1
|
Sugimoto C, Fujita H, Wakao H. Mice Generated with Induced Pluripotent Stem Cells Derived from Mucosal-Associated Invariant T Cells. Biomedicines 2024; 12:137. [PMID: 38255242 PMCID: PMC10813358 DOI: 10.3390/biomedicines12010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
The function of mucosal-associated invariant T (MAIT) cells, a burgeoning member of innate-like T cells abundant in humans and implicated in many diseases, remains obscure. To explore this, mice with a rearranged T cell receptor (TCR) α or β locus, specific for MAIT cells, were generated via induced pluripotent stem cells derived from MAIT cells and were designated Vα19 and Vβ8 mice, respectively. Both groups of mice expressed large numbers of MAIT cells. The MAIT cells from these mice were activated by cytokines and an agonist to produce IFN-γ and IL-17. While Vβ8 mice showed resistance in a cancer metastasis model, Vα19 mice did not. Adoptive transfer of MAIT cells from the latter into the control mice, however, recapitulated the resistance. These mice present an implication for understanding the role of MAIT cells in health and disease and in developing treatments for the plethora of diseases in which MAIT cells are implicated.
Collapse
Affiliation(s)
| | | | - Hiroshi Wakao
- Host Defense Division, Research Centre for Advanced Medical Science, Dokkyo Medical University, Mibu 321-0293, Japan; (C.S.)
| |
Collapse
|
2
|
Chakrabarti R, Duddu S, Tiwari A, Naidu KT, Sharma P, Chakravorty N, Shukla PC. Natural Killer T cells and the invariant subset promote atherosclerosis: A meta-analysis. Life Sci 2023; 321:121620. [PMID: 37011534 DOI: 10.1016/j.lfs.2023.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
AIMS Natural Killer T (NKT) cells are reported to be both pro- and anti-atherosclerotic. With this meta-analysis, we evaluated the NKT population and their subsets in regulating the atherosclerotic disease in mice. MAIN METHODS Eighteen pre-clinical (mice, n = 1276) and 6 clinical observational studies (humans, n = 116) met the eligibility criteria for inclusion. Random effects model was used and standard mean difference (SMD) was calculated for the cell counts and aortic lesion area. KEY FINDINGS Lesion area decreased in the absence of whole NKT cell population (-1.33[95%CI, -2.14, -0.52]), and in the absence of only iNKT subset (-0.66[95%CI, -1.69, 0.37]). However, lesion area increased after over-expression/activation of iNKTs (1.40[95%CI, 0.28, 2.52]). Atherogenic diet (AD) or high fat diet (HFD) increased the number of NKT cells (2.51[95%CI, 1.42, 3.61]), whereas the iNKT cell numbers and iNKT cell-specific gene expression decreased in mice (-2.04[95%CI, -3.34, -0.75]) and atherosclerotic patients (-1.81[95 % CI, -2.89, -0.74]). SIGNIFICANCE Here we show that, NKT and iNKT cells promote atherosclerosis. In general, NKT cell population increases with the progression of the plaque in mice and the numbers of iNKT cells reduce once the disease is established both in mice and humans.
Collapse
|
3
|
Abstract
NKT cells are a small but influential member of the T cell family, recognizing lipids presented by the non-classical MHC-like molecule CD1d rather than peptides presented by classical MHC molecules. They bridge between the innate and adaptive immune systems, serving as rapid responders but also allowing the T cell immune system to recognize lipid antigens, for example derived from tumors or bacteria. They also serve as potent regulatory cells, controlling other immune responses. Type I NKT cells use a semi-invariant T cell receptor (TCR) whereas type II use diverse TCRs. Most often, type I NKT cells promote tumor immunity whereas type II tend to suppress it, and the two subtypes crossregulate each other, forming an immunoregulatory axis. Lack of tools to study these important cells has limited the understanding of these, but newer tools have allowed great advances, especially in mouse models. These range from transgenic and knock-out mice to CD1d tetramers carrying ligands for type I or II NKT cells, to antibodies and NKT cell hybridomas. Here we describe these complementary tools and approaches and their use to study NKT cells and their role in the immunology and immunotherapy of cancer.
