1
|
Sanchez Sanchez G, Tafesse Y, Papadopoulou M, Vermijlen D. Surfing on the waves of the human γδ T cell ontogenic sea. Immunol Rev 2023; 315:89-107. [PMID: 36625367 DOI: 10.1111/imr.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While γδ T cells are present virtually in all vertebrates, there is a remarkable lack of conservation of the TRG and TRD loci underlying the generation of the γδ T cell receptor (TCR), which is associated with the generation of species-specific γδ T cells. A prominent example is the human phosphoantigen-reactive Vγ9Vδ2 T cell subset that is absent in mice. Murine γδ thymocyte cells were among the first immune cells identified to follow a wave-based layered development during embryonic and early life, and since this initial observation, in-depth insight has been obtained in their thymic ontogeny. By contrast, less is known about the development of human γδ T cells, especially regarding the generation of γδ thymocyte waves. Here, after providing an overview of thymic γδ wave generation in several vertebrate classes, we review the evidence for γδ waves in the human fetal thymus, where single-cell technologies have allowed the breakdown of human γδ thymocytes into functional waves with important TCR associations. Finally, we discuss the possible mechanisms contributing to the generation of waves of γδ thymocytes and their possible significance in the periphery.
Collapse
Affiliation(s)
- Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yohannes Tafesse
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Lyudovyk O, Kim JY, Qualls D, Hwee MA, Lin YH, Boutemine SR, Elhanati Y, Solovyov A, Douglas M, Chen E, Babady NE, Ramanathan L, Vedantam P, Bandlamudi C, Gouma S, Wong P, Hensley SE, Greenbaum B, Huang AC, Vardhana SA. Impaired humoral immunity is associated with prolonged COVID-19 despite robust CD8 T cell responses. Cancer Cell 2022; 40:738-753.e5. [PMID: 35679859 PMCID: PMC9149241 DOI: 10.1016/j.ccell.2022.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
How immune dysregulation affects recovery from COVID-19 infection in patients with cancer remains unclear. We analyzed cellular and humoral immune responses in 103 patients with prior COVID-19 infection, more than 20% of whom had delayed viral clearance. Delayed clearance was associated with loss of antibodies to nucleocapsid and spike proteins with a compensatory increase in functional T cell responses. High-dimensional analysis of peripheral blood samples demonstrated increased CD8+ effector T cell differentiation and a broad but poorly converged COVID-specific T cell receptor (TCR) repertoire in patients with prolonged disease. Conversely, patients with a CD4+ dominant immunophenotype had a lower incidence of prolonged disease and exhibited a deep and highly select COVID-associated TCR repertoire, consistent with effective viral clearance and development of T cell memory. These results highlight the importance of B cells and CD4+ T cells in promoting durable SARS-CoV-2 clearance and the significance of coordinated cellular and humoral immunity for long-term disease control.
Collapse
Affiliation(s)
- Olga Lyudovyk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Y Kim
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Qualls
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Madeline A Hwee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ya-Hui Lin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sawsan R Boutemine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melanie Douglas
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eunise Chen
- University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - N Esther Babady
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Clinical Microbiology Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lakshmi Ramanathan
- Clinical Chemistry Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip Wong
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott E Hensley
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Alexander C Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| | - Santosha A Vardhana
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
3
|
Bird NL, Olson MR, Hurt AC, Oshansky CM, Oh DY, Reading PC, Chua BY, Sun Y, Tang L, Handel A, Jackson DC, Turner SJ, Thomas PG, Kedzierska K. Oseltamivir Prophylaxis Reduces Inflammation and Facilitates Establishment of Cross-Strain Protective T Cell Memory to Influenza Viruses. PLoS One 2015; 10:e0129768. [PMID: 26086392 PMCID: PMC4473273 DOI: 10.1371/journal.pone.0129768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023] Open
Abstract
CD8(+) T cells directed against conserved viral regions elicit broad immunity against distinct influenza viruses, promote rapid virus elimination and enhanced host recovery. The influenza neuraminidase inhibitor, oseltamivir, is prescribed for therapy and prophylaxis, although it remains unclear how the drug impacts disease severity and establishment of effector and memory CD8(+) T cell immunity. We dissected the effects of oseltamivir on viral replication, inflammation, acute CD8(+) T cell responses and the establishment of immunological CD8(+) T cell memory. In mice, ferrets and humans, the effect of osteltamivir on viral titre was relatively modest. However, prophylactic oseltamivir treatment in mice markedly reduced morbidity, innate responses, inflammation and, ultimately, the magnitude of effector CD8(+) T cell responses. Importantly, functional memory CD8(+) T cells established during the drug-reduced effector phase were capable of mounting robust recall responses. Moreover, influenza-specific memory CD4(+) T cells could be also recalled after the secondary challenge, while the antibody levels were unaffected. This provides evidence that long-term memory T cells can be generated during an oseltamivir-interrupted infection. The anti-inflammatory effect of oseltamivir was verified in H1N1-infected patients. Thus, in the case of an unpredicted influenza pandemic, while prophylactic oseltamivir treatment can reduce disease severity, the capacity to generate memory CD8(+) T cells specific for the newly emerged virus is uncompromised. This could prove especially important for any new influenza pandemic which often occurs in separate waves.
