1
|
Sakowska J, Glasner P, Dukat-Mazurek A, Rydz A, Zieliński M, Pellowska I, Biernat W, Glasner L, Michalska-Małecka K, Trzonkowski P. Local T cell infiltrates are predominantly associated with corneal allograft rejection. Transpl Immunol 2023; 79:101852. [PMID: 37196866 DOI: 10.1016/j.trim.2023.101852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Corneal transplantations (CTXs) are a vision-saving procedure. Routinely, while CTXs' survival rates remain high, the risk of graft failure increases significantly for repeated CTXs. The reason is an alloimmunization following previous CTXs and development of memory T (Tm) and B (Bm) cells. METHODS We characterized populations of cells present in explanted human corneas from patients receiving the first CTX and marked as a primary CTX (PCTX) or the second or more CTXs and marked as a repeated CTX (RCTX). Cells extracted from resected corneas and from peripheral blood mononuclear cells (PBMCs) were analyzed by the flow cytometry method using multiple surface and intracellular markers. RESULTS Overall, the number of cells was similar in PCTX and RCTX patients. Extracted infiltrates from PCTXs and RCTXs contained similar numbers of T cell subsets, namely CD4+, CD8+, CD4+ Tm, CD8+ Tm, CD4+Foxp3+ T regulatory (Tregs), CD8+ Treg cells, while very few B cells (all p = NS). However, when compared to peripheral blood, PCTX and RCTX corneas contained significantly higher percentages of effector memory CD4+ and CD8+ T cells (both p < 0,05). In comparison to PCTX, RCTX group had the highest levels of Foxp3 in T CD4+ Tregs (p = 0,04) but decreased percentage of Helios-positive CD4+ Tregs. CONCLUSION PCTXs and especially RCTXs are rejected mainly by local T cells. The accumulation of effector CD4+ and CD8+ T cells, as well as CD4+ and CD8+ Tm cells is associated with the final rejection. Furthermore, local CD4+ and CD8+ Tregs expressing Foxp3 and Helios are probably insufficient to impose the acceptance of CTX.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland.
| | - Paulina Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Anna Rydz
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Irena Pellowska
- Department of Clinical Pathomorphology, University Clinical Centre in Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Leopold Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| |
Collapse
|
2
|
Antony F, Pundkar C, Sandey M, Mishra A, Suryawanshi A. Role of IL-27 in HSV-1-Induced Herpetic Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:474-485. [PMID: 37326494 PMCID: PMC10495105 DOI: 10.4049/jimmunol.2200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Herpetic stromal keratitis (HSK) is a painful and vision-impairing disease caused by recurrent HSV-1 infection of the cornea. The virus replication in the corneal epithelium and associated inflammation play a dominant role in HSK progression. Current HSK treatments targeting inflammation or virus replication are partially effective and promote HSV-1 latency, and long-term use can cause side effects. Thus, understanding molecular and cellular events that control HSV-1 replication and inflammation is crucial for developing novel HSK therapies. In this study, we report that ocular HSV-1 infection induces the expression of IL-27, a pleiotropic immunoregulatory cytokine. Our data indicate that HSV-1 infection stimulates IL-27 production by macrophages. Using a primary corneal HSV-1 infection mouse model and IL-27 receptor knockout mice, we show that IL-27 plays a critical role in controlling HSV-1 shedding from the cornea, the optimum induction of effector CD4+ T cell responses, and limiting HSK progression. Using in vitro bone marrow-derived macrophages, we show that IL-27 plays an antiviral role by regulating macrophage-mediated HSV-1 killing, IFN-β production, and IFN-stimulated gene expression after HSV-1 infection. Furthermore, we report that IL-27 is critical for macrophage survival, Ag uptake, and the expression of costimulatory molecules involved in the optimum induction of effector T cell responses. Our results indicate that IL-27 promotes endogenous antiviral and anti-inflammatory responses and represents a promising target for suppressing HSK progression.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| |
Collapse
|
3
|
Xia D, Toy R, Pradhan P, Hejri A, Chae J, Grossniklaus HE, Cursiefen C, Roy K, Prausnitz MR. Enhanced immune responses to vaccine antigens in the corneal stroma. J Control Release 2023; 353:434-446. [PMID: 36462639 PMCID: PMC9892265 DOI: 10.1016/j.jconrel.2022.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
To examine the widely accepted dogma that the eye is an immune-privileged organ that can suppress antigen immunogenicity, we explored systemic immune responses to a model vaccine antigen (tetanus toxoid) delivered to six compartments of the rodent eye (ocular surface, corneal stroma, anterior chamber, subconjunctival space, suprachoroidal space, vitreous body). We discovered that antigens delivered to corneal stroma induced enhanced, rather than suppressed, antigen-specific immune responses, which were 18- to 30-fold greater than conventional intramuscular injection and comparable to intramuscular vaccination with alum adjuvant. Systemic immune responses to antigen delivered to the other ocular compartments were much weaker. The enhanced systemic immune responses after intrastromal injection were related to a sequence of events involving the formation of an antigen "depot" in the avascular stroma, infiltration of antigen-presenting cells, up-regulation of MHC class II and costimulatory molecules CD80/CD86, and induction of lymphangiogenesis in the corneal stroma facilitating sustained presentation of antigen to the lymphatic system. These enhanced immune responses in corneal stroma suggest new approaches to medical interventions for ocular immune diseases and vaccination methods.
