryngeal carcinoma cells and their drug resistant sublines. J Appl Toxicol 2015; 34:1332-41. [PMID: 25493319 DOI: 10.1002/jat.2959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, we investigated the possible combined anticancer ability of bee venom (BV) and cisplatin towards two pairs of tumour cell lines: parental cervical carcinoma HeLa cells and their cisplatin-resistant HeLa CK subline,as well as laryngeal carcinoma HEp-2 cells and their cisplatin-resistant CK2 subline. Additionally, we identified several peptides of BV in the BV sample used in the course of the study and determined the exact concentration of MEL. BV applied alone in concentrations of 30 to 60 μg ml(–1) displayed dose-dependent cytotoxicity against all cell lines tested. Cisplatin-resistant cervical carcinoma cells were more sensitive to BV than their parental cell lines (IC(50) values were 52.50 μg ml(–1) for HeLa vs.47.64 μg ml(–1) for HeLa CK cells), whereas opposite results were obtained for cisplatin-resistant laryngeal carcinoma cells (IC(50) values were 51.98 μg ml(–1) for HEp-2 vs. > 60.00 μg ml(–1) for CK2 cells). Treatment with BV alone induced a necrotic type of cell death, as shown by characteristic morphological features, fast staining with ethidium-bromide and a lack of cleavage of apoptotic marker poly (ADP-ribose) polymerase (PARP) on Western blot. Combined treatment of BV and cisplatin induced an additive and/or weak synergistic effect towards tested cell lines, suggesting that BV could enhance the killing effect of selected cells when combined with cisplatin. Therefore, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. Our results suggest that combined treatment with BV could be useful from the point of minimizing the cisplatin concentration during chemotherapy, consequently reducing and/or postponing the development of cisplatin resistance.
Collapse
|
18
|
Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses. Mol Neurobiol 2015; 53:1419-1445. [DOI: 10.1007/s12035-014-9012-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/18/2014] [Indexed: 12/27/2022]
|
19
|
Lee WR, Kim KH, An HJ, Kim JY, Han SM, Lee KG, Park KK. Protective effect of melittin against inflammation and apoptosis on Propionibacterium acnes-induced human THP-1 monocytic cell. Eur J Pharmacol 2014; 740:218-26. [PMID: 25062791 DOI: 10.1016/j.ejphar.2014.06.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). It has been used in treatment of various chronic inflammatory diseases. However, the cellular mechanism and the anti-apoptotic effect of melittin in Propionibactierium acnes (P. acnes)-induced THP-1 cells have not been explored. In the present study, we investigated the anti-inflammatory and anti-apoptotic mechanism by examining the effect of melittin on P. acnes-induced THP-1 monocytic cells. THP-1 monocytic cells were stimulated by heat-killed P. acnes in the presence of melittin. The expression levels of pro-inflammatory cytokines, NF-κB signaling, caspase family, and PARP signaling were measured by ELISA or Western blot analysis. The number of apoptotic cells and changes of cell morphology were examined using fluorescence microscopy and flow cytometry. Heat-killed P. acnes increased the secretion of pro-inflammatory cytokines and cleavage of caspase-3 and -8 in heat-killed P. acnes-induced THP-1 cells. However, treatment with melittin inhibited the pro-inflammatory cytokines and cleavage of the caspase-3 and -8. Moreover, the cleaved PARP appeared after 8h of heat-killed P. acnes treatment and its cleavage was reduced by melittin treatment. These results demonstrate that 1.0×10(7) CFU/ml of heat-killed P. acnes induces THP-1 cell apoptosis and secretion of inflammatory cytokines. Also, administration of melittin significantly decreases the expression of various inflammatory cytokines in heat-killed P. acnes-treated THP-1 monocytic cells. In particular, melittin exerts anti-apoptotic effects against 1.0×10(7) CFU/ml of heat-killed P. acnes injury to THP-1 cells.