Collapse
Affiliation(s)
- Nicola L. Bird
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Matthew R. Olson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine M. Oshansky
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
- Federation University, School of Applied Sciences and Biomedical Sciences, Gippsland Victoria 3842, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Yilun Sun
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Li Tang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602, United States of America
| | - David C. Jackson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Stephen J. Turner
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| | - Paul G. Thomas
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, United States of America
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville VIC 3010, Australia
| |
Collapse
|
4
|
Li S, Lefranc MP, Miles JJ, Alamyar E, Giudicelli V, Duroux P, Freeman JD, Corbin VDA, Scheerlinck JP, Frohman MA, Cameron PU, Plebanski M, Loveland B, Burrows SR, Papenfuss AT, Gowans EJ. IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nat Commun 2014; 4:2333. [PMID: 23995877 PMCID: PMC3778833 DOI: 10.1038/ncomms3333] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/23/2013] [Indexed: 02/08/2023] Open
Abstract
T cell repertoire diversity and clonotype follow-up in vaccination, cancer, infectious and immune diseases represent a major challenge owing to the enormous complexity of the data generated. Here we describe a next generation methodology, which combines 5'RACE PCR, 454 sequencing and, for analysis, IMGT, the international ImMunoGeneTics information system (IMGT), IMGT/HighV-QUEST web portal and IMGT-ONTOLOGY concepts. The approach is validated in a human case study of T cell receptor beta (TRB) repertoire, by chronologically tracking the effects of influenza vaccination on conventional and regulatory T cell subpopulations. The IMGT/HighV-QUEST paradigm defines standards for genotype/haplotype analysis and characterization of IMGT clonotypes for clonal diversity and expression and achieves a degree of resolution for next generation sequencing verifiable by the user at the sequence level, while providing a normalized reference immunoprofile for human TRB.
Collapse
Affiliation(s)
- Shuo Li
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Opata MM, Stephens R. Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection. ACTA ACUST UNITED AC 2014; 9:190-206. [PMID: 24790593 PMCID: PMC4000274 DOI: 10.2174/1573395509666131126231209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/08/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022]
Abstract
As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections,
increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from
central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory
T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also
lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells
remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the
potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the
data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an
immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only
appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells,
such as the integrated strength of “signals 1-3” of antigen presentation (antigen receptor, co-stimulation, cytokines) as
perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to
determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It
would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory
T cells at early time points has masked this important decision point. This does not rule out an effect of repeated
stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that
Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we propose a
testable model for the pathway of differentiation from naïve to memory that suggests that Tem are not fully differentiated
effector cells, but derived from central memory T cells as originally suggested by Sallusto et al. in 1999, but much
debated since.
