1
|
Wolf G, Gerber AN, Fasana ZG, Rosenberg K, Singh NJ. Acute effects of FLT3L treatment on T cells in intact mice. Sci Rep 2022; 12:19487. [PMID: 36376544 PMCID: PMC9662129 DOI: 10.1038/s41598-022-24126-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T cells express a diverse repertoire of antigen-specific receptors, which together protect against the full range of pathogens. In this context, the total repertoire of memory T cells which are maintained by trophic signals, long after pathogen clearance, is critical. Since these trophic factors include cytokines and self-peptide-MHC, both of which are available from endogenous antigen-presenting cells (APC), we hypothesized that enhancing APC numbers in vivo can be a viable strategy to amplify the population of memory T cells. We evaluated this by acutely treating intact mice with FMS-like tyrosine kinase 3 ligand (Flt3l), which promotes expansion of APCs. Here we report that this treatment allowed for, an expansion of effector-memory CD4+ and CD8+ T cells as well as an increase in their expression of KLRG1 and CD25. In the lymph nodes and spleen, the expansion was limited to a specific CD8 (CD44-low but CD62L-) subset. Functionally, this subset is distinct from naïve T cells and could produce significant amounts of effector cytokines upon restimulation. Taken together, these data suggest that the administration of Flt3L can impact both APC turnover as well as a corresponding flux of specific subsets of CD8+ T cells in an intact peripheral immune compartment.
Collapse
Affiliation(s)
- Gideon Wolf
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Allison N Gerber
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Zachary G Fasana
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Kenneth Rosenberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Overall SA, Bourges D, van Driel IR, Gleeson PA. Increased endogenous antigen presentation in the periphery enhances susceptibility to inflammation-induced gastric autoimmunity in mice. Eur J Immunol 2016; 47:155-167. [PMID: 27759162 DOI: 10.1002/eji.201646572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/06/2016] [Accepted: 10/17/2016] [Indexed: 11/12/2022]
Abstract
How the immune system maintains peripheral tolerance under inflammatory conditions is poorly understood. Here we assessed the fate of gastritogenic T cells following inflammatory activation in vivo. Self-reactive T cells (A23 T cells) specific for the gastric H+ /K+ ATPase α subunit (HKα) were transferred into immunosufficient recipient mice and immunised at a site distant to the stomach with adjuvant containing the cognate HKα peptide antigen. Activation of A23 T cells by immunisation did not impact on either immune tolerance or protection from gastric autoimmunity in wild-type BALB/c mice. However, increased presentation of endogenously derived HKα epitopes by dendritic cells (DCs) in the gastric lymph node of IE-H+ /K+ β transgenic mice (IEβ) reduces A23 T-cell tolerance to gastric antigens after inflammatory activation, with subsequent development of gastritis. While HKα-specific A23 T cells from immunised wild-type mice were poorly responsive to in vitro antigen specific activation, A23 T cells from immunised IEβ transgenic mice were readily re-activated, indicating loss of T-cell anergy. These findings show that DCs of gastric lymph nodes can maintain tolerance of pathogenic T cells following inflammatory stimulation and that the density of endogenous antigen presented to self-reactive T cells is critical in the balance between tolerance and autoimmunity.
Collapse
Affiliation(s)
- Sarah A Overall
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Melbourne, Australia
| | - Dorothée Bourges
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Melbourne, Australia
| | - Ian R van Driel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Melbourne, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Singh NJ. Self-reactivity as the necessary cost of maintaining a diverse memory T-cell repertoire. Pathog Dis 2016; 74:ftw092. [PMID: 27620200 DOI: 10.1093/femspd/ftw092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2016] [Indexed: 12/30/2022] Open
Abstract
The adaptive immune system is expected to protect the host from infectious agents and malignancies, while avoiding robust activation against self-peptides. However, T cells are notoriously inept at protection whenever the pathogen or tumor is persistent in the body for longer periods of time. While this has been thought of as an adaptation to limit the immunopathology from continued effector T-cell responses, it is also likely an extension of the T cell's intrinsic mechanisms which evolved to tolerate self-peptides. Here we deliberate on how the need to tolerate self-peptides might stem from a paradoxical requirement-the utility of such molecules in maintaining a diverse repertoire of pathogen-specific memory T cells in the body. Understanding the mechanisms underlying this intriguing nexus, therefore, has the potential to reveal therapeutic strategies not only for improving immune responses to chronic infections and tumors but also the long-term efficacy of vaccines aimed at cellular immune responses.