Collapse
Affiliation(s)
- Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Purevdorj B Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Dashtsoodol N, Bortoluzzi S, Schmidt-Supprian M. T Cell Receptor Expression Timing and Signal Strength in the Functional Differentiation of Invariant Natural Killer T Cells. Front Immunol 2019; 10:841. [PMID: 31080448 PMCID: PMC6497757 DOI: 10.3389/fimmu.2019.00841] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
The CD1d-restricted Vα14 invariant NKT (iNKT) cell lineage in mice (Vα24 in humans) represents an evolutionary conserved innate-like immune cell type that recognizes glycolipid antigens. Because of their unique ability to promptly secrete copious amounts of both pro-inflammatory and anti-inflammatory cytokines, typically produced by different T helper cell types, iNKT cells are implicated in the regulation of various pathologic conditions such as infection, allergy, autoimmune disease, maintenance of transplantation tolerance, and cancer. This striking multifaceted role in immune regulation is correlated with the presence of multiple functionally distinct iNKT cell subsets that can be distinguished based on the expression of characteristic surface markers and transcription factors. However, to date it, remains largely unresolved how this puzzling diversity of iNKT cell functional subsets emerges and what factors dictate the type of effector cell differentiation during the thymic differentiation considering the mono-specific nature of their T cell receptor (TCR) and their selecting molecule CD1d. Here, we summarize recent findings focusing on the role of TCR-mediated signaling and discuss possible mechanisms that may influence the sub-lineage choice of iNKT cells.
Collapse
Affiliation(s)
- Nyambayar Dashtsoodol
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany.,Department of Microbiology and Immunology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sabrina Bortoluzzi
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany
| | - Marc Schmidt-Supprian
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany
| |
Collapse
|
5
|
Garner LC, Klenerman P, Provine NM. Insights Into Mucosal-Associated Invariant T Cell Biology From Studies of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1478. [PMID: 30013556 PMCID: PMC6036249 DOI: 10.3389/fimmu.2018.01478] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are innate-like T cells that function at the interface between innate and adaptive immunity. They express semi-invariant T cell receptors (TCRs) and recognize unconventional non-peptide ligands bound to the MHC Class I-like molecules MR1 and CD1d, respectively. MAIT cells and iNKT cells exhibit an effector-memory phenotype and are enriched within the liver and at mucosal sites. In humans, MAIT cell frequencies dwarf those of iNKT cells, while in laboratory mouse strains the opposite is true. Upon activation via TCR- or cytokine-dependent pathways, MAIT cells and iNKT cells rapidly produce cytokines and show direct cytotoxic activity. Consequently, they are essential for effective immunity, and alterations in their frequency and function are associated with numerous infectious, inflammatory, and malignant diseases. Due to their abundance in mice and the earlier development of reagents, iNKT cells have been more extensively studied than MAIT cells. This has led to the routine use of iNKT cells as a reference population for the study of MAIT cells, and such an approach has proven very fruitful. However, MAIT cells and iNKT cells show important phenotypic, functional, and developmental differences that are often overlooked. With the recent availability of new tools, most importantly MR1 tetramers, it is now possible to directly study MAIT cells to understand their biology. Therefore, it is timely to compare the phenotype, development, and function of MAIT cells and iNKT cells. In this review, we highlight key areas where MAIT cells show similarity or difference to iNKT cells. In addition, we discuss important avenues for future research within the MAIT cell field, especially where comparison to iNKT cells has proven less informative.
Collapse
Affiliation(s)
- Lucy C. Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Ren Y, Sekine-Kondo E, Tateyama M, Kasetthat T, Wongratanacheewin S, Watarai H. New Genetically Manipulated Mice Provide Insights Into the Development and Physiological Functions of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1294. [PMID: 29963043 PMCID: PMC6010523 DOI: 10.3389/fimmu.2018.01294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell subset that exhibits characteristics of both innate immune cells and T cells. They express Vα14-Jα18 (Trav11-Traj18) as an invariant chain of the T cell receptor (TCR) and are restricted to the MHC class I-like monomorphic antigen presenting molecule CD1d. iNKT cells are known as immune regulators that bridge the innate and acquired immune systems by rapid and massive production of a wide range of cytokines, which could enable them to participate in immune responses during various disease states. Thus, Traj18-deficient mice, Cd1d-deficient mice, or iNKT cell-overexpressing mice such as iNKT TCRα transgenic mice and iNKT cell cloned mice which contain a Vα14-Jα18 rearrangement in the TCRα locus are useful experimental models for the analysis of iNKT cells in vivo and in vitro. In this review, we describe the pros and cons of the various available genetically manipulated mice and summarize the insights gained from their study, including the possible roles of iNKT cells in obesity and diabetes.