Collapse
Affiliation(s)
- Michael M Opata
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| | - Robin Stephens
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| |
Collapse
|
6
|
Sage LK, Fox JM, Tompkins SM, Tripp RA. Subsisting H1N1 influenza memory responses are insufficient to protect from pandemic H1N1 influenza challenge in C57BL/6 mice. J Gen Virol 2013; 94:1701-1711. [PMID: 23580424 DOI: 10.1099/vir.0.049494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2009 swine-origin pandemic H1N1 (pH1N1) influenza virus transmitted and caused disease in many individuals immune to pre-2009 H1N1 influenza virus. Whilst extensive studies on antibody-mediated pH1N1 cross-reactivity have been described, few studies have focused on influenza-specific memory T-cells. To address this, the immune response in pre-2009 H1N1 influenza-immune mice was evaluated after pH1N1 challenge and disease pathogenesis was determined. The results show that despite homology shared between pre-2009 H1N1 and pH1N1 strains, the effector memory T-cell response to pre-2009 H1N1 was generally ineffective, a finding that correlated with lung virus persistence. Additionally, pH1N1 challenge generated T-cells reactive to new pH1N1 epitopes. These studies highlight the importance of vaccinating against immunodominant T-cell epitopes to provide for a more effective strategy to control influenza virus through heterosubtypic immunity.
Collapse
Affiliation(s)
- Leo K Sage
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| | - Julie M Fox
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| | - Stephen M Tompkins
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| | - Ralph A Tripp
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| |
Collapse
|
7
|
Kedzierska K, Valkenburg SA, Doherty PC, Davenport MP, Venturi V. Use it or lose it: establishment and persistence of T cell memory. Front Immunol 2012; 3:357. [PMID: 23230439 PMCID: PMC3515894 DOI: 10.3389/fimmu.2012.00357] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/08/2012] [Indexed: 01/06/2023] Open
Abstract
Pre-existing T cell memory provides substantial protection against viral, bacterial, and parasitic infections. The generation of protective T cell memory constitutes a primary goal for cell-mediated vaccines, thus understanding the mechanistic basis of memory development and maintenance are of major importance. The widely accepted idea that T cell memory pools are directly descended from the effector populations has been challenged by recent reports that provide evidence for the early establishment of T cell memory and suggest that the putative memory precursor T cells do not undergo full expansion to effector status. Moreover, it appears that once the memory T cells are established early in life, they can persist for the lifetime of an individual. This is in contrast to the reported waning of naïve T cell immunity with age. Thus, in the elderly, immune memory that was induced at an early age may be more robust than recently induced memory, despite the necessity for long persistence. The present review discusses the mechanisms underlying the early establishment of immunological memory and the subsequent persistence of memory T cell pools in animal models and humans.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
8
|
Kedzierska K, Curtis JM, Valkenburg SA, Hatton LA, Kiu H, Doherty PC, Kedzierski L. Induction of protective CD4+ T cell-mediated immunity by a Leishmania peptide delivered in recombinant influenza viruses. PLoS One 2012; 7:e33161. [PMID: 22470440 PMCID: PMC3310046 DOI: 10.1371/journal.pone.0033161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/05/2012] [Indexed: 01/12/2023] Open
Abstract
The available evidence suggests that protective immunity to Leishmania is achieved by priming the CD4+ Th1 response. Therefore, we utilised a reverse genetics strategy to generate influenza A viruses to deliver an immunogenic Leishmania peptide. The single, immunodominant Leishmania-specific LACK158–173 CD4+ peptide was engineered into the neuraminidase stalk of H1N1 and H3N2 influenza A viruses. These recombinant viruses were used to vaccinate susceptible BALB/c mice to determine whether the resultant LACK158–173-specific CD4+ T cell responses protected against live L. major infection. We show that vaccination with influenza-LACK158–173 triggers LACK158–173-specific Th1-biased CD4+ T cell responses within an appropriate cytokine milieu (IFN-γ, IL-12), essential for the magnitude and quality of the Th1 response. A single intraperitoneal exposure (non-replicative route of immunisation) to recombinant influenza delivers immunogenic peptides, leading to a marked reduction (2–4 log) in parasite burden, albeit without reduction in lesion size. This correlated with increased numbers of IFN-γ-producing CD4+ T cells in vaccinated mice compared to controls. Importantly, the subsequent prime-boost approach with a serologically distinct strain of influenza (H1N1->H3N2) expressing LACK158–173 led to a marked reduction in both lesion size and parasite burdens in vaccination trials. This protection correlated with high levels of IFN-γ producing cells in the spleen, which were maintained for 6 weeks post-challenge indicating the longevity of this protective effector response. Thus, these experiments show that Leishmania-derived peptides delivered in the context of recombinant influenza viruses are immunogenic in vivo, and warrant investigation of similar vaccine strategies to generate parasite-specific immunity.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (KK); (LK)