Collapse
Affiliation(s)
- Dengning Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Randall Toy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pallab Pradhan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amir Hejri
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeremy Chae
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hans E Grossniklaus
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne 50937, Germany
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
Zhang W, Schönberg A, Bassett F, Hadrian K, Hos D, Becker M, Bock F, Cursiefen C. Different Murine High-Risk Corneal Transplant Settings Vary Significantly in Their (Lymph)angiogenic and Inflammatory Cell Signatures. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 36534386 PMCID: PMC9769342 DOI: 10.1167/iovs.63.13.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Pathologic conditions in the cornea, such as transplant rejection or trauma, can lead to corneal neovascularization, creating a high-risk environment that may compromise subsequent transplantation. This study aimed to evaluate the impact of different types of corneal injury on hemangiogenesis (HA), lymphangiogenesis (LA) and immune cell pattern in the cornea. Methods We used five different corneal injury models, namely, incision injury, alkali burn, suture placement, and low-risk keratoplasty, as well as high-risk keratoplasty and naïve corneas as control. One week after incision and 2 weeks after all other different injuries, corneal HA and LA were quantified by morphometric analysis. In addition, immune cell patterns of the whole cornea and the recipient rim were analyzed by immunohistochemistry. Immune cells in the draining lymph nodes (dLNs) were quantified by flow cytometry. Results Different types of corneal injury caused significantly different HA and LA responses (both P < 0.0001). The infiltration of corneal macrophages, dendritic cells, neutrophils, major histocompatibility complex (MHC) II+ cells, CD4+ T cells, and CD8+ T cells varied significantly in different high-risk settings (all P < 0.0001). Both the expression of MHC II on macrophages (P = 0.0005) and the frequency of MHC II+ dendritic cells (P = 0.0014) in the draining lymph nodes were significantly different across the various high-risk scenarios. Conclusions Murine high-risk settings caused by different underlying pathologies vary significantly in their (lymph)angiogenic and inflammatory cell patterns. Therefore, anti(lymph)angiogenic or immunomodulatory strategies to prevent and/or treat immune responses after subsequent corneal transplantation may need to be customized according to their immune-vascular "signatures."
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alfrun Schönberg
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fiona Bassett
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martina Becker
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Yu T, Schuette F, Christofi M, Forrester JV, Graham GJ, Kuffova L. The atypical chemokine receptor-2 fine-tunes the immune response in herpes stromal keratitis. Front Immunol 2022; 13:1054260. [PMID: 36518752 PMCID: PMC9742518 DOI: 10.3389/fimmu.2022.1054260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Herpes stromal keratitis (HSK) is a blinding corneal disease caused by herpes simplex virus-1 (HSV-1), a common pathogen infecting most of the world's population. Inflammation in HSK is chemokine-dependent, particularly CXCL10 and less so the CC chemokines. The atypical chemokine receptor-2 (ACKR2) is a decoy receptor predominantly for pro-inflammatory CC chemokines, which regulates the inflammatory response by scavenging inflammatory chemokines thereby modulating leukocyte infiltration. Deletion of ACKR2 exacerbates and delays the resolution of the inflammatory response in most models. ACKR2 also regulates lymphangiogenesis and mammary duct development through the recruitment of tissue-remodeling macrophages. Here, we demonstrate a dose-dependent upregulation of ACKR2 during corneal HSV-1 infection. At an HSV inoculum dose of 5.4 x 105 pfu, but not at higher dose, ACKR2 deficient mice showed prolonged clinical signs of HSK, increased infiltration of leukocytes and persistent corneal neovascularization. Viral clearance and T cell activation were similar in ACKR2-/- and wild type mice, despite a transient diminished expression of CD40 and CD86 in dendritic cells. The data suggest that ACKR2 fine-tunes the inflammatory response and the level of neovascularization in the HSK.
Collapse
Affiliation(s)
- Tian Yu
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Fabian Schuette
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria Christofi
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John V. Forrester
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Perth, WA, Australia
| | - Gerard J. Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lucia Kuffova
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| |
Collapse
|
6
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
7
|
Abstract
Clear vision is dependent on features that protect the anatomical integrity of the eye (cornea and sclera) and those that contribute to internal ocular homeostasis by conferring hemangiogenic (avascular tissues and antiangiogenic factors), lymphangiogenic (lack of draining lymphatics), and immunologic (tight junctions that form blood-ocular barriers, immunosuppressive cells, and modulators) privileges. The later examples are necessary components that enable the eye to maintain an immunosuppressive environment that responds to foreign invaders in a deviated manner, minimizing destructive inflammation that would impair vision. These conditions allowed for the observations made by Medawar, in 1948, of delayed rejection of allogenic tissue grafts in the anterior chamber of mouse eye and permit the sequestration of foreign invaders (eg, Toxoplasma gondii) within the retina of healthy individuals. Yet successful development of intraocular drugs (biologics and delivery devices) has been stymied by adverse ocular pathology, much of which is driven by immune pathways. The eye can be intolerant of foreign protein irrespective of delivery route, and endogenous ocular cells have remarkable plasticity when recruited to preserve visual function. This article provides a review of current understanding of ocular immunology and the potential role of immune mechanisms in pathology observed with intraocular drug delivery.
Collapse
Affiliation(s)
| | | | - Sharmila Masli
- 12259Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
DeDreu J, Bowen CJ, Logan CM, Pal-Ghosh S, Parlanti P, Stepp MA, Menko AS. An immune response to the avascular lens following wounding of the cornea involves ciliary zonule fibrils. FASEB J 2020; 34:9316-9336. [PMID: 32452112 PMCID: PMC7384020 DOI: 10.1096/fj.202000289r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
The lens and central cornea are avascular. It was assumed that the adult lens had no source of immune cells and that the basement membrane capsule surrounding the lens was a barrier to immune cell migration. Yet, microfibril‐associated protein‐1 (MAGP1)‐rich ciliary zonules that originate from the vasculature‐rich ciliary body and extend along the surface of the lens capsule, form a potential conduit for immune cells to the lens. In response to cornea debridement wounding, we find increased expression of MAGP1 throughout the central corneal stroma. The immune cells that populate this typically avascular region after wounding closely associate with this MAGP1‐rich matrix. These results suggest that MAGP1‐rich microfibrils support immune cell migration post‐injury. Using this cornea wound model, we investigated whether there is an immune response to the lens following cornea injury involving the lens‐associated MAGP1‐rich ciliary zonules. Our results provide the first evidence that following corneal wounding immune cells are activated to travel along zonule fibers that extend anteriorly along the equatorial surface of the lens, from where they migrate across the anterior lens capsule. These results demonstrate that lens‐associated ciliary zonules are directly involved in the lens immune response and suggest the ciliary body as a source of immune cells to the avascular lens.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Caitlin J Bowen
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Caitlin M Logan
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Paola Parlanti
- George Washington University Nanofabrication and Imaging Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Mölzer C, Shankar SP, Griffith M, Islam MM, Forrester JV, Kuffová L. Activation of dendritic cells by crosslinked collagen hydrogels (artificial corneas) varies with their composition. J Tissue Eng Regen Med 2019; 13:1528-1543. [PMID: 31144475 DOI: 10.1002/term.2903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/01/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
Activated T cells are known to promote fibrosis, a major complication limiting the range of polymeric hydrogels as artificial corneal implants. As T cells are activated by dendritic cells (DC), minimally activating hydrogels would be optimal. In this study, we evaluated the ability of a series of engineered (manufactured/fabricated) and natural collagen matrices to either activate DC or conversely induce DC apoptosis in vitro. Bone marrow DC were cultured on a series of singly and doubly crosslinked hydrogels (made from recombinant human collagen III [RHCIII] or collagen mimetic peptide [CMP]) or on natural collagen-containing matrices, MatrigelTM and de-cellularised mouse corneal stroma. DC surface expression of major histocompatibility complex Class II and CD86 as well as apoptosis markers were examined. Natural matrices induced low levels of DC activation and maintained a "tolerogenic" phenotype. The same applied to singly crosslinked CMP-PEG gels. RHCIII gels singly crosslinked using either N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide with the coinitiator N-hydroxy succinimide (EDC-NHS) or N-cyclohexyl-N-(2-morpholinoethyl)carbodiimide metho-p-toulenesulfonate with NHS (CMC-NHS) induced varying levels of DC activation. In contrast, however, RHCIII hydrogels incorporating an additional polymeric network of 2-methacryloyloxyethyl phosphorylcholine did not activate DC but instead induced DC apoptosis, a phenomenon observed in natural matrices. This correlated with increased DC expression of leukocyte-associated immunoglobulin-like receptor-1. Despite low immunogenic potential, viable tolerogenic DC migrated into and through both natural and manufactured RHCIII gels. These data show that the immunogenic potential of RHCIII gels varies with the nature and composition of the gel. Preclinical evaluation of hydrogel immunogenic/fibrogenic potential is recommended.