Collapse
Affiliation(s)
- Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Bourges D, Ross EM, Allen S, Read S, Houghton FJ, Bedoui S, Boon L, Gleeson PA, van Driel IR. Transient systemic inflammation does not alter the induction of tolerance to gastric autoantigens by migratory dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5023-30. [PMID: 24760154 DOI: 10.4049/jimmunol.1303429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has been proposed that activation of dendritic cells (DCs) presenting self-antigens during inflammation may lead to activation of autoreactive T cells and the development of autoimmunity. To test this hypothesis, we examined the presentation of the autoantigen recognized in autoimmune gastritis, gastric H(+)/K(+) ATPase, which is naturally expressed in the stomach and is constitutively presented in the stomach-draining lymph nodes. Systemic administration to mice of the TLR9 agonist CpG DNA, agonist anti-CD40 Ab, or TLR4 agonist LPS all failed to abrogate the process of peripheral clonal deletion of H(+)/K(+) ATPase-specific CD4 T cells or promote the development of autoimmune gastritis. We demonstrated that migratory DCs from the stomach-draining lymph nodes are the only DC subset capable of constitutively presenting the endogenous gastric H(+)/K(+) ATPase autoantigen in its normal physiological context. Analysis of costimulatory molecules indicated that, relative to resident DCs, migratory DCs displayed a partially activated phenotype in the steady state. Furthermore, migratory DCs were refractory to stimulation by transient exposure to TLR agonists, as they failed to upregulate costimulatory molecules, secrete significant amounts of inflammatory cytokines, or induce differentiation of effector T cells. Together, these data show that transient systemic inflammation failed to break tolerance to the gastric autoantigen, as migratory DCs presenting the gastric autoantigen remain tolerogenic under such conditions, demonstrating the robust nature of peripheral tolerance.
Collapse
Affiliation(s)
- Dorothée Bourges
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia;
| | - Ellen M Ross
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stacey Allen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Simon Read
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fiona J Houghton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, Peter Doherty Institute for Immunology and Infection, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Louis Boon
- Bioceros Holding BV, 3584 CM Utrecht, The Netherlands
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ian R van Driel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia;
| |
Collapse
|
5
|
Rabenstein H, Behrendt AC, Ellwart JW, Naumann R, Horsch M, Beckers J, Obst R. Differential kinetics of antigen dependency of CD4+ and CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3507-17. [PMID: 24639353 DOI: 10.4049/jimmunol.1302725] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag recognition via the TCR is necessary for the expansion of specific T cells that then contribute to adaptive immunity as effector and memory cells. Because CD4+ and CD8+ T cells differ in terms of their priming APCs and MHC ligands we compared their requirements of Ag persistence during their expansion phase side by side. Proliferation and effector differentiation of TCR transgenic and polyclonal mouse T cells were thus analyzed after transient and continuous TCR signals. Following equally strong stimulation, CD4+ T cell proliferation depended on prolonged Ag presence, whereas CD8+ T cells were able to divide and differentiate into effector cells despite discontinued Ag presentation. CD4+ T cell proliferation was neither affected by Th lineage or memory differentiation nor blocked by coinhibitory signals or missing inflammatory stimuli. Continued CD8+ T cell proliferation was truly independent of self-peptide/MHC-derived signals. The subset divergence was also illustrated by surprisingly broad transcriptional differences supporting a stronger propensity of CD8+ T cells to programmed expansion. These T cell data indicate an intrinsic difference between CD4+ and CD8+ T cells regarding the processing of TCR signals for proliferation. We also found that the presentation of a MHC class II-restricted peptide is more efficiently prolonged by dendritic cell activation in vivo than a class I bound one. In summary, our data demonstrate that CD4+ T cells require continuous stimulation for clonal expansion, whereas CD8+ T cells can divide following a much shorter TCR signal.
