1
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Yang D, Duan Z, Yuan P, Ding C, Dai X, Chen G, Wu D. How does TCR-T cell therapy exhibit a superior anti-tumor efficacy. Biochem Biophys Res Commun 2023; 687:149209. [PMID: 37944471 DOI: 10.1016/j.bbrc.2023.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
TCR-engineered T cells have achieved great progress in solid tumor therapy, some of which have been applicated in clinical trials. Deep knowledge about the current progress of TCR-T in tumor therapy would be beneficial to understand the direction. Here, we classify tumor antigens into tumor-associated antigens, tumor-specific antigens, tumor antigens expressed by oncogenic viruses, and tumor antigens caused by abnormal protein modification; Then we detail the TCR-T cell therapy effects targeting those tumor antigens in clinical or preclinical trials, and propose that neoantigen specific TCR-T cell therapy is expected to be a promising approach for solid tumors; Furthermore, we summarize the optimization strategies, such as tumor microenvironment, TCR pairing and affinity, to improve the therapeutic effect of TCR-T. Overall, this review provides inspiration for the antigen selection and therapy strategies of TCR-T in the future.
Collapse
Affiliation(s)
- Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Giordano Attianese GMP, Ash S, Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol Rev 2023; 320:166-198. [PMID: 37548063 DOI: 10.1111/imr.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Adoptive T-cell transfer (ACT) therapies, including of tumor infiltrating lymphocytes (TILs) and T cells gene-modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR), have demonstrated clinical efficacy for a proportion of patients and cancer-types. The field of ACT has been driven forward by the clinical success of CD19-CAR therapy against various advanced B-cell malignancies, including curative responses for some leukemia patients. However, relapse remains problematic, in particular for lymphoma. Moreover, for a variety of reasons, relative limited efficacy has been demonstrated for ACT of non-hematological solid tumors. Indeed, in addition to pre-infusion challenges including lymphocyte collection and manufacturing, ACT failure can be attributed to several biological processes post-transfer including, (i) inefficient tumor trafficking, infiltration, expansion and retention, (ii) chronic antigen exposure coupled with insufficient costimulation resulting in T-cell exhaustion, (iii) a range of barriers in the tumor microenvironment (TME) mediated by both tumor cells and suppressive immune infiltrate, (iv) tumor antigen heterogeneity and loss, or down-regulation of antigen presentation machinery, (v) gain of tumor intrinsic mechanisms of resistance such as to apoptosis, and (vi) various forms of toxicity and other adverse events in patients. Affinity-optimized TCRs can improve T-cell function and innovative CAR designs as well as gene-modification strategies can be used to coengineer specificity, safety, and function into T cells. Coengineering strategies can be designed not only to directly support the transferred T cells, but also to block suppressive barriers in the TME and harness endogenous innate and adaptive immunity. Here, we review a selection of the remarkable T-cell coengineering strategies, including of tools, receptors, and gene-cargo, that have been developed in recent years to augment tumor control by ACT, more and more of which are advancing to the clinic.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Wei F, Cheng XX, Xue JZ, Xue SA. Emerging Strategies in TCR-Engineered T Cells. Front Immunol 2022; 13:850358. [PMID: 35432319 PMCID: PMC9006933 DOI: 10.3389/fimmu.2022.850358] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.
Collapse
Affiliation(s)
- Fang Wei
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Xiao-Xia Cheng
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - John Zhao Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Shao-An Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| |
Collapse
|
5
|
Shafer P, Kelly LM, Hoyos V. Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Front Immunol 2022; 13:835762. [PMID: 35309357 PMCID: PMC8928448 DOI: 10.3389/fimmu.2022.835762] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
To redirect T cells against tumor cells, T cells can be engineered ex vivo to express cancer-antigen specific T cell receptors (TCRs), generating products known as TCR-engineered T cells (TCR T). Unlike chimeric antigen receptors (CARs), TCRs recognize HLA-presented peptides derived from proteins of all cellular compartments. The use of TCR T cells for adoptive cellular therapies (ACT) has gained increased attention, especially as efforts to treat solid cancers with ACTs have intensified. In this review, we describe the differing mechanisms of T cell antigen recognition and signal transduction mediated through CARs and TCRs. We describe the classes of cancer antigens recognized by current TCR T therapies and discuss both classical and emerging pre-clinical strategies for antigen-specific TCR discovery, enhancement, and validation. Finally, we review the current landscape of clinical trials for TCR T therapy and discuss what these current results indicate for the development of future engineered TCR approaches.
Collapse
Affiliation(s)
- Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Lauren M. Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Cancer & Cell Biology, Baylor College of Medicine, Houston, TX, United States
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Liu Y, Yan X, Zhang F, Zhang X, Tang F, Han Z, Li Y. TCR-T Immunotherapy: The Challenges and Solutions. Front Oncol 2022; 11:794183. [PMID: 35145905 PMCID: PMC8822241 DOI: 10.3389/fonc.2021.794183] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022] Open
Abstract
T cell receptor-engineered T cell (TCR-T) therapy is free from the limit of surface antigen expression of the target cells, which is a potential cellular immunotherapy for cancer treatment. Significant advances in the treatment of hematologic malignancies with cellular immunotherapy have aroused the interest of researchers in the treatment of solid tumors. Nevertheless, the overall efficacy of TCR-T cell immunotherapy in solid tumors was not significantly high when compared with hematological malignancies. In this article, we pay attention to the barriers of TCR-T cell immunotherapy for solid tumors, as well as the strategies affecting the efficacy of TCR-T cell immunotherapy. To provide some reference for researchers to better overcome the impact of TCR-T cell efficiency in solid tumors.
Collapse
Affiliation(s)
- Yating Liu
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Yan
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Fan Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoxia Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Yumin Li,
| |
Collapse
|
7
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
8
|
Heather JM, Spindler MJ, Alonso M, Shui Y, Millar DG, Johnson D, Cobbold M, Hata A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e68. [PMID: 35325179 PMCID: PMC9262623 DOI: 10.1093/nar/gkac190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
The study and manipulation of T cell receptors (TCRs) is central to multiple fields across basic and translational immunology research. Produced by V(D)J recombination, TCRs are often only recorded in the literature and data repositories as a combination of their V and J gene symbols, plus their hypervariable CDR3 amino acid sequence. However, numerous applications require full-length coding nucleotide sequences. Here we present Stitchr, a software tool developed to specifically address this limitation. Given minimal V/J/CDR3 information, Stitchr produces complete coding sequences representing a fully spliced TCR cDNA. Due to its modular design, Stitchr can be used for TCR engineering using either published germline or novel/modified variable and constant region sequences. Sequences produced by Stitchr were validated by synthesizing and transducing TCR sequences into Jurkat cells, recapitulating the expected antigen specificity of the parental TCR. Using a companion script, Thimble, we demonstrate that Stitchr can process a million TCRs in under ten minutes using a standard desktop personal computer. By systematizing the production and modification of TCR sequences, we propose that Stitchr will increase the speed, repeatability, and reproducibility of TCR research. Stitchr is available on GitHub.