| | - Joan M. Curtis
- The Walter + Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lauren A. Hatton
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Hiu Kiu
- The Walter + Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter C. Doherty
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Lukasz Kedzierski
- The Walter + Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (KK); (LK)
| |
Collapse
|
9
|
Venturi V, Davenport MP, Swan NG, Doherty PC, Kedzierska K. Consequences of suboptimal priming are apparent for low-avidity T-cell responses. Immunol Cell Biol 2011; 90:216-23. [PMID: 21556018 DOI: 10.1038/icb.2011.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The emergence of the novel reassortant A(H1N1)-2009 influenza virus highlighted the threat to the global population posed by an influenza pandemic. Pre-existing CD8(+) T-cell immunity targeting conserved epitopes provides immune protection against newly emerging strains of influenza virus, when minimal antibody immunity exists. However, the occurrence of mutations within T-cell antigenic peptides that enable the virus to evade T-cell recognition constitutes a substantial issue for virus control and vaccine design. Recent evidence suggests that it might be feasible to elicit CD8(+) T-cell memory pools to common virus mutants by pre-emptive vaccination. However, there is a need for a greater understanding of CD8(+) T-cell immunity towards commonly emerging mutants. The present analysis focuses on novel and immunodominant, although of low pMHC-I avidity, CD8(+) T-cell responses directed at the mutant influenza D(b)NP(366) epitope, D(b)NPM6A, following different routes of infection. We used a C57BL/6J model of influenza to dissect the effectiveness of the natural intranasal (i.n.) versus intraperitoneal (i.p.) priming for generating functional CD8(+) T cells towards the D(b)NPM6A epitope. In contrast to comparable CD8(+) T-cell responses directed at the wild-type epitopes, D(b)NP(366) and D(b)PA(224), we found that the priming route greatly affected the numbers, cytokine profiles and TCR repertoire of the responding CD8(+) T cells directed at the D(b)NPM6A viral mutant. As the magnitude, polyfunctionality, and T-cell repertoire diversity are potential determinants of the protective efficacy of CD8(+) T-cell responses, our data have implications for the development of vaccines to combat virus mutants.
Collapse
Affiliation(s)
- Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales, Australia
| | | | | | | | | |
Collapse
|
10
|
Valkenburg SA, Rutigliano JA, Ellebedy AH, Doherty PC, Thomas PG, Kedzierska K. Immunity to seasonal and pandemic influenza A viruses. Microbes Infect 2011; 13:489-501. [PMID: 21295153 PMCID: PMC3549300 DOI: 10.1016/j.micinf.2011.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/18/2011] [Indexed: 12/16/2022]
Abstract
The introduction of a new influenza strain into human circulation leads to rapid global spread. This review summarizes innate and adaptive immunity to influenza viruses, with an emphasis on T-cell responses that provide cross-protection between distinct subtypes and strains. We discuss antigenic variation within T-cell immunogenic peptides and our understanding of pre-existing immunity towards the pandemic A(H1N1) 2009 strain.
Collapse
Affiliation(s)
- Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Royal Pde, Parkville 3010, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Valkenburg SA, Day EB, Swan NG, Croom HA, Carbone FR, Doherty PC, Turner SJ, Kedzierska K. Fixing an irrelevant TCR alpha chain reveals the importance of TCR beta diversity for optimal TCR alpha beta pairing and function of virus-specific CD8+ T cells. Eur J Immunol 2010; 40:2470-81. [PMID: 20690181 DOI: 10.1002/eji.201040473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TCR repertoire diversity can influence the efficacy of CD8(+) T-cell populations, with greater breadth eliciting better protection. We analyzed TCR beta diversity and functional capacity for influenza-specific CD8(+) T cells expressing a single TCR alpha chain. Mice (A7) transgenic for the H2K(b)OVA(257-264)-specific V alpha 2.7 TCR were challenged with influenza to determine how fixing this "irrelevant" TCR alpha affects the "public" and restricted D(b)NP(366) (+)CD8(+) versus the "private" and diverse D(b)PA(224) (+)CD8(+) responses. Though both D(b)NP(366) (+)CD8(+) and D(b)PA(224) (+)CD8(+) sets are generated in virus-primed A7 mice, the constrained D(b)NP(366) (+)CD8(+) population lacked the characteristic, public TCRV beta 8.3, and consequently was reduced in magnitude and pMHC-I avidity. For the more diverse D(b)PA(224) (+)CD8(+) T cells, this particular forcing led to a narrowing and higher TCR beta conservation of the dominant V beta 7, though the responses were of comparable magnitude to C57BL/6J controls. Interestingly, although both the TCR beta diversity and the cytokine profiles were reduced for the D(b)NP(366) (+)CD8(+) and D(b)PA(224) (+)CD8(+) sets in spleen, the latter measure of polyfunctionality was comparable for T cells recovered from the infected lungs of A7 and control mice. Even "sub-optimal" TCR alpha beta pairs can operate effectively when exposed in a milieu of high virus load. Thus, TCR beta diversity is important for optimal TCR alpha beta pairing and function when TCR alpha is limiting.