Collapse
Affiliation(s)
- Woo-Ram Lee
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Kyung-Hyun Kim
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Hyun-Jin An
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Jung-Yeon Kim
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Sang-Mi Han
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, South Korea
| | - Kwang-Gil Lee
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, South Korea
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea.
| |
Collapse
|
20
|
Combined cytogenotoxic effects of bee venom and bleomycin on rat lymphocytes: an in vitro study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:173903. [PMID: 24822179 PMCID: PMC4009237 DOI: 10.1155/2014/173903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/21/2014] [Indexed: 01/24/2023]
Abstract
This study was carried out to determine the cytotoxic and genotoxic effects of bee venom (BV) and/or the chemotherapeutic agent bleomycin (BLM) on healthy isolated rat lymphocytes utilizing morphometric and molecular techniques. Using the Ficoll-Histopaque density gradient centrifugation technique, lymphocytes were isolated, divided into groups, and subjected to BV and/or BLM at incubation medium concentrations of 10 or 20 μg/mL respectively for 24 and 72 hrs. An MTT assay and fluorescent microscopy examinations were used to assess the cytotoxic effects. To determine the predominant type of BV and/or BLM-induced cell death, LDH release assay was employed beside quantitative expression analyses of the apoptosis-related genes (Caspase-3 and Bcl-2). The genotoxic effects of the tested compounds were evaluated via DNA fragmentation assay. The results of these assays demonstrated that BV potentiates BLM-induced cytotoxicity through increased LDH release and diminished cell viability. Nevertheless, BV significantly inhibited the BLM-induced DNA damage. The results verify that BV significantly attenuates the genotoxic effects of BLM on noncancerous isolated rat lymphocytes but does not diminish BLM cytotoxicity.
Collapse
|
21
|
Gajski G, Garaj-Vrhovac V. Melittin: a lytic peptide with anticancer properties. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:697-705. [PMID: 23892471 DOI: 10.1016/j.etap.2013.06.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 05/28/2023]
Abstract
Melittin (MEL) is a major peptide constituent of bee venom that has been proposed as one of the upcoming possibilities for anticancer therapy. Recent reports point to several mechanisms of MEL cytotoxicity in different types of cancer cells such as cell cycle alterations, effect on proliferation and/or growth inhibition, and induction of apoptotic and necrotic cell death trough several cancer cell death mechanisms, including the activation of caspases and matrix metalloproteinases. Although cytotoxic to a broad spectrum of tumour cells, the peptide is also toxic to normal cells. Therefore its therapeutic potential cannot be achieved without a proper delivery vehicle which could be overcome by MEL nanoparticles that possess the ability to safely deliver significant amount of MEL intravenously, and to target and kill tumours. This review paper summarizes the current knowledge and brings latest research findings on the anticancer potential of this lytic peptide with diverse functions.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Gajski G, Domijan AM, Garaj-Vrhovac V. Alterations of GSH and MDA levels and their association with bee venom-induced DNA damage in human peripheral blood leukocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:469-477. [PMID: 22730252 DOI: 10.1002/em.21708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Bee venom (BV) has toxic effects in a variety of cell systems and oxidative stress has been proposed as a possible mechanism of its toxicity. This study investigated the in vitro effect of BV on glutathione (GSH) and malondialdehyde (MDA) levels, and their association with BV-induced DNA strand breaks and oxidative DNA damage in human peripheral blood leukocytes (HPBLs). Blood samples were treated with BV at concentrations ranging from 0.1 to 10 μg/ml over different lengths of time, and DNA damage in HPBLs was monitored with the alkaline and formamidopyrimidine glycoslyase (FPG)-modified comet assays, while GSH and MDA levels were determined in whole blood. Results showed a significant increase in overall DNA damage and FPG-sensitive sites in DNA of HPBLs exposed to BV compared with HPBLs from controls. An increase in DNA damage (assessed with both comet assays) was significantly associated with changes in MDA and GSH levels. When pretreated with N-acetyl-L-cysteine, a source of cysteine for the synthesis of the endogenous antioxidant GSH, a significant reduction of the DNA damaging effects of BV in HPBLs was noted. This suggests that oxidative stress is at least partly responsible for the DNA damaging effects of BV.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | | |
Collapse
|
23
|
Sommer A, Fries A, Cornelsen I, Speck N, Koch-Nolte F, Gimpl G, Andrä J, Bhakdi S, Reiss K. Melittin modulates keratinocyte function through P2 receptor-dependent ADAM activation. J Biol Chem 2012; 287:23678-89. [PMID: 22613720 DOI: 10.1074/jbc.m112.362756] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent.