Collapse
Affiliation(s)
- James M Heather
- To whom correspondence should be addressed. Tel: +1 617 724 0104;
| | | | | | | | - David G Millar
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Mark Cobbold
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron N Hata
- Correspondence may also be addressed to Aaron N. Hata. Tel: +1 617 724 3442;
| |
Collapse
|
9
|
Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS, Lizee G. Evolution of CD8 + T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells 2021; 10:cells10092379. [PMID: 34572028 PMCID: PMC8469972 DOI: 10.3390/cells10092379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered T cell receptor T (TCR-T) cell therapy has facilitated the generation of increasingly reliable tumor antigen-specific adaptable cellular products for the treatment of human cancer. TCR-T cell therapies were initially focused on targeting shared tumor-associated peptide targets, including melanoma differentiation and cancer-testis antigens. With recent technological developments, it has become feasible to target neoantigens derived from tumor somatic mutations, which represents a highly personalized therapy, since most neoantigens are patient-specific and are rarely shared between patients. TCR-T therapies have been tested for clinical efficacy in treating solid tumors in many preclinical studies and clinical trials all over the world. However, the efficacy of TCR-T therapy for the treatment of solid tumors has been limited by a number of factors, including low TCR avidity, off-target toxicities, and target antigen loss leading to tumor escape. In this review, we discuss the process of deriving tumor antigen-specific TCRs, including the identification of appropriate tumor antigen targets, expansion of antigen-specific T cells, and TCR cloning and validation, including techniques and tools for TCR-T cell vector construction and expression. We highlight the achievements of recent clinical trials of engineered TCR-T cell therapies and discuss the current challenges and potential solutions for improving their safety and efficacy, insights that may help guide future TCR-T studies in cancer.
Collapse
Affiliation(s)
- Yimo Sun
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Fenge Li
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Heather Sonnemann
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Kyle R. Jackson
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Amjad H. Talukder
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Arjun S. Katailiha
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Gregory Lizee
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
10
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
11
|
Raes L, De Smedt SC, Raemdonck K, Braeckmans K. Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnol Adv 2021; 49:107760. [PMID: 33932532 DOI: 10.1016/j.biotechadv.2021.107760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Genetically engineered T cells have sparked interest in advanced cancer treatment, reaching a milestone in 2017 with two FDA-approvals for CD19-directed chimeric antigen receptor (CAR) T cell therapeutics. It is becoming clear that the next generation of CAR T cell therapies will demand more complex engineering strategies and combinations thereof, including the use of revolutionary gene editing approaches. To date, manufacturing of CAR T cells mostly relies on γ-retroviral or lentiviral vectors, but their use is associated with several drawbacks, including safety issues, high manufacturing cost and vector capacity constraints. Non-viral approaches, including membrane permeabilization and carrier-based techniques, have therefore gained a lot of interest to replace viral transductions in the manufacturing of T cell therapeutics. This review provides an in-depth discussion on the avid search for alternatives to viral vectors, discusses key considerations for T cell engineering technologies, and provides an overview of the emerging spectrum of non-viral transfection technologies for T cells. Strengths and weaknesses of each technology will be discussed in relation to T cell engineering. Altogether, this work emphasizes the potential of non-viral transfection approaches to advance the next-generation of genetically engineered T cells.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Johnson DK, Magoffin W, Myers SJ, Finnell JG, Hancock JC, Orton TS, Persaud SP, Christensen KA, Weber KS. CD4 Inhibits Helper T Cell Activation at Lower Affinity Threshold for Full-Length T Cell Receptors Than Single Chain Signaling Constructs. Front Immunol 2021; 11:561889. [PMID: 33542711 PMCID: PMC7851051 DOI: 10.3389/fimmu.2020.561889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cells are crucial for effective repression and elimination of cancer cells. Despite a paucity of CD4+ T cell receptor (TCR) clinical studies, CD4+ T cells are primed to become important therapeutics as they help circumvent tumor antigen escape and guide multifactorial immune responses. However, because CD8+ T cells directly kill tumor cells, most research has focused on the attributes of CD8+ TCRs. Less is known about how TCR affinity and CD4 expression affect CD4+ T cell activation in full length TCR (flTCR) and TCR single chain signaling (TCR-SCS) formats. Here, we generated an affinity panel of TCRs from CD4+ T cells and expressed them in flTCR and three TCR-SCS formats modeled after chimeric antigen receptors (CARs) to understand the contributions of TCR-pMHCII affinity, TCR format, and coreceptor CD4 interactions on CD4+ T cell activation. Strikingly, the coreceptor CD4 inhibited intermediate and high affinity TCR-construct activation by Lck-dependent and -independent mechanisms. These inhibition mechanisms had unique affinity thresholds dependent on the TCR format. Intracellular construct formats affected the tetramer staining for each TCR as well as IL-2 production. IL-2 production was promoted by increased TCR-pMHCII affinity and the flTCR format. Thus, CD4+ T cell therapy development should consider TCR affinity, CD4 expression, and construct format.
Collapse
Affiliation(s)
- Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Wyatt Magoffin
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Sheldon J Myers
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Jordan G Finnell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - John C Hancock
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Taylor S Orton
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Stephen P Persaud
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
| | - Kenneth A Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
13
|
Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol Rev 2020; 290:127-147. [PMID: 31355495 PMCID: PMC7027847 DOI: 10.1111/imr.12772] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Adoptive cell transfer (ACT) using chimeric antigen receptor (CAR)-modified T cells can induce durable remissions in patients with refractory B-lymphoid cancers. By contrast, results applying CAR-modified T cells to solid malignancies have been comparatively modest. Alternative strategies to redirect T cell specificity and cytolytic function are therefore necessary if ACT is to serve a greater role in human cancer treatments. T cell receptors (TCRs) are antigen recognition structures physiologically expressed by all T cells that have complementary, and in some cases superior, properties to CARs. Unlike CARs, TCRs confer recognition to epitopes derived from proteins residing within any subcellular compartment, including the membrane, cytoplasm and nucleus. This enables TCRs to detect a broad universe of targets, such as neoantigens, cancer germline antigens, and viral oncoproteins. Moreover, because TCRs have evolved to efficiently detect and amplify antigenic signals, these receptors respond to epitope densities many fold smaller than required for CAR-signaling. Herein, we summarize recent clinical data demonstrating that TCR-based immunotherapies can mediate regression of solid malignancies, including immune-checkpoint inhibitor refractory cancers. These trials simultaneously highlight emerging mechanisms of TCR resistance. We conclude by discussing how TCR-based immunotherapies can achieve broader dissemination through innovations in cell manufacturing and non-viral genome integration techniques.