Collapse
Affiliation(s)
- Christine Mölzer
- School of Medicine and Dentistry, Section of Immunology, Inflammation and Infection, Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - Sucharita P Shankar
- School of Medicine and Dentistry, Section of Immunology, Inflammation and Infection, Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - May Griffith
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Mirazul M Islam
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - John V Forrester
- School of Medicine and Dentistry, Section of Immunology, Inflammation and Infection, Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - Lucia Kuffová
- School of Medicine and Dentistry, Section of Immunology, Inflammation and Infection, Institute of Medical Sciences, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
10
|
Yu T, Forrester JV, Graham GJ, Kuffova L. The atypical chemokine receptor-2 does not alter corneal graft survival but regulates early stage of corneal graft-induced lymphangiogenesis. Graefes Arch Clin Exp Ophthalmol 2018; 256:1875-1882. [PMID: 30054731 PMCID: PMC6153595 DOI: 10.1007/s00417-018-4070-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 11/26/2022] Open
Abstract
Purpose To re-evaluate the role of the atypical chemokine receptor-2 (ACKR2) in corneal graft rejection and investigate the effect of ACKR2 on inflammation-associated lymphangiogenesis using murine orthotopic corneal transplantation. Methods Corneal grafts were performed and evaluated in the settings of syngeneic, allogeneic and single antigen (HY-antigen) disparity pairings. Corneal vessels were quantified in whole mounts from WT, ACKR2−/− and F4/80−/−ACKR2−/− mice that received syngeneic or allogeneic grafts using anti-CD31 and anti-Lyve-1 antibodies. Results Syngeneic corneal grafts in WT and ACKR2−/− mice were 100% accepted. Fully histo-incompatible allogeneic grafts were rapidly rejected (100%) with similar tempo in both WT and ACKR2−/− hosts. Around 50% of single-antigen (HY) disparity grafts rejected at a slow but similar tempo (60 days) in WT and ACKR2−/− mice. Prior to grafting, F4/80−/−ACKR2−/− mice had lower baseline levels of limbal blood and lymphatic vessels compared to ACKR2−/− mice. Syngeneic grafts, but not allogeneic grafts, in ACKR2−/− and F4/80−/−ACKR2−/− mice induced higher levels of lymphatic sprouting and infiltration of Lyve-1+ cells during the early (3d) post-graft (pg) stage but lymphatic density was similar to WT grafted mice by 7d pg. Conclusions Our results indicate that the chemokine scavenger receptor, ACKR2, has no role to play in the survival of allogeneic grafts. A minor role in regulation of lymphangiogenesis in the early stage of wound healing in syngeneic grafts is suggested, but this effect is probably masked by the more pronounced lymphangiogenic inflammatory response in allogeneic grafts. No additional effect was observed with the deletion of the resident macrophage gene, F4/80.
Collapse
Affiliation(s)
- Tian Yu
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - J V Forrester
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Perth, Western Australia, 6009, Australia
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TT, UK
| | - Lucia Kuffova
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
- NHS Grampian, Aberdeen, UK.
| |
Collapse
|
11
|
Rajendran V, Netuková M, Griffith M, Forrester JV, Kuffová L. Mesenchymal stem cell therapy for retro-corneal membrane - A clinical challenge in full-thickness transplantation of biosynthetic corneal equivalents. Acta Biomater 2017; 64:346-356. [PMID: 29030302 DOI: 10.1016/j.actbio.2017.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
Artificial corneas (keratoprostheses) and biosynthetic collagen-based corneal equivalents are surgical implants designed to ease the global burden of corneal blindness. However, keratoprostheses in many cases fail due to development of fibrous retro-corneal membranes (RCM). Fibrous membranes which develop in the anterior chamber after prosthesis implantation do so on a matrix of fibrin. This study investigated fibrin deposition and RCM formation after full-thickness collagen-based hydrogel implants and compared them with syngeneic and allogeneic corneal grafts in mice. Fibrin cleared from the anterior chamber within 14 days in both allo- and syn-grafts but, persisted in hydrogel implants and developed into dense retro-corneal membrane (RCM) which were heavily infiltrated by activated myofibroblasts. In contrast, the number of CD11b+ macrophages infiltrating the initial deposition of fibrin in the anterior chamber (AC) after hydrogel implantation was markedly reduced compared to syn- and allo-grafts. Inoculation of mesenchymal stem cells prior to collagen gel implant promoted clearance of gel-associated fibrin from the anterior chamber. We propose that a failure of macrophage-mediated clearance of fibrin may be the cause of RCM formation after collagen-based hydrogel implants and that mesenchymal stem cell therapy promotes clearance of fibrin and prevents RCM formation. STATEMENT OF SIGNIFICANCE The manuscript addresses the potential value of bone marrow-derived mesenchymal stem cell therapy for retro-corneal membrane (RCM) formation in full-thickness transplantation of biosynthetic corneal equivalents. This work reports the pathophysiological changes in the anterior chamber of the mouse eye following full-thickness recombinant human cross-linked collagen-based hydrogel implants in which persistent fibrin promotes the development of dense RCM. Furthermore, pre-treatment with mesenchymal stem cells reduces RCM formation and enhances corneal transparency.