Collapse
Affiliation(s)
- Anselm Sommer
- Department of Dermatology, Christian-Albrecht University Kiel, 24098 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yun SW, Bae GS, Kim MS, Park KC, Koo BS, Kim BJ, Kim TH, Seo SW, Shin YK, Lee SH, Song HJ, Park SJ. Melittin inhibits cerulein-induced acute pancreatitis via inhibition of the JNK pathway. Int Immunopharmacol 2011; 11:2062-72. [PMID: 21939783 DOI: 10.1016/j.intimp.2011.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/21/2011] [Accepted: 08/28/2011] [Indexed: 12/29/2022]
Abstract
The major compound of bee venom, melittin, has been used as an anti-inflammatory reagent for decades. However, the potential of melittin to ameliorate acute pancreatitis (AP) is unknown. Our aim was to investigate the effect of melittin on cerulein-induced AP. Pre- and post-treatment with melittin inhibited histological changes in the pancreas and lungs during cerulein-induced AP. Pancreatic weight/body weight ratios; digestive enzymes, including amylase and lipase; serum and pancreatic cytokine expression; and myeloperoxidase activity were decreased. In addition, treatment with melittin inhibited the activation of c-Jun NH(2)-terminal protein kinase (JNK) in the pancreas during cerulein-induced pancreatitis. In accordance with the results of in vivo experiments, melittin reduced cerulein-induced cell death, and production of inflammatory cytokines. In conclusion, our results suggest that melittin attenuated AP and AP-associated lung injury through the inhibition of JNK activation.
Collapse
Affiliation(s)
- Seung-Won Yun
- ChungBuk Oriental Medicine Center, Jecheon, 390-250, ChungBuk, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gajski G, Garaj-Vrhovac V. Bee venom induced cytogenetic damage and decreased cell viability in human white blood cells after treatment in vitro: a multi-biomarker approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:201-211. [PMID: 21843800 DOI: 10.1016/j.etap.2011.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/06/2011] [Accepted: 05/18/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to evaluate cytogenotoxic effects of bee venom to human lymphocytes and take a look into the mechanisms behind them. Bee venom was tested in concentrations ranging from 0.1μg/ml to 20μg/ml over different lengths of time. Cell viability, type of the cell death, and morphological alterations were evaluated using phase-contrast and fluorescent microscopy in addition to DNA diffusion assay, whereas cytogenotoxic effects were assessed with the micronucleus test. DNA damage and its relation to oxidative stress were evaluated combining the standard alkaline and the Fpg-modified comet assay. Our results showed lower cell viability, morphological cell alterations, cytogenotoxicity, and dominantly necrotic type of cell death in human lymphocytes after treatment with bee venom. All the effects were time- and dose-dependent. These results provide an insight into the effects of bee venom on the cell structure that could be relevant for therapeutic purposes.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | | |
Collapse
|
26
|
Kim SK, Park KY, Yoon WC, Park SH, Park KK, Yoo DH, Choe JY. Melittin enhances apoptosis through suppression of IL-6/sIL-6R complex-induced NF-κB and STAT3 activation and Bcl-2 expression for human fibroblast-like synoviocytes in rheumatoid arthritis. Joint Bone Spine 2011; 78:471-7. [PMID: 21354845 DOI: 10.1016/j.jbspin.2011.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/06/2011] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Resistance to apoptosis of fibroblast-like synoviocytes (FLS) is considered as a major characteristic in RA. This study was designed to identify whether melittin has a pro-apoptotic effect in IL-6/sIL6R-stimulated human FLS by investigating the expression of mitochondrial apoptosis-related genes, nuclear factor-κB (NF-κB), and signal transducer and activators of transcription (STAT) activation. METHODS Cell viability was determined using a MTT assay after melittin treatment. Expressions of STAT3 and mitochondrial apoptosis-related genes induced by the IL-6/sIL-6R complex were determined by real time-polymerase chain reaction and western blotting. The expression of NF-κB p65 following IL-6 stimulation was determined by western blot analysis. The effects of melittin on the expression of apoptosis-related genes and the transcription factors NF-κB p65 and STAT3 were assessed in FLS. Apoptosis of FLS was determined by TUNEL-labeling to detect DNA strand breaks and DNA fragmentation assays. Caspase-3 activity was determined by a colorimetric assay. RESULTS IL-6/sIL-6R induced the activation of the transcription factors, STAT3, NF-κB p65 (nucleus), and Bcl-2. Melittin increased the expression of pro-apoptosis-related molecules, namely caspase-3, caspase-9, Apaf-1, and cytosolic cytochrome c, in a dose-dependent manner after treatment with IL-6/sIL-6R. Melittin inhibited STAT3 activation, translocation of NF-κB p65 into the nucleus, and expression of anti-apoptotic genes such as Bcl-2 and mitochondrial cytochrome c. CONCLUSIONS The pro-apoptotic effects of melittin likely result from inhibition of the activation of the transcription factors, STAT3 and NF-κB p65, and regulation of mitochondrial apoptosis-related genes. Melittin is thus a promising therapeutic option for RA as it induces apoptosis in apoptosis-resistant synoviocytes.