Collapse
Affiliation(s)
- Yue Ren
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Neurology, The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Etsuko Sekine-Kondo
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Midori Tateyama
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Thitinan Kasetthat
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | | | - Hiroshi Watarai
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Oh S, Lee H, Shin JH, Hong C, Park SH. Murine CD8+ Invariant Natural Killer T Cells are Negatively Selected by CD1d Expressed on Thymic Epithelial Cells and Dendritic Cells. Immunol Invest 2017; 47:89-100. [DOI: 10.1080/08820139.2017.1385621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sejin Oh
- Department of Life Sciences, Korea University, Seoul South Korea
| | - Hyunji Lee
- Department of Life Sciences, Korea University, Seoul South Korea
| | - Jung Hoon Shin
- Department of Life Sciences, Korea University, Seoul South Korea
- ImmunoMax Co., Ltd, Biomedical Science, SeongBuk-gu,Seoul, South Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan-si, Gyeongsangman-do, South Korea
| | - Se-Ho Park
- Department of Life Sciences, Korea University, Seoul South Korea
| |
Collapse
|
8
|
Soh SY, Faveeuw C, Thiam CH, Khoo LHB, Yeo KP, Lim SY, Lim HY, Ng JX, Angeli V. NKT Cell Hyporesponsiveness Leads to Unrestrained Accumulation of Marginal Zone B Cells in Hypercholesterolemic Apolipoprotein E–Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:3894-3904. [DOI: 10.4049/jimmunol.1500999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
|
9
|
Abstract
Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of cholesterol-containing lipoproteins, particularly low-density lipoprotein, in the artery wall. In the arterial intima, lipoprotein components that are generated through oxidative, lipolytic, and proteolytic activities lead to the formation of several danger-associated molecular patterns, which can activate innate immune cells as well as vascular cells. Moreover, self- and non-self-antigens, such as apolipoprotein B-100 and heat shock proteins, can contribute to vascular inflammation by triggering the response of T and B cells locally. This process can influence the initiation, progression, and stability of plaques. Substantial clinical and experimental data support that the modulation of adaptive immune system may be used for treating and preventing atherosclerosis. This may lead to the development of more selective and less harmful interventions, while keeping host defense mechanisms against infections and tumors intact. Approaches such as vaccination might become a realistic option for cardiovascular disease, especially if they can elicit regulatory T and B cells and the secretion of atheroprotective antibodies. Nevertheless, difficulties in translating certain experimental data into new clinical therapies remain a challenge. In this review, we discuss important studies on the function of T- and B-cell immunity in atherosclerosis and their manipulation to develop novel therapeutic strategies against cardiovascular disease.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- From the Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Göran K Hansson
- From the Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
The role of the immunological background of mice in the genetic variability of Schistosoma mansoni as detected by random amplification of polymorphic DNA. J Helminthol 2014; 89:714-9. [PMID: 24991919 DOI: 10.1017/s0022149x14000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Schistosomiasis is a parasitic disease caused by flatworms of the genus Schistosoma. Among the Schistosoma species known to infect humans, S. mansoni is the most frequent cause of intestinal schistosomiasis in sub-Saharan Africa and South America: the World Health Organization estimates that about 200,000 deaths per year result from schistosomiasis in sub-Saharan Africa alone. The Schistosoma life cycle requires two different hosts: a snail as intermediate host and a mammal as definitive host. People become infected when they come into contact with water contaminated with free-living larvae (e.g. when swimming, fishing, washing). Although S. mansoni has mechanisms for escaping the host immune system, only a minority of infecting larvae develop into adults, suggesting that strain selection occurs at the host level. To test this hypothesis, we compared the Belo Horizonte (BH) strain of S. mansoni recovered from definitive hosts with different immunological backgrounds using random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR). Schistosoma mansoni DNA profiles of worms obtained from wild-type (CD1 and C57BL/6J) and mutant (Jα18- / - and TGFβRIIdn) mice were analysed. Four primers produced polymorphic profiles, which can therefore potentially be used as reference biomarkers. All male worms were genetically distinct from females isolated from the same host, with female worms showing more specific fragments than males. Of the four host-derived schistosome populations, female and male adults recovered from TGFβRIIdn mice showed RAPD-PCR profiles that were most similar to each other. Altogether, these data indicate that host immunological backgrounds can influence the genetic diversity of parasite populations.