Collapse
Affiliation(s)
- Smita S Chandran
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY.,Weill Cornell Medical College, New York, NY
| |
Collapse
|
14
|
Abstract
Advances in academic and clinical studies during the last several years have resulted in practical outcomes in adoptive immune therapy of cancer. Immune cells can be programmed with molecular modules that increase their therapeutic potency and specificity. It has become obvious that successful immunotherapy must take into account the full complexity of the immune system and, when possible, include the use of multifactor cell reprogramming that allows fast adjustment during the treatment. Today, practically all immune cells can be stably or transiently reprogrammed against cancer. Here, we review works related to T cell reprogramming, as the most developed field in immunotherapy. We discuss factors that determine the specific roles of αβ and γδ T cells in the immune system and the structure and function of T cell receptors in relation to other structures involved in T cell target recognition and immune response. We also discuss the aspects of T cell engineering, specifically the construction of synthetic T cell receptors (synTCRs) and chimeric antigen receptors (CARs) and the use of engineered T cells in integrative multifactor therapy of cancer.
Collapse
Affiliation(s)
- Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
15
|
He Q, Jiang X, Zhou X, Weng J. Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol 2019; 12:139. [PMID: 31852498 PMCID: PMC6921533 DOI: 10.1186/s13045-019-0812-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell therapy has achieved dramatic success in a clinic, and the Food and Drug Administration approved two chimeric antigen receptor-engineered T cell (CAR-T) therapies that target hematological cancers in 2018. A significant issue faced by CAR-T therapies is the lack of tumor-specific biomarkers on the surfaces of solid tumor cells, which hampers the application of CAR-T therapies to solid tumors. Intracellular tumor-related antigens can be presented as peptides in the major histocompatibility complex (MHC) on the cell surface, which interact with the T cell receptors (TCR) on antigen-specific T cells to stimulate an anti-tumor response. Multiple immunotherapy strategies have been developed to eradicate tumor cells through targeting the TCR-peptide/MHC interactions. Here, we summarize the current status of TCR-based immunotherapy strategies, with particular focus on the TCR structure, activated signaling pathways, the effects and toxicity associated with TCR-based therapies in clinical trials, preclinical studies examining immune-mobilizing monoclonal TCRs against cancer (ImmTACs), and TCR-fusion molecules. We propose several TCR-based therapeutic strategies to achieve optimal clinical responses without the induction of autoimmune diseases.
Collapse
Affiliation(s)
- Qinghua He
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China
| | - Xianhan Jiang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China. .,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1414 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
17
|
Jia X, Wang B, Zhai T, Yao Q, Li Q, Zhang JA. WITHDRAWN: T cell receptor revision and immune repertoire changes in autoimmune diseases. Clin Immunol 2018:S1521-6616(18)30724-1. [PMID: 30543918 DOI: 10.1016/j.clim.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
18
|
Echchannaoui H, Petschenka J, Ferreira EA, Hauptrock B, Lotz-Jenne C, Voss RH, Theobald M. A Potent Tumor-Reactive p53-Specific Single-Chain TCR without On- or Off-Target Autoimmunity In Vivo. Mol Ther 2018; 27:261-271. [PMID: 30528087 DOI: 10.1016/j.ymthe.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Genetic engineering of T cells with a T cell receptor (TCR) targeting tumor antigen is a promising strategy for cancer immunotherapy. Inefficient expression of the introduced TCR due to TCR mispairing may limit the efficacy and adversely affect the safety of TCR gene therapy. Here, we evaluated the safety and therapeutic efficiency of an optimized single-chain TCR (scTCR) specific for an HLA-A2.1-restricted (non-mutated) p53(264-272) peptide in adoptive T cell transfer (ACT) models using our unique transgenic mice expressing human p53 and HLA-A2.1 that closely mimic the human setting. Specifically, we showed that adoptive transfer of optimized scTCR-redirected T cells does not induce on-target and off-target autoimmunity. Furthermore, ACT resulted in full tumor protection and led to a long-lived effective, antigen-specific memory T cell response in syngeneic and xenograft models. Taken together, the study demonstrated that our scTCR specific for the broadly expressed tumor-associated antigen p53(264-272) can eradicate p53+A2.1+ tumor cells without inducing off-target or self-directed toxicities in mouse models of ACT. These data strongly support the improved safety and therapeutic efficacy of high-affinity p53scTCR for TCR-based immunotherapy of p53-associated malignancies.
Collapse
Affiliation(s)
- Hakim Echchannaoui
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center (UMC), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; German Consortium for Translational Cancer Research (DKTK), Frankfurt/Mainz, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jutta Petschenka
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Edite Antunes Ferreira
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Beate Hauptrock
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carina Lotz-Jenne
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ralf-Holger Voss
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Theobald
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center (UMC), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; German Consortium for Translational Cancer Research (DKTK), Frankfurt/Mainz, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Consonni M, Dellabona P, Casorati G. Potential advantages of CD1-restricted T cell immunotherapy in cancer. Mol Immunol 2018; 103:200-208. [PMID: 30308433 DOI: 10.1016/j.molimm.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) using tumor-specific "conventional" MHC-restricted T cells obtained from tumor-infiltrating lymphocytes, or derived ex vivo by either antigen-specific expansion or genetic engineering of polyclonal T cell populations, shows great promise for cancer treatment. However, the wide applicability of this therapy finds limits in the high polymorphism of MHC molecules that restricts the use in the autologous context. CD1 antigen presenting molecules are nonpolymorphic and specialized for lipid antigen presentation to T cells. They are often expressed on malignant cells and, therefore, may represent an attractive target for ACT. We provide a brief overview of the CD1-resticted T cell response in tumor immunity and we discuss the pros and cons of ACT approaches based on unconventional CD1-restricted T cells.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
20
|
An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget 2018; 7:21199-221. [PMID: 27028870 PMCID: PMC5008279 DOI: 10.18632/oncotarget.8385] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells.
Collapse
|
21
|
Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature 2017; 545:423-431. [PMID: 28541315 DOI: 10.1038/nature22395] [Citation(s) in RCA: 582] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Abstract
Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimaeric antigen receptors (CARs) are a class of synthetic receptors that reprogram lymphocyte specificity and function. CARs targeting CD19 have demonstrated remarkable potency in B cell malignancies. Engineered T cells are applicable in principle to many cancers, pending further progress to identify suitable target antigens, overcome immunosuppressive tumour microenvironments, reduce toxicities, and prevent antigen escape. Advances in the selection of optimal T cells, genetic engineering, and cell manufacturing are poised to broaden T-cell-based therapies and foster new applications in infectious diseases and autoimmunity.