Collapse
Affiliation(s)
- Seong-Kyu Kim
- Department of Internal Medicine, Catholic University of Daegu School of Medicine, 3056-6 Daemyung 4-Dong, Namgu, Daegu 705-718, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Gajski G, Garaj-Vrhovac V. Increased frequency of sister chromatid exchanges and decrease in cell viability and proliferation kinetics in human peripheral blood lymphocytes after in vitro exposure to whole bee venom. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:1654-1659. [PMID: 20730658 DOI: 10.1080/10934529.2010.506144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The present study was aimed to investigate the impact of bee venom on frequency of sister chromatid exchanges (SCE) and viability in human peripheral blood lymphocytes in vitro. In addition, the proportion of lymphocytes that undergo one, two or three cell divisions as well as proliferative rate index (PRI) have been determined. Aqueous solution of whole bee venom was added to whole blood samples in concentrations ranging from 0.1 microg/mL to 20 microg/mL in different lengths of time. Results showed that whole bee venom inhibited cell viability, resulting in a 22.86 +/- 1.14% and 51.21 +/- 0.58% reduction of viable cells at 1 hour and 6 hours, respectively. The mean SCE per cell in all the exposed samples was significantly higher than in the corresponding controls. In addition, the percentage of high frequency cells (HFC) for each sample was estimated using the pooled distribution of all SCE measurements. This parameter was also significantly higher compared to the control. Inhibition of proliferation was statistically significant for both exposure times and concentrations and was time and dose dependent. These data indicate that whole bee venom inhibited cell proliferation, resulting in a 36.87 +/- 5.89% and 38.43 +/- 1.96% reduction of proliferation at 1 hour and 6 hours, respectively. In conclusion, this report demonstrated that whole bee venom is capable of inducing DNA alterations by virtue of increasing sister chromatid exchanges in addition to the cell viability decrease and inhibition of proliferation kinetics in human peripheral blood lymphocytes in vitro.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | | |
Collapse
|
28
|
Saad Rached ICF, Castro FM, Guzzo ML, de Mello SBV. Anti-inflammatory effect of bee venom on antigen-induced arthritis in rabbits: influence of endogenous glucocorticoids. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:175-178. [PMID: 20457243 DOI: 10.1016/j.jep.2010.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/09/2010] [Accepted: 04/11/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY This study assessed the involvement of endogenous glucocorticoids (GCs) in the anti-arthritic properties of bee venom (BV) on antigen-induced arthritis (AIA) in rabbits. MATERIALS AND METHODS BV (1.5-6 microg/kg/day) was injected for 7 days before AIA induction, whereas the control group received sterile saline. The total and differential leukocyte count, PGE(2) levels in synovial fluid and synovial membrane cell infiltrate were evaluated. The contribution of GCs to BV action was assessed in rabbits treated with BV plus metyrapone, an inhibitor of GC synthesis, or RU-38 486, a steroid antagonist. RESULTS Treatment with BV (1.5 microg/kg/day) reduced the leukocyte count and PGE(2) level (18571+/-1909 cells/mm(3) and 0.49+/-0.05 ng/mL, respectively) as well as the cellular infiltrate compared with the control group (40968+/-5248 cells/mm(3) and 2.92+/-0.68 ng/mL, p<0.05). The addition of metyrapone to BV treatment completely reversed the inhibition of AIA, whereas RU-38 486 was ineffective. CONCLUSION Our data show that bee venom treatment prevents the development of antigen-induced arthritis in rabbits through the action of GCs.