Collapse
|
12
|
Hua J, Stevenson W, Dohlman TH, Inomata T, Tahvildari M, Calcagno N, Pirmadjid N, Sadrai Z, Chauhan SK, Dana R. Graft Site Microenvironment Determines Dendritic Cell Trafficking Through the CCR7-CCL19/21 Axis. Invest Ophthalmol Vis Sci 2016; 57:1457-67. [PMID: 27031839 PMCID: PMC4819620 DOI: 10.1167/iovs.15-17551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The graft site microenvironment has a profound effect on alloimmunity and graft survival. We aimed to study the kinetics and phenotype of trafficking antigen-presenting cells (APC) to the draining lymph nodes (DLNs) in a mouse model of corneal transplantation, and to evaluate the homing mechanisms through which graft site inflammation controls APC trafficking. METHODS Allogeneic donor corneas were transplanted onto inflamed or quiescent graft beds. Host- (YAe+) and donor (CD45.1+ or eGFP+)-derived APCs were analyzed by flow cytometry. Protein and mRNA expression of the CC chemokine receptor (CCR)7 ligands CCL19 and CCL21 were assessed using ELISA and Real-Time qPCR, respectively. Transwell migration assay was performed to assess the effect of DLNs isolated from hosts with inflamed graft beds on mature bone marrow-derived dendritic cells (BMDCs). RESULTS We found that inflamed graft sites greatly promote the trafficking of both recipient- and graft-derived APCs, in particular mature CCR7+ CD11c+ dendritic cells (DC). CCL19 and CCL21 were expressed at significantly higher levels in the DLNs of recipients with inflamed graft beds. The supernatant of DLNs from recipients with inflamed graft beds induced a marked increase in mature DC migration compared with supernatant from recipients with quiescent graft beds in a transwell assay. This effect was abolished by neutralizing CCL19 or CCL21. These data suggest that graft site inflammation increases the expression of CCR7 ligands in the DLNs, which promote mature DC homing and allorejection. CONCLUSIONS We conclude that the graft site microenvironment plays a critical role in alloimmunity by determining DC trafficking through the CCR7-CCL19/21 axis.
Collapse
|
13
|
Yu T, Rajendran V, Griffith M, Forrester JV, Kuffová L. High-risk corneal allografts: A therapeutic challenge. World J Transplant 2016; 6:10-27. [PMID: 27011902 PMCID: PMC4801785 DOI: 10.5500/wjt.v6.i1.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/03/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Corneal transplantation is the most common surgical procedure amongst solid organ transplants with a high survival rate of 86% at 1-year post-grafting. This high success rate has been attributed to the immune privilege of the eye. However, mechanisms originally thought to promote immune privilege, such as the lack of antigen presenting cells and vessels in the cornea, are challenged by recent studies. Nevertheless, the immunological and physiological features of the cornea promoting a relatively weak alloimmune response is likely responsible for the high survival rate in “low-risk” settings. Furthermore, although corneal graft survival in “low-risk” recipients is favourable, the prognosis in “high-risk” recipients for corneal graft is poor. In “high-risk” grafts, the process of indirect allorecognition is accelerated by the enhanced innate and adaptive immune responses due to pre-existing inflammation and neovascularization of the host bed. This leads to the irreversible rejection of the allograft and ultimately graft failure. Many therapeutic measures are being tested in pre-clinical and clinical studies to counter the immunological challenge of “high-risk” recipients. Despite the prevailing dogma, recent data suggest that tissue matching together with use of systemic immunosuppression may increase the likelihood of graft acceptance in “high-risk” recipients. However, immunosuppressive drugs are accompanied with intolerance/side effects and toxicity, and therefore, novel cell-based therapies are in development which target host immune cells and restore immune homeostasis without significant side effect of treatment. In addition, developments in regenerative medicine may be able to solve both important short comings of allotransplantation: (1) graft rejection and ultimate graft failure; and (2) the lack of suitable donor corneas. The advances in technology and research indicate that wider therapeutic choices for patients may be available to address the worldwide problem of corneal blindness in both “low-risk” and “high-risk” hosts.
Collapse
|
14
|
Treacy O, Fahy G, Ritter T, O'Flynn L. Corneal Immunosuppressive Mechanisms, Anterior Chamber-Associated Immune Deviation (ACAID) and Their Role in Allograft Rejection. Methods Mol Biol 2016; 1371:205-14. [PMID: 26530803 DOI: 10.1007/978-1-4939-3139-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Corneal transplantation is the most frequently performed transplant procedure in humans. Human leukocyte antigen matching, while imperative for other types of organ transplants, is usually not performed before cornea transplantation. With the use of topical steroid immunosuppressants, which are subsequently tailed off to almost zero, most corneal transplants will not be rejected in recipients with low risk of graft rejection. This phenomenon has been described as immune privilege by Medawar many years ago. However, this immune privilege is relative and can be easily eroded, e.g. by postoperative nonspecific inflammation or other causes of corneal or ocular inflammation. Interestingly, corneas that are at high risk of rejection have a higher failure rate than other organs. Considerable progress has been made in recent years to provide a better understanding of corneal immune privilege. This chapter will review current knowledge on ocular immunosuppressive mechanisms including anterior chamber-associated immune deviation and discuss their role(s) in corneal allograft rejection. Ultimately, this evolving information will be of benefit in developing therapeutic strategies to prevent corneal transplant rejection.