Collapse
Affiliation(s)
- Michel Sadelain
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Isabelle Rivière
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
22
|
Tao C, Shao H, Zhang W, Bo H, Wu F, Shen H, Huang S. γδTCR immunoglobulin constant region domain exchange in human αβTCRs improves TCR pairing without altering TCR gene-modified T cell function. Mol Med Rep 2017; 15:1555-1564. [PMID: 28259946 PMCID: PMC5365024 DOI: 10.3892/mmr.2017.6206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The adoptive genetic transfer of T cell receptors (TCRs) has been shown to be overall feasible and offer clinical potential as a treatment for different types of cancer. However, this promising clinical approach is limited by the serious potential consequence that exogenous TCR mispairing with endogenous TCR chains may lead to the risk of self-reactivity. In the present study, domain-exchange and three-dimensional modeling strategies were used to create a set of chimeric TCR variants, which were used to exchange the partial or complete constant region of αβTCR with corresponding γδTCR domains. The expression, assembly and function of the chimeric TCR variants were examined in Jurkat T cells and peripheral mononuclear blood cells (PBMCs). Genetically-encoded chimeras were fused with a pair of fluorescent proteins (ECFP/EYFP) to monitor expression and the pairing between chimeric TCRα chains and TCRβ chains. The fluorescence energy transfer based on confocal laser scanning microscopy showed that the introduction of γδTCR constant sequences into the αβTCR did not result in a global reduction of mispairing with endogenous TCR. However, the TCR harboring the immunoglobulin-like domain of the γδTCR constant region (i.e., TCR∆IgC), showed a higher expression and preferential pairing, compared with wild-type (wt)TCR. The function analysis showed that TCR∆IgC exhibited the same levels of interferon-γ production and cytotoxic activity, compared with wtTCR. Furthermore, these modified TCR-transduced T cells retained the classic human leukocyte antigen restriction of the original TCR. The other two chimeric TCRs, had either exchange of the cp+tm+ic domain or exchange of the whole C domain (Fig. 1). Ultimately, exchange of these domains demonstrated defective function in the transduced T cells. Taken together, these findings may provide further understanding of the γδTCR constant domain with implications for the improvement of TCR gene transfer therapy.
Collapse
Affiliation(s)
- Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Huaben Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Fenglin Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Shulin Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
23
|
Abstract
Adoptive T-cell therapies have shown exceptional promise in the treatment of cancer, especially B-cell malignancies. Two distinct strategies have been used to redirect the activity of ex vivo engineered T cells. In one case, the well-known ability of the T-cell receptor (TCR) to recognize a specific peptide bound to a major histocompatibility complex molecule has been exploited by introducing a TCR against a cancer-associated peptide/human leukocyte antigen complex. In the other strategy, synthetic constructs called chimeric antigen receptors (CARs) that contain antibody variable domains (single-chain fragments variable) and signaling domains have been introduced into T cells. Whereas many reviews have described these two approaches, this review focuses on a few recent advances of significant interest. The early success of CARs has been followed by questions about optimal configurations of these synthetic constructs, especially for efficacy against solid tumors. Among the many features that are important, the dimensions and stoichiometries of CAR/antigen complexes at the synapse have recently begun to be appreciated. In TCR-mediated approaches, recent evidence that mutated peptides (neoantigens) serve as targets for endogenous T-cell responses suggests that these neoantigens may also provide new opportunities for adoptive T-cell therapies with TCRs.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
24
|
Casey NP, Fujiwara H, Tanimoto K, Okamoto S, Mineno J, Kuzushima K, Shiku H, Yasukawa M. A Functionally Superior Second-Generation Vector Expressing an Aurora Kinase-A-Specific T-Cell Receptor for Anti-Leukaemia Adoptive Immunotherapy. PLoS One 2016; 11:e0156896. [PMID: 27271876 PMCID: PMC4896450 DOI: 10.1371/journal.pone.0156896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/21/2016] [Indexed: 11/23/2022] Open
Abstract
Aurora Kinase A is a cancer-associated protein normally involved in the regulation of mitosis. Being over-expressed in a range of cancers, it is a suitable target for cell-based immunotherapy. Gene transfer of T-cell receptor sequences cognisant of HLA-A*0201-restricted Aurora Kinase A antigen has previously been shown to transfer specific immunoreactivity against the target peptide in a Human Lymphocyte Antigen-restricted manner. While T cell receptor gene-transfer has great potential in overcoming the difficulties of isolating and expanding tumour-reactive lymphocytes from a patient’s own cells, one hurdle is potential mispairing and competition between exogenous and endogenous T cell receptor chains. We have used a retroviral vector design bearing a short-interfering RNA that downregulates endogenous T cell receptor chains, without affecting expression of the transgenic T cell receptor sequences. The T cell receptor expression cassette also includes a 2A self-cleaving peptide, resulting in equimolar expression of the T cell receptor alpha and beta chains, further enhancing formation of the desired T cell receptor. Via a simple, modular cloning method, we have cloned the alpha and beta chains of the anti-Aurora Kinase A-reactive T cell receptor into this ‘siTCR’ vector. We then compared the activity of this vector against the original, ‘conventional’ vector across a panel of assays. T cell receptors expressed from the siTCR-vector retained the cytotoxic functionality of the original vector, with evidence of reduced off-target reactivity. The rate of expression of correctly-formed T cell receptors was superior using the siTCR design, and this was achieved at lower vector copy numbers. Maintaining T cell receptor efficacy with a reduced vector copy number reduces the risk of genotoxicity. The siTCR design also reduces the risk of mispairing and cross-reactivity, while increasing the functional titre. Such improvements in the safety of T cell receptor gene-transfer will be crucial for clinical applications of this technology.
Collapse
Affiliation(s)
- Nicholas Paul Casey
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazushi Tanimoto
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | - Hiroshi Shiku
- Department of Cancer Vaccine and Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
25
|
Themeli M, Rivière I, Sadelain M. New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 2016; 16:357-66. [PMID: 25842976 DOI: 10.1016/j.stem.2015.03.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The promising clinical results obtained with engineered T cells, including chimeric antigen receptor (CAR) therapy, call for further advancements to facilitate and broaden their applicability. One potentially beneficial innovation is to exploit new T cell sources that reduce the need for autologous cell manufacturing and enable cell transfer across histocompatibility barriers. Here we review emerging T cell engineering approaches that utilize alternative T cell sources, which include virus-specific or T cell receptor-less allogeneic T cells, expanded lymphoid progenitors, and induced pluripotent stem cell (iPSC)-derived T lymphocytes. The latter offer the prospect for true off-the-shelf, genetically enhanced, histocompatible cell therapy products.
Collapse
Affiliation(s)
- Maria Themeli
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Isabelle Rivière
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michel Sadelain
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies. Clin Cancer Res 2015; 21:5191-7. [PMID: 26463711 DOI: 10.1158/1078-0432.ccr-15-0860] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/12/2015] [Indexed: 12/15/2022]
Abstract
The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion.