Collapse
Affiliation(s)
- Izabella Cordeiro Freire Saad Rached
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, SP, CEP: 01246-903, Brazil
| | | | | | | |
Collapse
|
29
|
Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 2010; 92:151-83. [PMID: 20558236 DOI: 10.1016/j.pneurobio.2010.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/31/2010] [Accepted: 06/08/2010] [Indexed: 12/23/2022]
Abstract
Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study.
Collapse
Affiliation(s)
- Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Baqiao District, Xi'an 710038, PR China.
| | | |
Collapse
|
30
|
Soletti RC, del Barrio L, Daffre S, Miranda A, Borges HL, Moura-Neto V, Lopez MG, Gabilan NH. Peptide gomesin triggers cell death through L-type channel calcium influx, MAPK/ERK, PKC and PI3K signaling and generation of reactive oxygen species. Chem Biol Interact 2010; 186:135-43. [PMID: 20433817 DOI: 10.1016/j.cbi.2010.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 02/07/2023]
Abstract
Gomesin is an antimicrobial peptide isolated from hemocytes of a common Brazilian tarantula spider named Acanthoscurria gomesiana. This peptide exerts antitumor activity in vitro and in vivo by an unknown mechanism. In this study, the cytotoxic mechanism of gomesin in human neuroblastoma SH-SY5Y and rat pheochromocytoma PC12 cells was investigated. Gomesin induced necrotic cell death and was cytotoxic to SH-SY5Y and PC12 cells. The peptide evoked a rapid and transient elevation of intracellular calcium levels in Fluo-4-AM loaded PC12 cells, which was inhibited by nimodipine, an L-type calcium channel blocker. Preincubation with nimodipine also inhibited cell death induced by gomesin in SH-SY5Y and PC12 cells. Gomesin-induced cell death was prevented by the pretreatment with MAPK/ERK, PKC or PI3K inhibitors, but not with PKA inhibitor. In addition, gomesin generated reactive oxygen species (ROS) in SH-SY5Y cells, which were blocked with nimodipine and MAPK/ERK, PKC or PI3K inhibitors. Taken together, these results suggest that gomesin could be a useful anticancer agent, which mechanism of cytotoxicity implicates calcium entry through L-type calcium channels, activation of MAPK/ERK, PKC and PI3K signaling as well as the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Rossana C Soletti
- Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, c/ Arzobispo Morcillo 4, E-28029,Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
The assessment of bee venom responses in an experimental model of mono-arthritis using Tc-99m DPD bone scintigraphy. Ann Nucl Med 2010; 24:455-60. [PMID: 20379856 DOI: 10.1007/s12149-010-0380-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/20/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Several recent studies have shown that bee venom (BV) has an anti-nociceptive and anti-inflammatory effect on arthritis. However, objective methods for evaluation of the therapeutic effect of BV is insufficient in animal studies and clinical trials. Our purpose was to determine the usefulness of bone scintigraphy using Tc-99m DPD (3,3-diphosphono-1,2-propan-dicarbonacid) about effects of BV applied to carrageenan-induced mono-arthritis (CIA) model. METHODS Mono-arthritis was induced by an intra-articular injection of carrageenan in Sprague-Dawley rats. Administration of BV (0.8 mg/kg) was performed at 30 min before and at 4 h after the induction of mono-arthritis. We assigned rats to BV-before, BV-after, control-before and control-after groups and compared the results of each group by the weight-loading test and bone scintigraphy. The rats received an intravenous injection of 37 MBq of Tc-99m DPD by the tail vein and then scanning was performed at 4 and 24 h after the injection. Visual assessment and quantitative analysis were performed for both knees. RESULTS The BV-before and BV-after groups were more improved than the control groups on the weight load test (p < 0.05). Bone scintigraphy showed lower activity in the BV-before group than in the control-before group (p < 0.05) on the 4 h imaging. However, a significant difference in the BV-before and BV-after groups was not observed on the 24 h imaging. CONCLUSIONS BV had therapeutic effects by anti-nociceptive and anti-inflammatory activity in the CIA and bone scintigraphy performed on 4 h imaging provided visual and quantitative information for the assessment of the therapeutic response to BV as an objective method in mono-arthritis model.