Collapse
Affiliation(s)
- Oliver Treacy
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Gerry Fahy
- Department of Ophthalmology, University Hospital Galway, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|
15
|
|
16
|
Schewitz-Bowers LP, Lee RWJ, Dick AD. Immune mechanisms of intraocular inflammation. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.09.68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Dang Z, Kuffová L, Liu L, Forrester JV. Soluble antigen traffics rapidly and selectively from the corneal surface to the eye draining lymph node and activates T cells when codelivered with CpG oligonucleotides. J Leukoc Biol 2013; 95:431-40. [PMID: 24295832 DOI: 10.1189/jlb.0612294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transport of antigen to the secondary lymphoid tissue is a central component in the initiation of the adaptive immune response. The mechanism of antigen delivery to the DLN from the avascular cornea has not been fully explored. Previous studies in the mouse have shown that cell-associated corneal antigen is delivered within 6 h to the eye draining SM DLN via DCs and macrophages. In this study, we used a system in which antigen and the processed p-MHCII complexes derived from the antigen could be tracked in vivo. We report that soluble antigen applied to an abraded cornea in the mouse is transported rapidly (within 30 min) to the SM DLN, where a proportion is taken up by resident DCs and presented as p-MHCII complexes, while the larger part is cleared by 8 h. At a later time, a second wave of antigen transport in migratory DCs enters the DLN and participates in further continued antigen presentation. With the use of an antigen-specific TCR transgenic mouse system, we demonstrate that T cell activation does not occur during the early stages of soluble antigen delivery to LN, even though p-MHCII complexes are generated. Antigen-specific T cell activation occurs in the later, presumed cell-associated phase but requires codelivery of a "danger" signal, such as the TLR ligand CpG. We suggest that the early delivery of soluble antigen is more likely to induce T cell nonresponsiveness (anergy) unless presented in the context of an innate-immune cell activation (danger) signal.
Collapse
Affiliation(s)
- Zexu Dang
- 2.Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Science, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | | | |
Collapse
|
18
|
Abstract
Uveitis is underappreciated as a sight-threatening cause of blindness. There are two broad causative classes of uveitis: infectious and non-infectious. Non-infectious uveitis is considered a prototypical autoimmune disorder based mainly on data from experimental models in the mouse. Several different experimental models exist that reflect the different types of uveitis in man (anterior, intermediate, and posterior uveitis). These models have demonstrated that uveitis is predominantly a Th1/Th17 mediated disease, although innate immune cells play a significant role both in induction of disease and in tissue damage. Most experimental models of uveitis rely on activation of the innate immune system by use of adjuvants that activate a range of pathogen recognition receptors (PRRs). This begs the question of the underlying role of initial and/or persistent infection, including latent infection, in immune-mediated uveitis in which active infection cannot be demonstrated. This further raises the possibility of pathogenic mechanisms such as antigenic cross-reactivity and molecular mimicry. Alternatively, residual/latent antigen from infectious agents may act as "endogenous" adjuvants for induction of immune reactions to damaged/altered self antigen, suggesting a commonality in pathogenesis for both infectious and non-infectious uveitis in man.
Collapse
Affiliation(s)
- John V Forrester
- Ocular Immunology Laboratory, Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Scotland.
| | | | | | | |
Collapse
|
19
|
Forrester JV, Steptoe RJ, Klaska IP, Martin-Granados C, Dua HS, Degli-Esposti MA, Wikstrom ME. Cell-based therapies for ocular inflammation. Prog Retin Eye Res 2013; 35:82-101. [PMID: 23542232 DOI: 10.1016/j.preteyeres.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/13/2022]
Abstract
Since the plasticity and the potential for re-programming cells has become widely accepted, there has been great interest in cell-based therapies. These are being applied to a range of diseases, not least ocular diseases, where it is assumed that there is a reduced risk of immune rejection although this may be more perceived than real. There are two broad classes of cell-based therapies: those aimed at restoring structure and function of specific tissues and cells; and those directed towards restoring immunological homeostasis by controlling the damaging effects of inflammatory disease. Stem cells of all types represent the first group and prototypically have been used with the aim of regenerating failing cells. In contrast, immune cells have been suggested as potential modulators of inflammation. However, there is functional overlap in these two applications, with some types of stem cells, such as mesenchymal stem cells, demonstrating a potent immunomodulatory effect. This review summarises recent information on cell based therapies for ocular disease, with special emphasis on ocular inflammatory disease, and explores current uses, potential and limitations.
Collapse
Affiliation(s)
- John V Forrester
- Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Smyth LA, Ratnasothy K, Moreau A, Alcock S, Sagoo P, Meader L, Tanriver Y, Buckland M, Lechler R, Lombardi G. Tolerogenic Donor-Derived Dendritic Cells Risk Sensitization In Vivo owing to Processing and Presentation by Recipient APCs. THE JOURNAL OF IMMUNOLOGY 2013; 190:4848-60. [PMID: 23536635 DOI: 10.4049/jimmunol.1200870] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Modification of allogeneic dendritic cells (DCs) through drug treatment results in DCs with in vitro hallmarks of tolerogenicity. Despite these observations, using murine MHC-mismatched skin and heart transplant models, donor-derived drug-modified DCs not only failed to induce tolerance but also accelerated graft rejection. The latter was inhibited by injecting the recipient with anti-CD8 Ab, which removed both CD8(+) T cells and CD8(+) DCs. The discrepancy between in vitro and in vivo data could be explained, partly, by the presentation of drug-modified donor DC MHC alloantigens by recipient APCs and activation of recipient T cells with indirect allospecificity, leading to the induction of alloantibodies. Furthermore, allogeneic MHC molecules expressed by drug-treated DCs were rapidly processed and presented in peptide form by recipient APCs in vivo within hours of DC injection. Using TCR-transgenic T cells, Ag presentation of injected OVA-pulsed DCs was detectable for ≤ 3 d, whereas indirect presentation of MHC alloantigen by recipient APCs led to activation of T cells within 14 h and was partially inhibited by reducing the numbers of CD8(+) DCs in vivo. In support of this observation when mice lacking CD8(+) DCs were pretreated with drug-modified DCs prior to transplantation, skin graft rejection kinetics were similar to those in non-DC-treated controls. Of interest, when the same mice were treated with anti-CD40L blockade plus drug-modified DCs, skin graft survival was prolonged, suggesting endogenous DCs were responsible for T cell priming. Altogether, these findings highlight the risks and limitations of negative vaccination using alloantigen-bearing "tolerogenic" DCs.