Collapse
Affiliation(s)
- Hannah Rabenstein
- Institute for Immunology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Gardner JM, Metzger TC, McMahon EJ, Au-Yeung BB, Krawisz AK, Lu W, Price JD, Johannes KP, Satpathy AT, Murphy KM, Tarbell KV, Weiss A, Anderson MS. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4⁺ T cells. Immunity 2013; 39:560-72. [PMID: 23993652 PMCID: PMC3804105 DOI: 10.1016/j.immuni.2013.08.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/18/2013] [Indexed: 01/04/2023]
Abstract
The autoimmune regulator (Aire) is essential for prevention of autoimmunity; its role is best understood in the thymus, where it promotes self-tolerance through tissue-specific antigen (TSA) expression. Recently, extrathymic Aire-expressing cells (eTACs) have been described in murine secondary lymphoid organs, but the identity of such cells and their role in immune tolerance remains unclear. Here we have shown that eTACs are a discrete major histocompatibility complex class II (MHC II)(hi), CD80(lo), CD86(lo), epithelial cell adhesion molecule (EpCAM)(hi), CD45(lo) bone marrow-derived peripheral antigen-presenting cell (APC) population. We also have demonstrated that eTACs can functionally inactivate CD4⁺ T cells through a mechanism that does not require regulatory T cells (Treg) and is resistant to innate inflammatory stimuli. Together, these findings further define eTACs as a distinct tolerogenic cell population in secondary lymphoid organs.
Collapse
Affiliation(s)
- James M Gardner
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0540, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143-0540, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Steinert E, Schwartz RH, Singh NJ. At low precursor frequencies, the T-cell response to chronic self-antigen results in anergy without deletion. Eur J Immunol 2012; 42:2875-80. [PMID: 22806568 PMCID: PMC3725465 DOI: 10.1002/eji.201242518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/13/2012] [Accepted: 07/10/2012] [Indexed: 02/06/2023]
Abstract
The behavior of self-reactive T cells in the peripheral immune system has often been studied by following the fate of adoptively transferred antigen-specific T cells in antigen expressing mice. In most cases, after a period of expansion, such cells undergo a slow clonal deletion, accompanied by the onset of anergy and/or suppression in the remaining cells. Here, we demonstrate that at initial frequencies approaching those found in normal repertoires, it is possible to completely avoid deletion and still maintain peripheral tolerance. At starting numbers of <1000 T cells, stimulation by chronic self-antigens resulted in a period of robust clonal expansion, followed by a steady plateau phase extending beyond 4 months. Despite their stable persistence, the self-reactive T cells did not convert to a Foxp3⁺ fate. However, they displayed a considerable block in their ability to make IL-2, consistent with the onset of anergy - in a precursor frequency or deletion independent fashion.