Collapse
Affiliation(s)
- Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Vic 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Valkenburg SA, Gras S, Guillonneau C, La Gruta NL, Thomas PG, Purcell AW, Rossjohn J, Doherty PC, Turner SJ, Kedzierska K. Protective efficacy of cross-reactive CD8+ T cells recognising mutant viral epitopes depends on peptide-MHC-I structural interactions and T cell activation threshold. PLoS Pathog 2010; 6:e1001039. [PMID: 20711359 PMCID: PMC2920842 DOI: 10.1371/journal.ppat.1001039] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/13/2010] [Indexed: 11/19/2022] Open
Abstract
Emergence of a new influenza strain leads to a rapid global spread of the virus due to minimal antibody immunity. Pre-existing CD8+ T-cell immunity directed towards conserved internal viral regions can greatly ameliorate the disease. However, mutational escape within the T cell epitopes is a substantial issue for virus control and vaccine design. Although mutations can result in a loss of T cell recognition, some variants generate cross-reactive T cell responses. In this study, we used reverse genetics to modify the influenza NP336–374 peptide at a partially-solvent exposed residue (N->A, NPN3A mutation) to assess the availability, effectiveness and mechanism underlying influenza-specific cross-reactive T cell responses. The engineered virus induced a diminished CD8+ T cell response and selected a narrowed T cell receptor (TCR) repertoire within two Vβ regions (Vβ8.3 and Vβ9). This can be partially explained by the H-2DbNPN3A structure that showed a loss of several contacts between the NPN3A peptide and H-2Db, including a contact with His155, a position known to play an important role in mediating TCR-pMHC-I interactions. Despite these differences, common cross-reactive TCRs were detected in both the naïve and immune NPN3A-specific TCR repertoires. However, while the NPN3A epitope primes memory T-cells that give an equivalent recall response to the mutant or wild-type (wt) virus, both are markedly lower than wt->wt challenge. Such decreased CD8+ responses elicited after heterologous challenge resulted in delayed viral clearance from the infected lung. Furthermore, mice first exposed to the wt virus give a poor, low avidity response following secondary infection with the mutant. Thus, the protective efficacy of cross-reactive CD8+ T cells recognising mutant viral epitopes depend on peptide-MHC-I structural interactions and functional avidity. Our study does not support vaccine strategies that include immunization against commonly selected cross-reactive variants with mutations at partially-solvent exposed residues that have characteristics comparable to NPN3A. Introduction of a new influenza strain into human circulation leads to a rapid global spread of the virus due to minimal antibody immunity. Established T-cell immunity towards conserved viral regions provides some protection against influenza and promotes rapid recovery. However, influenza viruses mutate to escape the protective immunity. We found that established T cell immunity can recognise influenza mutants with variations at positions that are partially involved in T cell recognition. However, an initial priming with the mutated variant decreases recognition of the original parental virus. This finding results from a markedly lower functional quality and limited structural interactions of the mutant. In terms of possible vaccination strategies for rapidly changing viruses or tumours, it appears that priming with cross-reactive mutants that display such characteristics would be of no benefit as the same level of T cell immunity against such mutants can be elicited by exposure to the original virus.
Collapse
Affiliation(s)
- Sophie A. Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Stephanie Gras
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Carole Guillonneau
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Nicole L. La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Paul G. Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Peter C. Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stephen J. Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
- * E-mail:
| |
Collapse
|