Collapse
Affiliation(s)
- Thomas M Schmitt
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ingunn M Stromnes
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington
| | - Aude G Chapuis
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip D Greenberg
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Immunology, University of Washington, Seattle, Washington. Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
27
|
Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma. Tumour Biol 2015; 37:799-806. [PMID: 26250457 DOI: 10.1007/s13277-015-3845-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022] Open
Abstract
Alpha-fetoprotein (AFP) is overexpressed in hepatocellular carcinoma (HCC) and could serve as a tumor-associated antigen (TAA) and potential target for adoptive immunotherapy. However, low frequency and severe functional impairment of AFP-specific T cells in vivo hamper adoptive infusion. TAA-specific T cell receptor (TCR) gene transfer could be an efficient and reliable alternation to generate AFP-specific cytotoxic T lymphocytes (CTLs). Autologous dendritic cells (DC) pulsed with AFP158-166 peptides were used to stimulate AFP-specific CTLs. TCR α/β chain genes of AFP-specific CTLs were cloned and linked by 2A peptide to form full-length TCR coding sequence synthesized into a lentiviral vector. Nonspecific activated T cells were engineered by lentivirus infection. Transgenetic CTLs were evaluated for transfection efficiency, expression of AFP158-166-specific TCR, interferon (IFN)-γ secretion, and specific cytotoxicity toward AFP+ HCC cells in vitro and in vivo. Flow cytometry revealed the AFP158-166-MHC-Pentamer positive transgenetic CTLs was 9.86 %. The number of IFN-γ secretion T cells and the specific cytotoxicity toward HpeG2 in vitro and in tumor-bearing NOD/SCID mice were significantly raised in transgenetic CTLs than that of AFP158-166-specific CTLs obtained by peptide-pulsed DCs or control group. TCR gene transfer is a promising strategy to generate AFP158-166-specific CTLs for the treatment of HCC.
Collapse
|
28
|
Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 2015; 8:337-50. [PMID: 26035842 PMCID: PMC4381333 DOI: 10.1242/dmm.018036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies.
Collapse
Affiliation(s)
- Michaela Sharpe
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Natalie Mount
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
29
|
Wang X, Rivière I. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther 2015; 22:85-94. [PMID: 25721207 DOI: 10.1038/cgt.2014.81] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 12/19/2022]
Abstract
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) and genetically engineered T lymphocytes expressing chimeric antigen receptors (CARs) or conventional alpha/beta T-cell receptors (TCRs), collectively termed adoptive cell therapy (ACT), is an emerging novel strategy to treat cancer patients. Application of ACT has been constrained by the ability to isolate and expand functional tumor-reactive T cells. The transition of ACT from a promising experimental regimen to an established standard of care treatment relies largely on the establishment of safe, efficient, robust and cost-effective cell manufacturing protocols. The manufacture of cellular products under current good manufacturing practices (cGMPs) has a critical role in the process. Herein, we review current manufacturing methods for the large-scale production of clinical-grade TILs, virus-specific and genetically modified CAR or TCR transduced T cells in the context of phase I/II clinical trials as well as the regulatory pathway to get these complex personalized cellular products to the clinic.
Collapse
Affiliation(s)
- X Wang
- 1] Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA [2] Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - I Rivière
- 1] Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA [2] Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA [3] Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
30
|
Lanitis E, Smith JB, Dangaj D, Flingai S, Poussin M, Xu S, Czerniecki BJ, Li YF, Robbins PF, Powell DJ. A human ErbB2-specific T-cell receptor confers potent antitumor effector functions in genetically engineered primary cytotoxic lymphocytes. Hum Gene Ther 2014; 25:730-9. [PMID: 25003657 PMCID: PMC4137348 DOI: 10.1089/hum.2014.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/20/2014] [Indexed: 01/10/2023] Open
Abstract
The ErbB2 protein is a member of the tyrosine kinase family of growth factor receptors that is overexpressed in cancers of the breast, ovary, stomach, kidney, colon, and lung, and therefore represents an attractive candidate antigen for targeted cancer immunotherapy. Cytotoxic T lymphocytes specific for various immunogenic ErbB2 peptides have been described, but they often exhibit both poor functional avidity and tumor reactivity. In order to generate potent CD8(+) T cells with specificity for the ErbB2(369-377) peptide, we performed one round of in vitro peptide stimulation of CD8(+) T cells isolated from an HLA-A2(+) patient who was previously vaccinated with autologous dendritic cells pulsed with HLA class I ErbB2 peptides. Using this approach, we enriched highly avid ErbB2-reactive T cells with strong ErbB2-specific, antitumor effector functions. We then stimulated these ErbB2-reactive T cells with ErbB2(+) HLA-A2(+) tumor cells in vitro and sorted tumor-activated ErbB2(369-377) peptide T cells, which allowed for the isolation of a novel T-cell receptor (TCR) with ErbB2(369-377) peptide specificity. Primary human CD8(+) T cells genetically modified to express this ErbB2-specific TCR specifically bound ErbB2(369-377) peptide containing HLA-A2 tetramers, and efficiently recognized target cells pulsed with low nanomolar concentrations of ErbB2(369-377) peptide as well as nonpulsed ErbB2(+) HLA-A2(+) tumor cell lines in vitro. In a novel xenograft model, ErbB2-redirected T cells also significantly delayed progression of ErbB2(+) HLA-A2(+) human tumor in vivo. Together, these results support the notion that redirection of normal T-cell specificity by TCR gene transfer can have potential applications in the adoptive immunotherapy of ErbB2-expressing malignancies.
Collapse
Affiliation(s)
- Evripidis Lanitis
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jenessa B. Smith
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104
| | - Denarda Dangaj
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104
| | - Seleeke Flingai
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104
| | - Mathilde Poussin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104
| | - Shuwen Xu
- Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Brian J. Czerniecki
- Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Yong F. Li
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Paul F. Robbins
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel J. Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
31
|
Abstract
Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response.
Collapse
Affiliation(s)
- Marco Ruella
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
32
|
Cieri N, Mastaglio S, Oliveira G, Casucci M, Bondanza A, Bonini C. Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunol Rev 2014; 257:165-80. [PMID: 24329796 DOI: 10.1111/imr.12130] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hematopoietic stem cell transplantation from a healthy donor (allo-HSCT) represents the most potent form of cellular adoptive immunotherapy to treat malignancies. In allo-HSCT, donor T cells are double edge-swords: highly potent against residual tumor cells, but potentially highly toxic, and responsible for graft versus host disease (GVHD), a major clinical complication of transplantation. Gene transfer technologies coupled with current knowledge on cancer immunology have generated a wide range of approaches aimed at fostering the immunological response to cancer cells, while avoiding or controlling GVHD. In this review, we discuss cell and gene therapy approaches currently tested in preclinical models and in clinical trials.