Collapse
|
32
|
Park JH, Kim KH, Kim SJ, Lee WR, Lee KG, Park JH, Park KK. Effect of bee venom on transforming growth factor-beta1-treated hepatocytes. Int J Toxicol 2010; 29:49-56. [PMID: 20075187 DOI: 10.1177/1091581809353948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Bee venom (BV) has been used as treatment against a wide variety of ailments, including inflammatory diseases. Various studies have demonstrated anti-inflammatory and anticancer effects of BV. Transforming growth factor (TGF)-beta1 induces hepatocyte apoptosis via the mitochondrial permeability transition. However, there is no evidence or information regarding the antiapoptotic effect of BV on hepatocytes. The authors investigated the antiapoptotic effect of BV on TGF-beta1-treated hepatocytes. The results showed significant protection from DNA damage by BV treatment compared to corresponding TGF-beta1-treated hepatocytes without BV. BV suppressed TGF-beta1-induced activation of the bcl-2 family and caspase family of proteins, which resulted in inhibition of poly ADP-ribose polymerase (PARP) cleavage. Furthermore, BV is not cytotoxic in the low concentrations used in this study. Low concentrations of BV potently suppress the apoptotic response in TGF-beta1-treated hepatocytes; therefore, BV may have therapeutic potential for the treatment of liver diseases.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Department of Rehabilitation Medicine, Eulji University Hospital, Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
K.M. Saleh N, A. Elsayed A. Immunological Effects of Honey Bee Venom in Mice with Intracerebral Candidiasis. JOURNAL OF MEDICAL SCIENCES 2009. [DOI: 10.3923/jms.2009.227.233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Lee HS, Chung SH, Song MY, Kim SS, Shin HD, Shim WJ, Han AR, Lee JS. Effects of bee venom on the maturation of murine dendritic cells stimulated by LPS. JOURNAL OF ETHNOPHARMACOLOGY 2008; 120:215-219. [PMID: 18790041 DOI: 10.1016/j.jep.2008.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/07/2008] [Accepted: 08/15/2008] [Indexed: 05/26/2023]
Abstract
AIM OF STUDY This study was performed to elicit the effectiveness of bee venom (BV), a traditional immunosuppressive Korean acupuncture agent, on the maturation of dendrtic cells (DCs). MATERIALS AND METHODS Immature dendritic cells (iDCs) were generated from mouse bone marrow cells with GM-CSF. After 10 days of initial differentiation, DCs were activated with lipopolysaccharides (LPS) for another 48h in the presence or absence of BV. Surface molecule analysis, intracytoplasmic staining of cytokines, FITC-conjugated antigen uptake, and transwell migration assays were conducted with iDCs and activated DCs. RESULTS Up-regulation of costimulatory molecules, typical of mature DCs (mDCs) was inhibited by addition of BV. Pro-inflammatory cytokines were also found to be reduced with BV treatment in LPS-stimulated DC. A decrease in antigen uptake upon the maturation of DC was reversed in low dose BV treated mDC. In addition, BV treated mDC demonstrated reduced directional migration in response to CCL21, a lymphoid chemokine which directs mDC. CONCLUSIONS BV may have a therapeutic effect an on abnormally activated immune status, such as autoimmune rheumatoid arthritis, through an immune-modulatory effect on DC.