Collapse
Affiliation(s)
- Lesley A Smyth
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vitova A, Kuffová L, Klaska IP, Holan V, Cornall RJ, Forrester JV. The high-risk corneal regraft model: a justification for tissue matching in humans. Transpl Int 2013; 26:453-61. [PMID: 23398177 DOI: 10.1111/tri.12055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/18/2012] [Accepted: 12/14/2012] [Indexed: 12/17/2022]
Abstract
Models of high-risk corneal graft rejection involve neovascularization induced via innate immune responses, e.g., suture-mediated trauma. We describe a model of high-risk corneal graft rejection using corneal graft donor-recipient pairing based on a single-antigen disparity. Donor corneas from transgenic mice on B10.BR (H-2k ) background, in which hen-egg lysozyme (HEL) as a membrane-bound antigen (mHEL) was expressed under the major histocompatibility complex (MHC) class I promoter (KLK-mHEL, H-2k), were transplanted into wild type B10.BR recipient mice. Unmanipulated wild type recipient mice rejected KLK-mHEL grafts (39%) slowly over 50-60 days. Graft rejection incidence was maximized (100%) and tempo accelerated (27 days) by priming with HEL-pulsed syngeneic dendritic cells and less so by increasing T-cell precursor frequency. Rejection also reached maximum levels (100%) and tempo (3-8 days) when mice which had rejected a first graft ('rejectors') were regrafted, and was associated with induction of HEL-specific memory T cells. In contrast, 'acceptors' rejected a second graft at rates and tempo similar to naïve mice. These data reveal the importance of (i) donor MHC antigens as alloantigens for indirect recognition, (ii) alloantigen-specific memory in high-risk graft rejection involving regrafts, and (iii) suggest a role for tissue matching in human corneal graft to avoid sensitization to donor MHC antigens.
Collapse
Affiliation(s)
- Andrea Vitova
- Section of Immunology and Infection, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
22
|
Forrester JV, Xu H. Good news-bad news: the Yin and Yang of immune privilege in the eye. Front Immunol 2012; 3:338. [PMID: 23230433 PMCID: PMC3515883 DOI: 10.3389/fimmu.2012.00338] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/23/2012] [Indexed: 12/27/2022] Open
Abstract
The eye and the brain are prototypical tissues manifesting immune privilege (IP) in which immune responses to foreign antigens, particularly alloantigens are suppressed, and even completely inhibited. Explanations for this phenomenon are numerous and mostly reflect our evolving understanding of the molecular and cellular processes underpinning immunological responses generally. IP is now viewed as a property of many tissues and the level of expression of IP varies not only with the tissue but with the nature of the foreign antigen and changes in the limited conditions under which privilege can operate as a mechanism of immunological tolerance. As a result, IP functions normally as a homeostatic mechanism preserving normal function in tissues, particularly those with highly specialized function and limited capacity for renewal such as the eye and brain. However, IP is relatively easily bypassed in the face of a sufficiently strong immunological response, and the privileged tissues may be at greater risk of collateral damage because its natural defenses are more easily breached than in a fully immunocompetent tissue which rapidly rejects foreign antigen and restores integrity. This two-edged sword cuts its swathe through the eye: under most circumstances, IP mechanisms such as blood-ocular barriers, intraocular immune modulators, induction of T regulatory cells, lack of lymphatics, and other properties maintain tissue integrity; however, when these are breached, various degrees of tissue damage occur from severe tissue destruction in retinal viral infections and other forms of uveoretinal inflammation, to less severe inflammatory responses in conditions such as macular degeneration. Conversely, ocular IP and tumor-related IP can combine to permit extensive tumor growth and increased risk of metastasis thus threatening the survival of the host.
Collapse
Affiliation(s)
- John V. Forrester
- Laboratory of Immunology, Lion’s Eye Institute, University of Western AustraliaPerth, WA, Australia
- Ocular Immunology Laboratory, Section of Immunology and Infection, Institute of Medical Sciences, University of AberdeenAberdeen, UK
| | - Heping Xu
- Laboratory of Immunology, Lion’s Eye Institute, University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
23
|
Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye. Prog Retin Eye Res 2012; 33:10-27. [PMID: 23108335 DOI: 10.1016/j.preteyeres.2012.10.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Uveitis is a sight-threatening disease caused by autoimmune or infection-related immune responses. Studies in experimental autoimmune uveitis and in human diseases imply that activated CD4(+) T cells, Th1 and Th17 cells, play an effector role in ocular inflammation. The eye has a unique regional immune system to protect vision-related cells and tissues from these effector T cells. The immunological balance between the pathogenic CD4(+) T cells and regional immune system in the eye contributes to the maintenance of ocular homeostasis and good vision. Current studies have demonstrated that ocular parenchymal cells at the inner surface of the blood-ocular barrier, i.e. corneal endothelial (CE) cells, iris pigment epithelial (PE) cells, ciliary body PE cells, and retinal PE cells, contribute to the regional immune system of the eye. Murine ocular resident cells directly suppress activation of bystander T cells and production of inflammatory cytokines. The ocular resident cells possess distinct properties of immunoregulation that are related to disparate anatomical location. CE cells and iris PE cells, which are located at the anterior segment of the eye and face the aqueous humor, suppress activation of T cells via cell-to-cell contact mechanisms, whereas retinal PE cells suppress the activation of T cells via soluble factors. In addition to direct immune suppression, the ocular resident cells have another unique immunosuppressive property, the induction of CD25(+)Foxp3(+) Treg cells that also suppress the activation of bystander T cells. Iris PE cells convert CD8(+) T cells into Treg cells, while retinal PE cells convert CD4(+) T cells greatly and CD8(+) T cells moderately into Treg cells. CE cells also convert both CD4(+) T cells and CD8(+) T cells into Treg cells. The immunomodulation by ocular resident cells is mediated by various soluble or membrane-bound molecules that include TGF-β TSP-1, B7-2 (CD86), CTLA-2α, PD-L1 (B7-H1), galectin 1, pigment epithelial-derived factor PEDF), GIRTL, and retinoic acid. Human retinal PE cells also possess similar immune properties to induce Treg cells. Although there are many issues to be answered, human Treg cells induced by ocular resident cells such as retinal PE cells and related immunosuppressive molecules can be applied as immune therapy for refractive autoimmune uveitis in humans in the future.