Collapse
Affiliation(s)
- Nicoletta Cieri
- University Vita-Salute San Raffaele, Milan, Italy; Experimental Hematology Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, PIBIC, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
33
|
TAO CHANGLI, SHAO HONGWEI, YUAN YIN, WANG HUI, ZHANG WENFENG, ZHENG WENLING, MA WENLI, HUANG SHULIN. Imaging of T-cell receptor fused to CD3ζ reveals enhanced expression and improved pairing in living cells. Int J Mol Med 2014; 34:849-55. [DOI: 10.3892/ijmm.2014.1839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/27/2014] [Indexed: 11/06/2022] Open
|
34
|
Banu N, Chia A, Ho ZZ, Garcia AT, Paravasivam K, Grotenbreg GM, Bertoletti A, Gehring AJ. Building and optimizing a virus-specific T cell receptor library for targeted immunotherapy in viral infections. Sci Rep 2014; 4:4166. [PMID: 24566718 PMCID: PMC3933865 DOI: 10.1038/srep04166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/03/2014] [Indexed: 01/02/2023] Open
Abstract
Restoration of antigen-specific T cell immunity has the potential to clear persistent viral infection. T cell receptor (TCR) gene therapy can reconstitute CD8 T cell immunity in chronic patients. We cloned 10 virus-specific TCRs targeting 5 different viruses, causing chronic and acute infection. All 10 TCR genetic constructs were optimized for expression using a P2A sequence, codon optimization and the addition of a non-native disulfide bond. However, maximum TCR expression was only achieved after establishing the optimal orientation of the alpha and beta chains in the expression cassette; 9/10 TCRs favored the beta-P2A-alpha orientation over alpha-P2A-beta. Optimal TCR expression was associated with a significant increase in the frequency of IFN-gamma+ T cells. In addition, activating cells for transduction in the presence of Toll-like receptor ligands further enhanced IFN-gamma production. Thus, we have built a virus-specific TCR library that has potential for therapeutic intervention in chronic viral infection or virus-related cancers.
Collapse
Affiliation(s)
- Nasirah Banu
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*Star), Singapore
| | - Adeline Chia
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*Star), Singapore
| | - Zi Zong Ho
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*Star), Singapore
| | - Alfonso Tan Garcia
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*Star), Singapore
| | - Komathi Paravasivam
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*Star), Singapore
| | - Gijsbert M Grotenbreg
- Departments of Microbiology and Biological Sciences, Immunology Programme, National University of Singapore, Singapore
| | - Antonio Bertoletti
- 1] Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*Star), Singapore [2] Program of Emerging Viral Diseases, Duke-NUS Graduate Medical School, National University of Singapore, Singapore
| | - Adam J Gehring
- 1] Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*Star), Singapore [2] Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA [3] Saint Louis University Liver Center, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
35
|
Abstract
Adoptive immunotherapy, or the infusion of lymphocytes, is a promising approach for the treatment of cancer and certain chronic viral infections. The application of the principles of synthetic biology to enhance T cell function has resulted in substantial increases in clinical efficacy. The primary challenge to the field is to identify tumor-specific targets to avoid off-tumor, on-target toxicity. Given recent advances in efficacy in numerous pilot trials, the next steps in clinical development will require multicenter trials to establish adoptive immunotherapy as a mainstream technology.
Collapse
Affiliation(s)
- Marcela V Maus
- Translational Research Program, Abramson Cancer Center and
| | | | | | | | | | | |
Collapse
|
36
|
Wieczorek A, Uharek L. Genetically modified T cells for the treatment of malignant disease. Transfus Med Hemother 2013; 40:388-402. [PMID: 24474888 DOI: 10.1159/000357163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/11/2013] [Indexed: 12/15/2022] Open
Abstract
The broaden application of adoptive T-cell transfer has been constrained by the technical abilities to isolate and expand antigen-specific T cells potent to selectively kill tumor cells. With the recent progress in the design and manufacturing of cellular products, T cells used in the treatment of malignant diseases may be regarded as anticancer biopharmaceuticals. Genetical manipulation of T cells has given T cells desired specificity but also enable to tailor their activation and proliferation potential. Here, we summarize the recent developments in genetic engineering of T-cell-based biopharmaceuticals, covering criteria for their clinical application in regard to safety and efficacy.
Collapse
Affiliation(s)
- Agnieszka Wieczorek
- Division of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Lutz Uharek
- Division of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
37
|
Reuß S, Sebestyén Z, Heinz N, Loew R, Baum C, Debets R, Uckert W. TCR-engineered T cells: a model of inducible TCR expression to dissect the interrelationship between two TCRs. Eur J Immunol 2013; 44:265-74. [PMID: 24114521 PMCID: PMC4209802 DOI: 10.1002/eji.201343591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/01/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
TCR gene modified T cells for adoptive therapy simultaneously express the Tg TCR and the endogenous TCR, which might lead to mispaired TCRs with harmful unknown specificity and to a reduced function of TCR-Tg T cells. We generated dual TCR T cells in two settings in which either TCR was constitutively expressed by a retroviral promoter while the second TCR expression was regulable by a Tet-on system. Constitutively expressed TCR molecules were reduced on the cell surface depending on the induced TCR expression leading to strongly hampered function. Besides that, using fluorescence resonance energy transfer we detected mispaired TCR dimers and different pairing behaviors of individual TCR chains with a mutual influence on TCR chain expression. The loss of function and mispairing could not be avoided by changing the TCR expression level or by introduction of an additional cysteine bridge. However, in polyclonal T cells, optimized TCR formats (cysteineization, codon optimization) enhanced correct pairing and function. We conclude from our data that (i) the level of mispairing depends on the individual TCRs and is not reduced by increasing the level of one TCR, and (ii) modifications (cysteineization, codon optimization) improve correct pairing but do not completely exclude mispairing (cysteineization).
Collapse
Affiliation(s)
- Simone Reuß
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
T-cell immunotherapy is a promising approach to treat disseminated cancer. However, it has been limited by the ability to isolate and expand T cells restricted to tumour-associated antigens. Using ex vivo gene transfer, T cells from patients can be genetically engineered to express a novel T cell receptor or chimeric antigen receptor to specifically recognize a tumour-associated antigen and thereby selectively kill tumour cells. Indeed, genetically engineered T cells have recently been successfully used for cancer treatment in a small number of patients. Here we review the recent progress in the field, and summarize the challenges that lie ahead and the strategies being used to overcome them.
Collapse
Affiliation(s)
- M Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
39
|
Choi D, Kim TG, Sung YC. The past, present, and future of adoptive T cell therapy. Immune Netw 2012; 12:139-47. [PMID: 23091437 PMCID: PMC3467412 DOI: 10.4110/in.2012.12.4.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 12/20/2022] Open
Abstract
Although adoptive T cell therapy (ACT) has become a promising immunotherapeutic regime for cancer treatment, its effectiveness has been hindered by several inherent shortcomings regarding safety and efficacy. During the past few decades, several strategies for enhancing the efficacy of ACT have been developed and introduced in clinic. This review will summarize not only the past approaches but also the latest strategies which have been shown to enhance the anticancer activity of ACT.