Collapse
|
11
|
Ren Y, Dashtsoodol N, Watarai H, Koseki H, Quan C, Taniguchi M. Generation of induced pluripotent stem cell-derived mice by reprogramming of a mature NKT cell. Int Immunol 2014; 26:551-61. [PMID: 24854340 PMCID: PMC4169672 DOI: 10.1093/intimm/dxu057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The successful generation of iPSC-derived mouse strains to study NKT cells NKT cells are characterized by their expression of an NKT-cell-specific invariant antigen-receptor α chain encoded by Vα14Jα18 gene segments. These NKT cells bridge the innate and acquired immune systems to mediate effective and augmented responses; however, the limited number of NKT cells in vivo hampers their analysis. Here, two lines of induced pluripotent stem cell-derived mice (NKT-iPSC-derived mice) were generated by reprogramming of mature NKT cells, where one harbors both rearranged Vα14Jα18 and Vβ7 genes and the other carries rearranged Vα14Jα18 on both alleles but germline Vβ loci. The analysis of NKT-iPSC-derived mice showed a significant increase in NKT cell numbers with relatively normal frequencies of functional subsets, but significantly enhanced in some cases, and acquired functional NKT cell maturation in peripheral lymphoid organs. NKT-iPSC-derived mice also showed normal development of other immune cells except for the absence of γδT cells and disturbed development of conventional CD4 αβT cells. These results suggest that the NKT-iPSC-derived mice are a better model for NKT cell development and function study rather than transgenic mouse models reported previously and also that the presence of a pre-rearranged Vα14Jα18 in the natural chromosomal context favors the developmental fate of NKT cells.
Collapse
Affiliation(s)
- Yue Ren
- Laboratory for Immune Regulation, RCAI, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 230-0045 Kanagawa, Japan The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021 Jilin, People's Republic of China
| | - Nyambayar Dashtsoodol
- Laboratory for Immune Regulation, RCAI, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 230-0045 Kanagawa, Japan
| | - Hiroshi Watarai
- Laboratory for Immune Regulation, RCAI, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 230-0045 Kanagawa, Japan Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 102-0076 Tokyo, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RCAI, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 230-0045 Kanagawa, Japan
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021 Jilin, People's Republic of China
| | - Masaru Taniguchi
- Laboratory for Immune Regulation, RCAI, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 230-0045 Kanagawa, Japan
| |
Collapse
|
12
|
Metabolic regulator Fnip1 is crucial for iNKT lymphocyte development. Proc Natl Acad Sci U S A 2014; 111:7066-71. [PMID: 24785297 DOI: 10.1073/pnas.1406473111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Folliculin-interacting protein 1 (Fnip1) is an adaptor protein that physically interacts with AMPK, an energy-sensing kinase that stimulates mitochondrial biogenesis and autophagy in response to low ATP, while turning off energy consumption mediated by mammalian target of rapamycin. Previous studies with Fnip1-null mice revealed that Fnip1 is essential for pre-B-cell development. Here we report a critical role of Fnip1 in invariant natural killer T (iNKT) cell development. Thymic iNKT development in Fnip1(-/-) mice was arrested at stage 2 (NK1.1(-)CD44(+)) but development of CD4, CD8, γδ T-cell, and NK cell lineages proceeded normally. Enforced expression of a Vα14Jα18 iNKT TCR transgene or loss of the proapoptotic protein Bim did not rescue iNKT cell maturation in Fnip1(-/-) mice. Whereas most known essential transcription factors for iNKT cell development were represented normally, Fnip1(-/-) iNKT cells failed to down-regulate Promyelocytic leukemia zinc finger compared with their WT counterparts. Moreover, Fnip1(-/-) iNKT cells contained hyperactive mTOR and reduced mitochondrial number despite lower ATP levels, resulting in increased sensitivity to apoptosis. These results indicate that Fnip1 is vital for iNKT cell development by maintaining metabolic homeostasis in response to metabolic stress.
Collapse
|
13
|
Wakao H, Fujita H. Toward the realization of cell therapy: the advent of MAIT cells from iPSCs. Cell Cycle 2013; 12:2341-2. [PMID: 23856578 PMCID: PMC3841308 DOI: 10.4161/cc.25706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Hiroshi Wakao
- Environmental Biology; School of Medicine; Hokkaido University; Sapporo, Japan
| | | |
Collapse
|
14
|
Vahl JC, Heger K, Knies N, Hein MY, Boon L, Yagita H, Polic B, Schmidt-Supprian M. NKT cell-TCR expression activates conventional T cells in vivo, but is largely dispensable for mature NKT cell biology. PLoS Biol 2013; 11:e1001589. [PMID: 23853545 PMCID: PMC3708704 DOI: 10.1371/journal.pbio.1001589] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/07/2013] [Indexed: 12/24/2022] Open
Abstract
Natural killer T (NKT) cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR. Immune system natural killer T (NKT) cells help to protect against certain strains of bacteria and viruses, and suppress the development of autoimmune diseases and cancer. However, NKT cells are also central mediators of allergic responses. The recognition of one's own glycolipid antigens (self-glycolipids) in the thymus via the unique Vα14i T cell receptor, Vα14i-TCR, triggers the NKT cell developmental program, which differs considerably from that of conventional T cells. We generated a mouse model to investigate whether the Vα14i-TCR on mature NKT cells constantly recognizes self-glycolipids and to assess whether this TCR is required for survival and continued NKT cell identity. Switching the peptide-recognizing TCR of a mature conventional T cell to a glycolipid-recognizing Vα14i-TCR led to activation of the T cells, indicating that this TCR is also autoreactive on peripheral T cells or can signal autonomously. But TCR ablation did not affect the half-life, characteristic gene expression or innate functions of mature NKT cells. Therefore, the inherently autoreactive Vα14i-TCR is dispensable for the functions of mature peripheral NKT cells after instructing thymic NKT cell development. Thus the Vα14i-TCR serves a similar function to pattern-recognition receptors, in mediating immune recognition of foreign invasion or diseased cells.