Collapse
Affiliation(s)
- Han-Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon 2008; 52:318-29. [PMID: 18602939 DOI: 10.1016/j.toxicon.2008.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/08/2008] [Accepted: 06/02/2008] [Indexed: 12/21/2022]
Abstract
Honeybee (Apis mellifera) venom (BV) has been reported to exhibit anticancer effects, but its mode of action at the cellular and molecular levels remains largely unknown. We found that honeybee venom induced apoptosis in human melanoma A2058 cells but not in normal skin fibroblast Detroit 551 cells. The BV-induced apoptosis was accompanied by generation of reactive oxygen species and alteration of mitochondrial membrane potential transition. Treatment with antioxidants significantly attenuated BV-induced apoptosis. Although caspase-2 and -3 were slightly activated by BV, inhibitors of caspase-2 and -3 could not block BV-induced apoptosis in A2058 cells. Data from immunostaining indicated that EndoG and AIF were translocated from mitochondria to the cytosol or nucleus, suggesting that BV induces apoptosis in A2058 cells via a caspase-independent pathway. In addition, cJun N-terminal kinases (JNK) and ERK were rapidly activated after a 5 min incubation with BV, while p38 and AKT were inactivated after 30 min administration of BV. Inhibition of JNK significantly attenuated BV-triggered apoptotic death. Moreover, BV induced a rapid and marked increase in cytosolic calcium ion. Incubation of cells under calcium-free conditions effectively diminished BV-induced apoptosis. Furthermore, when the calcium-free treatment was combined with ouabain, the recovery of cellular calcium fluctuation protected A2058 cells against BV-induced apoptosis. Finally, treatment of A2058 cells with melittin, the major component of BV, resulted in similar elevation of calcium levels and cell killing effects, suggesting that melittin is the major determinant in BV-triggered cell death. These observations provide a molecular explanation for the antiproliferative properties of BV, and suggest that this agent may be useful in treating melanoma.
Collapse
|
36
|
Stuhlmeier KM. Hyaluronan production in synoviocytes as a consequence of viral infections: HAS1 activation by Epstein-Barr virus and synthetic double- and single-stranded viral RNA analogs. J Biol Chem 2008; 283:16781-9. [PMID: 18400745 DOI: 10.1074/jbc.m801669200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One of the hallmarks of arthritis is swollen joints containing unusually high quantities of hyaluronan. Intact hyaluronan molecules facilitate cell migration by acting as ligands for CD44. Hyaluronan degradation products, readily formed at sites of inflammation, also fuel inflammatory processes. Irrespective of whether viruses could be a cause of rheumatoid arthritis, there is clear evidence that links viral infections to this debilitating disease. For this study, live Epstein-Barr virus and a number of double- and single-stranded synthetic viral analogs were tested for their effectiveness as activators of hyaluronan (HA) synthesis. As shown herein, Epstein-Barr virus-treated fibroblast-like synoviocytes significantly increase HA production and release. Real time reverse transcription-PCR data show that HAS1 mRNA levels are significantly elevated in virus-treated cells, whereas mRNA levels for the genes HAS2 and HAS3 remain unchanged. As to the mechanism of virus-induced HAS1 transcription, data are presented that imply that among the double- and single-stranded polynucleotides tested, homopolymeric polycytidylic structures are the most potent inducers of HAS1 transcription and HA release, whereas homopolymeric polyinosinic acid is without effect. Analyses of virus-induced signal cascades, utilizing chemical inhibitors of MAPK and overexpressing mutated IKK and IkappaB, revealed that the MAPK p38 as well as the transcription factor NF-kappaB are essential for virus-induced activation of HAS1. The presented data implicate HAS1 as the culprit in unfettered HA release and point out targets in virus-induced signaling pathways that might allow for specific interventions in cases of unwanted and uncontrolled HA synthesis.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Kurbadstrasse 10, 1100 Vienna, Austria.
| |
Collapse
|
37
|
Nah SS, Ha E, Mun SH, Won HJ, Chung JH. Effects of melittin on the production of matrix metalloproteinase-1 and -3 in rheumatoid arthritic fibroblast-like synoviocytes. J Pharmacol Sci 2008; 106:162-6. [PMID: 18212480 DOI: 10.1254/jphs.sc0070215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bee venom (BV) has been used in patients with rheumatoid arthritis, a condition characterized by rheumatoid joint destruction mediated, in large part, by matrix metalloproteinases (MMPs). We investigated the effects of melittin, a major component of bee venom, on the production of MMPs in human rheumatoid arthritic fibroblast-like synoviocytes (FLS). Lipopolysaccharide (LPS)-stimulated MMP3 production was significantly inhibited by melittin, which also inhibited LPS-induced DNA binding by nuclear factor kappaB (NF-kappaB). Mellitin had no effect on IL-1beta- or TNF-alpha-induced MMP1 or MMP3 production and did not decrease LPS-induced secretion of MMP1. Taken together, these findings suggest that melittin may exert its anti-rheumatoid effects, at least in part, by inhibiting MMP3 production, most likely through inhibition of NF-kappaB activity.
Collapse
Affiliation(s)
- Seong-Su Nah
- Division of Allergy and Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|