Collapse
Affiliation(s)
- Donghoon Choi
- Cellular Immunology Laboratory, Division of Molecular and Life Science, POSTECH Biotech Center, Pohang University of Science & Technology, Pohang 790-784, Korea
| | | | | |
Collapse
|
40
|
Daniel-Meshulam I, Ya'akobi S, Ankri C, Cohen CJ. How (specific) would like your T-cells today? Generating T-cell therapeutic function through TCR-gene transfer. Front Immunol 2012; 3:186. [PMID: 22783259 PMCID: PMC3390604 DOI: 10.3389/fimmu.2012.00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/15/2012] [Indexed: 01/02/2023] Open
Abstract
T-cells are central players in the immune response against both pathogens and cancer. Their specificity is solely dictated by the T-cell receptor (TCR) they clonally express. As such, the genetic modification of T lymphocytes using pathogen- or cancer-specific TCRs represents an appealing strategy to generate a desired immune response from peripheral blood lymphocytes. Moreover, notable objective clinical responses were observed in terminally ill cancer patients treated with TCR-gene modified cells in several clinical trials conducted recently. Nevertheless, several key aspects of this approach are the object of intensive research aimed at improving the reliability and efficacy of this strategy. Herein, we will survey recent studies in the field of TCR-gene transfer dealing with the improvement of this approach and its application for the treatment of malignant, autoimmune, and infectious diseases.
Collapse
Affiliation(s)
- Inbal Daniel-Meshulam
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan, Israel
| | | | | | | |
Collapse
|
41
|
Abstract
The function of T lymphocytes as orchestrators and effectors of the adaptive immune response is directed by the specificity of their T cell receptors (TCRs). By transferring into T cells the genes encoding antigen-specific receptors, the functional activity of large populations of T cells can be redirected against defined targets including virally infected or cancer cells. The potential of therapeutic T cells to traffic to sites of disease, to expand and to persist after a single treatment remains a major advantage over the currently available immunotherapies that use monoclonal antibodies. Here we review recent progress in the field of TCR gene therapy, outlining challenges to its successful implementation and the strategies being used to overcome them. We detail strategies used in the optimization of affinity and surface expression of the introduced TCR, the choice of T cell subpopulations for gene transfer, and the promotion of persistence of gene-modified T cells in vivo. We review the safety concerns surrounding the use of gene-modified T cells in patients, discussing emerging solutions to these problems, and describe the increasingly positive results from the use of gene-modified T cells in recent clinical trials of adoptive cellular immunotherapy. The increasing sophistication of measures to ensure the safety of engineered T cells is accompanied by an increasing number of clinical trials: these will be essential to guide the effective translation of cellular immunotherapy from the laboratory to the bedside.
Collapse
Affiliation(s)
- Benjamin J Uttenthal
- Department of Immunology, Institute of Immunity, Infection and Transplantation, University College London (UCL), Royal Free Hospital, London, UK.
| | | | | | | |
Collapse
|
42
|
Genetic engineering with T cell receptors. Adv Drug Deliv Rev 2012; 64:756-62. [PMID: 22178904 DOI: 10.1016/j.addr.2011.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/21/2011] [Indexed: 01/08/2023]
Abstract
In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers.
Collapse
|
43
|
Haga-Friedman A, Horovitz-Fried M, Cohen CJ. Incorporation of transmembrane hydrophobic mutations in the TCR enhance its surface expression and T cell functional avidity. THE JOURNAL OF IMMUNOLOGY 2012; 188:5538-46. [PMID: 22544927 DOI: 10.4049/jimmunol.1103020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR-gene transfer represents an effective way to redirect the specificity of T lymphocytes for therapeutic purposes. Recent successful clinical trials have underscored the potential of this approach in which efficient expression of the exogenous TCR has been directly linked to the efficacy of T cell activity. It has been also demonstrated that the TCR exhibits a lack of stability associated with the presence of positively charged residues in its transmembrane (TM) region. In this study, we designed an original approach selectively to improve exogenous TCR stability by increasing the hydrophobic nature of the TCRα TM region. Incorporation of hydrophobic residues at evolutionarily permissive positions resulted in an enhanced surface expression of the TCR chains, leading to an improved cellular avidity and anti-tumor TCR activity. Furthermore, this strategy was successfully applied to different TCRs, enabling the targeting of human tumors from different histologies. We also show that the combination of these hydrophobic mutations with another TCR-enhancing approach further improved TCR expression and function. Overall, these findings provide information regarding TCR TM composition that can be applied for the improvement of TCR-gene transfer-based treatments.
Collapse
Affiliation(s)
- Astar Haga-Friedman
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
44
|
Merhavi-Shoham E, Haga-Friedman A, Cohen CJ. Genetically modulating T-cell function to target cancer. Semin Cancer Biol 2011; 22:14-22. [PMID: 22210183 DOI: 10.1016/j.semcancer.2011.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/15/2011] [Indexed: 12/14/2022]
Abstract
The adoptive transfer of tumor-specific T-lymphocytes holds promise for the treatment of metastatic cancer. Genetic modulation of T-lymphocytes using TCR transfer with tumor-specific TCR genes is an attractive strategy to generate anti-tumor response, especially against large solid tumors. Recently, several clinical trials have demonstrated the therapeutic potential of this approach which lead to impressive tumor regression in cancer patients. Still, several factors may hinder the clinical benefit of this approach, such as the type of cells to modulate, the vector configuration or the safety of the procedure. In the present review we will aim at giving an overview of the recent developments related to the immune modulation of the anti-tumor adaptive response using genetically engineered lymphocytes and will also elaborate the development of other genetic modifications to enhance their anti-tumor immune response.