Collapse
Affiliation(s)
- J. Christoph Vahl
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Klaus Heger
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nathalie Knies
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marco Y. Hein
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Louis Boon
- Bioceros, Yalelaan 46, Utrecht, The Netherlands
| | - Hideo Yagita
- Juntendo University School of Medicine, Tokyo, Japan
| | - Bojan Polic
- University of Rijeka School of Medicine, Rijeka, Croatia
| | - Marc Schmidt-Supprian
- Molecular Immunology and Signaltransduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| |
Collapse
|
15
|
Abstract
The gastrointestinal tract allows the residence of an almost enumerable number of bacteria. To maintain homeostasis, the mucosal immune system must remain tolerant to the commensal microbiota and eradicate pathogenic bacteria. Aberrant interactions between the mucosal immune cells and the microbiota have been implicated in the pathogenesis of inflammatory disorders, such as inflammatory bowel disease (IBD). In this review, we discuss the role of natural killer T cells (NKT cells) in intestinal immunology. NKT cells are a subset of non-conventional T cells recognizing endogenous and/or exogenous glycolipid antigens when presented by the major histocompatibility complex (MHC) class I-like antigen-presenting molecules CD1d and MR1. Upon T-cell receptor (TCR) engagement, NKT cells can rapidly produce various cytokines that have important roles in mucosal immunity. Our understanding of NKT-cell-mediated pathways including the identification of specific antigens is expanding. This knowledge will facilitate the development of NKT cell-based interventions and immune therapies for human intestinal diseases.
Collapse
Affiliation(s)
- S Middendorp
- Department of Pediatric Gastroenterology and Laboratory of Pediatrics, Erasmus MC Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|
16
|
NKT cells: from totipotency to regenerative medicine. Arch Immunol Ther Exp (Warsz) 2009; 57:117-28. [PMID: 19333728 DOI: 10.1007/s00005-009-0009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/05/2009] [Indexed: 12/19/2022]
Abstract
The recent discovery that natural killer T (NKT) cell nuclei are totipotent opens a novel avenue for further understanding NKT cell function in normal and diseased states. The progeny of a cloned mouse harboring the in-frame rearranged Valpha14-Jalpha18 T cell receptor in one allele showed a significant increase in NKT cell number compared with wild-type or littermate control mice that possessed a different TCR. Importantly, NKT cells from such progeny produced both interferon-gamma and interleukin-4, a hallmark of NKT cells. In these progeny, NKT cell development appeared to be instructively, rather than permissively, determined. Using embryonic stem cells prepared via the somatic cell nuclear transfer of NKT nuclei, relatively mature NKT cells were induced under conditions permissible for T cell induction. Furthermore, these NKT cells matured autonomously upon injection into mice, resulting in an antigen-specific adjuvant effect.
Collapse
|
17
|
Wakao H, Wakao R, Sakata S, Iwabuchi K, Oda A, Fujita H. In vitro
induction of natural killer T cells from embryonic stem cells prepared using somatic cell nuclear transfer. FASEB J 2008; 22:2223-2231. [DOI: 10.1096/fj.07-104687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Hiroshi Wakao
- Department of Environmental Biology School of MedicineHokkaido UniversitySapporoJapan
- Immune Regulation Group Rikagaku Kenkyusho (RIKEN)Research Center for Allergy and ImmunologyYokohamaJapan
| | - Rika Wakao
- Developmental Genetics GroupResearch Center for Allergy and ImmunologyYokohamaJapan
| | - Sakura Sakata
- Immune Regulation Group Rikagaku Kenkyusho (RIKEN)Research Center for Allergy and ImmunologyYokohamaJapan
| | - Kazuya Iwabuchi
- Division of Immunobiology Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Atsushi Oda
- Department of Environmental Biology School of MedicineHokkaido UniversitySapporoJapan
| | - Hiroyoshi Fujita
- Department of Environmental Biology School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|