Collapse
Affiliation(s)
- Manabu Mochizuki
- Department of Ophthalmology & Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
24
|
Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response. Mol Ther 2012; 20:2143-52. [PMID: 22929658 DOI: 10.1038/mt.2012.165] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) were reported to enhance the survival of cellular and organ transplants. However, their mode of action was not established. We here used a mouse model of corneal allotransplantation and demonstrated that peri-transplant intravenous (i.v.) infusion of human MSCs (hMSCs) decreased the early surgically induced inflammation and reduced the activation of antigen-presenting cells (APCs) in the cornea and draining lymph nodes (DLNs). Subsequently, immune rejection was decreased, and allograft survival was prolonged. Quantitative assays for human GAPDH revealed that <10 hMSCs out of 1 × 10(6) injected cells were recovered in the cornea 10 hours to 28 days after i.v. infusion. Most of hMSCs were trapped in lungs where they were activated to increase expression of the gene for a multifunctional anti-inflammatory protein tumor necrosis factor-α stimulated gene/protein 6 (TSG-6). i.v. hMSCs with a knockdown of TSG-6 did not suppress the early inflammation and failed to prolong the allograft survival. Also, i.v. infusion of recombinant TSG-6 reproduced the effects of hMSCs. Results suggest that hMSCs improve the survival of corneal allografts without engraftment and primarily by secreting TSG-6 that acts by aborting early inflammatory responses. The same mechanism may explain previous reports that MSCs decrease rejection of other organ transplants.
Collapse
|
25
|
Sel S, Schlaf G, Schurat O, Altermann WW. A novel ELISA-based crossmatch procedure to detect donor-specific anti-HLA antibodies responsible for corneal allograft rejections. J Immunol Methods 2012; 381:23-31. [DOI: 10.1016/j.jim.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
|
26
|
Lapp T, Reinhold D, Maier P, Reinhard T. [Old immune system- new information? Importance of mononuclear phagocytes in corneal allograft rejection]. Ophthalmologe 2012; 109:869-78. [PMID: 22526010 DOI: 10.1007/s00347-012-2584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear phagocytes are derived from bone marrow precursor cells and are part of the innate immune system. These cells circulate in the blood as monocytes but differentiate in the peripheral circulation into tissue macrophages and dendritic cells under the influence of various cytokines. In addition to antimicrobial properties, macrophages also participate in wound healing; however, they also support degenerative and inflammatory processes. In cases of acute corneal allograft rejection, mononuclear cells initially form the main component of the cellular anterior chamber infiltrate. How monocytes are recruited into the anterior chamber is currently uncertain. Furthermore, no information is available about the possible cytotoxic effects on corneal endothelial cells. Gaining insight into these mechanisms may lead to potential pharmacological interventions.
Collapse
Affiliation(s)
- T Lapp
- Division of Infection and Immunity, University College London, The Cruciform Building, London, UK.
| | | | | | | |
Collapse
|
27
|
Sarkar J, Chaudhary S, Namavari A, Ozturk O, Chang JH, Yco L, Sonawane S, Khanolkar V, Hallak J, Jain S. Corneal neurotoxicity due to topical benzalkonium chloride. Invest Ophthalmol Vis Sci 2012; 53:1792-802. [PMID: 22410563 DOI: 10.1167/iovs.11-8775] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. METHODS Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. RESULTS BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). CONCLUSION Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous tear production.
Collapse
Affiliation(s)
- Joy Sarkar
- Corneal Neurobiology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hattori T, Saban DR, Emami-Naeini P, Chauhan SK, Funaki T, Ueno H, Dana R. Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation. J Leukoc Biol 2012; 91:621-7. [PMID: 22291211 DOI: 10.1189/jlb.1011500] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Significant interest has been focused on the use of ex vivo-manipulated DCs to optimally induce transplant tolerance and promote allograft survival. Although it is understood that donor-derived, tolerogenic DCs suppress the direct pathway of allosensitization, whether such DCs can similarly suppress the indirect pathway remains unclear. We therefore used the murine model of corneal transplantation to address this, as these allografts are rejected in an indirect pathway-dominant manner. Interestingly, recipients administered with donor bone marrow-derived DCregs, generated via culturing with GM-CSF, IL-10, and TGF-β1, significantly prolonged survival of corneal allografts. Correspondingly, these recipients demonstrated a potent reduction in the frequency of indirectly allosensitized T cells, as determined by ELISPOT. Examination of DCregs relative to mDCs or iDCs showed a resistance to up-regulation of MHC-II and costimulatory molecules, as well as an impaired capacity to stimulate MLRs. In vivo, DCreg administration in corneal-allografted recipients led to inhibition of CD4(+)IFN-γ(+) T cell frequencies and an associated increase in Foxp3 expression in the Treg compartment. We conclude that donor-derived, tolerogenic DCs significantly suppress the indirect pathway, thereby identifying a novel regulatory mechanism for these cells in transplantation.
Collapse
|
29
|
Abstract
PURPOSE To report the incidence of early allograft rejection after Descemet membrane endothelial keratoplasty (DMEK), that is, transplantation of isolated Descemet membrane with its endothelium. METHODS The first series of 120 eyes of 105 patients operated on for Fuchs endothelial dystrophy or pseudophakic bullous keratopathy, with an average 2 years of follow-up after 9.0- to 10.0-mm-diameter DMEK, enrolled in our study. RESULTS During the entire study period, only 1 of the eyes showed any signs of a cellular immune response to the Descemet graft. A 76-year-old patient presented with discomfort, reduced visual acuity to counting fingers, corneal decompensation, and a Khodadoust line in the central cornea 4 months after (decentered) DMEK. Intensified topical corticoid therapy resulted in a complete visual recovery to 20/25 (0.8) within weeks. CONCLUSIONS A "classic" allograft rejection (with an appearance similar to that after penetrating keratoplasty) can occur after DMEK. However, compared with the earlier (endothelial) keratoplasty procedures, DMEK may be associated with a lower rejection rate of ≤ 1%, despite transplant diameters of ± 9.5 mm. The apparent immune tolerance in DMEK may result from either less "upregulation" or more "downregulation" of the immune system.