Collapse
Affiliation(s)
- Elizabeth Steinert
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ronald H Schwartz
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), NIH Bldg 4; Rm 211, 4 Center Drive, Bethesda, MD 20892-0420, USA
| | - Nevil J Singh
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), NIH Bldg 4; Rm 211, 4 Center Drive, Bethesda, MD 20892-0420, USA
| |
Collapse
|
8
|
In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci U S A 2011; 108:15745-50. [PMID: 21896725 DOI: 10.1073/pnas.1105200108] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have demonstrated a simple, potentially universal strategy to enhance vaccine potency, via intralymph node (i.LN) injection. To date, intranodal immunization studies have focused on the delivery of unadjuvanted vaccines (e.g., naked DNA, peptide, or protein). We hypothesized that combining i.LN vaccination with controlled release biomaterials permitting sustained dosing of molecular adjuvants to the local tissue microenvironment would further enhance this promising vaccination strategy. To test this idea, we encapsulated the Toll-like receptor-3 ligand poly(inosinic:cytidylic acid) (polyIC) in biodegradable poly(lactide-co-glycolide) microparticles (MPs) designed to remain extracellular and release polyIC in the LN over several days. Intranodal injection of MPs increased persistence of polyIC in LNs compared to the same dose of soluble polyIC or polyIC formulated in nanoparticles, leading to increased accumulation of Toll-like receptor agonist in LN-resident antigen presenting cells and more enduring dendritic cell activation. Intralymph node injection of ovalbumin mixed with polyIC-releasing MPs enhanced the humoral response and expanded ovalbumin-specific T cells to frequencies as high as 18% among all CD8(+) cells following a single injection (8.2-fold greater than the same vaccine given i.m.), a response that could not be matched by antigen mixed with polyIC-loaded nanoparticles or a 10-fold greater dose of soluble polyIC. Thus, i.LN immunization with slow release-formulated adjuvants may be a broadly applicable strategy to enhance therapeutic or prophylactic vaccines.
Collapse
|
9
|
Lin Y, Zhang L, Cai AX, Lee M, Zhang W, Neuberg D, Canning CM, Soiffer RJ, Alyea EP, Ritz J, Hacohen N, Means TK, Wu CJ. Effective posttransplant antitumor immunity is associated with TLR-stimulating nucleic acid-immunoglobulin complexes in humans. J Clin Invest 2011; 121:1574-84. [PMID: 21403403 DOI: 10.1172/jci44581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/19/2011] [Indexed: 12/27/2022] Open
Abstract
Donor lymphocyte infusion (DLI), whereby donor mononuclear cells are infused into patients, is one of the few effective immunotherapeutic strategies that generate long-lasting tumor remissions. We previously demonstrated that chronic myelogenous leukemia (CML) patients treated with DLI develop high-titer plasma antibodies specific for CML-associated antigens, the majority of which have been reported to bind nucleic acids These observations led us to predict that circulating antibody-antigen complexes in DLI-responsive patients carry nucleic acids that can engage innate immune sensors. Consistent with this, we report here that post-DLI plasma from 5 CML patients that responded to DLI treatment induced massive upregulation of MIP-1α, IP-10, and IFN-α in normal blood mononuclear cells. Importantly, this was not observed with plasma obtained before DLI and from DLI nonresponders and imatinib-treated patients. This endogenous immunostimulatory activity required nucleic acid and protein for its adjuvant effect and activated antigen-presenting cells through the RNA and DNA sensors TLR8 and TLR9. Presence of the immunoglobulin Fc receptor CD32 enhanced cellular responses, suggesting that immunoglobulins associate with this activity. Finally, a TLR-induced expression signature was detectable in post-DLI but not pre-DLI blood, consistent with an active circulating TLR8/9-stimulating factor. We have therefore demonstrated that effective tumor immunity correlates with the presence of endogenous nucleic acid-immunoglobulin complexes in patient plasma, thus providing a putative mechanism for the induction of potent antigen-specific immunity against malignant cells.
Collapse
Affiliation(s)
- Yun Lin
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Toll-like receptors (TLRs) recognize molecular patterns relating to a variety of microbial infections. Stimulation through TLRs leads to activation of antigen-presenting cells, production of inflammatory cytokines creating inflammation, and production of type 1 interferons (IFNs) that include IFN-alpha and -beta, and exerts direct effects on regulatory cells. These effects can direct the immune response, dealing with the immediate problems of infection and activating more specific responses of the adaptive immune system. However, it has recently been recognized that these receptors may recognize endogenous ligands that include DNA, RNA, and proteins that arise from cellular stress. This may have an effect on autoimmune responses in a number of ways, both activating and inhibitory. The means by which infection or endogenous stimuli through TLRs may influence autoimmunity will be discussed.
Collapse
Affiliation(s)
- F Susan Wong
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | |
Collapse
|