Collapse
Affiliation(s)
- Efrat Merhavi-Shoham
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
45
|
Scholten KBJ, Turksma AW, Ruizendaal JJ, van den Hende M, van der Burg SH, Heemskerk MHM, Meijer CJLM, Hooijberg E. Generating HPV specific T helper cells for the treatment of HPV induced malignancies using TCR gene transfer. J Transl Med 2011; 9:147. [PMID: 21892941 PMCID: PMC3176193 DOI: 10.1186/1479-5876-9-147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/05/2011] [Indexed: 02/02/2023] Open
Abstract
Background Infection with high risk Human Papilloma Virus (HPV) is associated with cancer of the cervix, vagina, penis, vulva, anus and some cases of head and neck carcinomas. The HPV derived oncoproteins E6 and E7 are constitutively expressed in tumor cells and therefore potential targets for T cell mediated adoptive immunotherapy. Effective immunotherapy is dependent on the presence of both CD4+ and CD8+ T cells. However, low precursor frequencies of HPV16 specific T cells in patients and healthy donors hampers routine isolation of these cells for adoptive transfer purposes. An alternative to generate HPV specific CD4+ and CD8+ T cells is TCR gene transfer. Methods HPV specific CD4+ T cells were generated using either a MHC class I or MHC class II restricted TCR (from clones A9 and 24.101 respectively) directed against HPV16 antigens. Functional analysis was performed by interferon-γ secretion, proliferation and cytokine production assays. Results Introduction of HPV16 specific TCRs into blood derived CD4+ recipient T cells resulted in recognition of the relevant HPV16 epitope as determined by IFN-γ secretion. Importantly, we also show recognition of the endogenously processed and HLA-DP1 presented HPV16E6 epitope by 24.101 TCR transgenic CD4+ T cells and recognition of the HLA-A2 presented HPV16E7 epitope by A9 TCR transgenic CD4+ T cells. Conclusion Our data indicate that TCR transfer is feasible as an alternative strategy to generate human HPV16 specific CD4+ T helper cells for the treatment of patients suffering from cervical cancer and other HPV16 induced malignancies.
Collapse
Affiliation(s)
- Kirsten B J Scholten
- Department of Pathology, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Heemskerk MHM. T-cell receptor gene transfer for the treatment of leukemia and other tumors. Haematologica 2011; 95:15-9. [PMID: 20065080 DOI: 10.3324/haematol.2009.016022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
47
|
Single-chain VαVβ T-cell receptors function without mispairing with endogenous TCR chains. Gene Ther 2011; 19:365-74. [PMID: 21753797 DOI: 10.1038/gt.2011.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transduction of exogenous T-cell receptor (TCR) genes into patients' activated peripheral blood T cells is a potent strategy to generate large numbers of specific T cells for adoptive therapy of cancer and viral diseases. However, the remarkable clinical promise of this powerful approach is still being overshadowed by a serious potential consequence: mispairing of the exogenous TCR chains with endogenous TCR chains. These 'mixed' heterodimers can generate new specificities that result in graft-versus-host reactions. Engineering TCR constant regions of the exogenous chains with a cysteine promotes proper pairing and reduces the mispairing, but, as we show here, does not eliminate the formation of mixed heterodimers. By contrast, deletion of the constant regions, through use of a stabilized Vα/Vβ single-chain TCR (scTv), avoided mispairing completely. By linking a high-affinity scTv to intracellular signaling domains, such as Lck and CD28, the scTv was capable of activating functional T-cell responses in the absence of either the CD3 subunits or the co-receptors, and circumvented mispairing with endogenous TCRs. Such transduced T cells can respond to the targeted antigen independent of CD3 subunits via the introduced scTv, without the transduced T cells acquiring any new undefined and potentially dangerous specificities.
Collapse
|
48
|
Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29:550-7. [PMID: 21663987 DOI: 10.1016/j.tibtech.2011.04.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/01/2023]
Abstract
Administration of ex vivo cultured, naturally occurring tumor-infiltrating lymphocytes (TILs) has been shown to mediate durable regression of melanoma tumors. However, the generation of TILs is not possible in all patients and there has been limited success in generating TIL in other cancers. Advances in genetic engineering have overcome these limitations by introducing tumor-antigen-targeting receptors into human T lymphocytes. Physicians can now genetically engineer lymphocytes to express highly active T-cell receptors (TCRs) or chimeric antigen receptors (CARs) targeting a variety of tumor antigens expressed in cancer patients. In this review, we discuss the development of TCR and CAR gene transfer technology and the expansion of these therapies into different cancers with the recent demonstration of the clinical efficacy of these treatments.
Collapse
|
49
|
Luo W, Zhang XB, Huang YT, Hao PP, Jiang ZM, Wen Q, Zhou MQ, Jin Q, Ma L. Development of genetically engineered CD4+ and CD8+ T cells expressing TCRs specific for a M. tuberculosis 38-kDa antigen. J Mol Med (Berl) 2011; 89:903-13. [PMID: 21556811 DOI: 10.1007/s00109-011-0760-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/16/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
Cell-mediated immunity is critical to the clearance of Mycobacterium tuberculosis due to the primarily intracellular niche of this pathogen. Adoptive transfer of M. tuberculosis-specific effector T cells has been shown to confer immunity to M. tuberculosis-infected recipients resulting in M. tuberculosis clearance. However, it is difficult to generate sufficient numbers of M. tuberculosis antigen-specific T cells in a short time. Recent studies have developed T cell receptor (TCR) gene-modified T cells that allow for the rapid generation of large numbers of antigen-specific T cells. Many TCRs that target various tumor and viral antigens have now been isolated and shown to have functional activity. Nevertheless, TCRs specific for intracellular bacterial antigens (including M. tuberculosis antigens) have yet to be isolated and their functionality confirmed. We isolated M. tuberculosis 38-kDa antigen-specific HLA class I and class II-restricted TCRs and modified the TCR gene C regions by substituting nine amino acids with their murine TCR homologs (minimal murinization). Results showed that both wild-type and minimal murinized TCR genes were successfully cloned into retroviral vectors and transduced into primary CD4(+) and CD8(+) T cells and displayed anti-M. tuberculosis activity. As expected, minimal murinized TCRs displayed higher cell surface expression levels and stronger anti-M. tuberculosis activity than wild-type TCRs. To the best of our knowledge, this is the first report describing TCRs targeting M. tuberculosis antigens and this investigation provides the basis for future TCR gene-based immunotherapies that can be designed for the treatment of immunocompromised M. tuberculosis-infected patients.
Collapse
Affiliation(s)
- Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The adoptive transfer of tumor-reactive cells is a promising approach for the treatment of melanoma and some other cancers. To remedy the difficulties associated with the isolation and expansion of tumor-reactive T cells in most cancer patients, peripheral blood T cells can be retargeted to any chosen tumor antigen by the genetic transfer of an antigen-specific receptor. The transduced receptors may be human leukocyte antigen-restricted, heterodimeric T-cell antigen receptor (TCRs), or chimeric antigen receptors (CARs), which typically recognize native cell-surface antigens. Considerable progress has been made in recent years to address the challenges posed by the transfer of either receptor type. Vector and protein modifications enable the expression of TCR chains in human T cells at functional levels and with a reduced risk of mis-pairing with endogenous TCR chains. The combinatorial inclusion of activating and costimulatory domains in CARs has dramatically enhanced the signaling properties of the chimeric receptors described over a decade ago. Based on the effective T-cell transduction and expansion procedures now available to support clinical investigation, improved designer TCRs and second generation CARs targeting an array of antigens are being evaluated in a range of hematological malignancies and solid tumors.
Collapse
|