Collapse
|
30
|
Hattori T, Chauhan SK, Lee H, Ueno H, Dana R, Kaplan DH, Saban DR. Characterization of Langerin-expressing dendritic cell subsets in the normal cornea. Invest Ophthalmol Vis Sci 2011; 52:4598-604. [PMID: 21482644 DOI: 10.1167/iovs.10-6741] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE In addition to Langerhans cells (LCs), other dendritic cells (CD11c(+)) have recently been shown to express Langerin (c-type lectin). In skin, (non-LC) Langerin+ dendritic cells initiate adaptive immunity. However, whether such dendritic cells (DC) reside in the cornea, an immune-privileged tissue, is unknown. METHODS Normal C57BL/6 corneas were harvested for qRT-PCR analyses of Langerin expression in the epithelium versus stroma. Immunohistochemistry for Langerin was also performed. Single-cell preparations of epithelium versus stroma were FACS analyzed for CD11c, CD11b, and CD103 expression. Fluorescence microscopy of corneas from muLangerin-eGFP mice (in which all CD11c(+) Langerin+ cells express eGFP), huLangerin-DTA mice (only LCs are constitutively deleted), and huLangerin-Cre eYFP-flox (only LCs express eYFP) was performed. RESULTS qRT-PCR, immunohistochemistry, and FACS analysis identified CD11c(+) Langerin+ cells in the epithelium and stroma. Similarly, corneas of muLangerin-eGFP mice contained eGFP+ cells in the epithelium and stroma. However, FACS analysis indicated phenotypically differing CD11c(+) Langerin+ populations in the epithelium (CD11b(low)CD103(low)) versus stroma (CD11b(+)CD103(low)). Additionally, corneas from huLangerin-DTA mice were devoid of Langerin+ cells in the epithelium but were detectable in the stroma. In corneas from huLangerin-Cre eYFP-flox, eYFP+ cells were detectable in the epithelium but not in the stroma. CONCLUSIONS The normal corneal epithelium is endowed with CD11c(+) Langerin+ cells that are LCs, whereas the stroma is endowed with a separate population of (non-LC) Langerin+ DCs. These findings should henceforth facilitate the examination of Langerin-expressing DC subsets in the immunopathogeneses of conditions such as keratoconjunctivitis sicca, allergic keratoconjunctivitis, and corneal allograft rejection.
Collapse
Affiliation(s)
- Takaaki Hattori
- Schepens Eye Research Institute, Boston, Massachusetts 02117, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Testa JS, Apcher GS, Comber JD, Eisenlohr LC. Exosome-driven antigen transfer for MHC class II presentation facilitated by the receptor binding activity of influenza hemagglutinin. THE JOURNAL OF IMMUNOLOGY 2010; 185:6608-16. [PMID: 21048109 DOI: 10.4049/jimmunol.1001768] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying MHC class I-restricted cross-presentation, the transfer of Ag from an infected cell to a professional APC, have been studied in great detail. Much less is known about the equivalent process for MHC class II-restricted presentation. After infection or transfection of class II-negative donor cells, we observed minimal transfer of a proteasome-dependent "class I-like" epitope within the influenza neuraminidase glycoprotein but potent transfer of a classical, H-2M-dependent epitope within the hemagglutinin (HA) glycoprotein. Additional experiments determined transfer to be exosome-mediated and substantially enhanced by the receptor binding activity of incorporated HA. Furthermore, a carrier effect was observed in that incorporated HA improved exosome-mediated transfer of a second membrane protein. This route of Ag presentation should be relevant to other enveloped viruses, may skew CD4(+) responses toward exosome-incorporated glycoproteins, and points toward novel vaccine strategies.
Collapse
Affiliation(s)
- James S Testa
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
32
|
Forrester JV, Xu H, Kuffová L, Dick AD, McMenamin PG. Dendritic cell physiology and function in the eye. Immunol Rev 2010; 234:282-304. [PMID: 20193026 DOI: 10.1111/j.0105-2896.2009.00873.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The eye and the brain are immunologically privileged sites, a property previously attributed to the lack of a lymphatic circulation. However, recent tracking studies confirm that these organs have good communication through classical site-specific lymph nodes, as well as direct connection through the blood circulation with the spleen. In addition, like all tissues, they contain resident myeloid cell populations that play important roles in tissue homeostasis and the response to foreign antigens. Most of the macrophage and dendritic cell (DC) populations in the eye are restricted to the supporting connective tissues, including the cornea, while the neural tissue (the retina) contains almost no DCs, occasional macrophages (perivascularly distributed), and a specialized myeloid cell type, the microglial cell. Resident microglial cells are normally programmed for immunological tolerance. The privileged status of the eye, however, is relative, as it is susceptible to immune-mediated inflammatory disease, both infectious and autoimmune. Intraocular inflammation (uveitis and uveoretinitis) and corneal graft rejection constitute two of the more common inflammatory conditions affecting the eye leading to considerable morbidity (blindness). As corneal graft rejection occurs almost exclusively by indirect allorecognition, host DCs play a major role in this process and are likely to be modified in their behavior by the ocular microenvironment. Ocular surface disease, including allergy and atopy, also comprise a significant group of immune-mediated eye disorders in which DCs participate, while infectious disease such as herpes simplex keratitis is thought to be initiated via corneal DCs. Intriguingly, some more common conditions previously thought to be degenerative (e.g. age-related macular degeneration) may have an autoimmune component in which ocular DCs and macrophages are critically involved. Recently, the possibility of harnessing the tolerizing potential of DCs has been applied to experimental models of autoimmune uveoretinitis with good effect. This approach has considerable potential for use in translational clinical therapy to prevent sight-threatening disease caused by ocular inflammation.
Collapse
Affiliation(s)
- John V Forrester
- Section of Immunology and Infection, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | |
Collapse
|
33
|
Cauterization of central cornea induces recruitment of major histocompatibility complex class II+ Langerhans cells from limbal basal epithelium. Cornea 2010; 29:73-9. [PMID: 19907296 DOI: 10.1097/ico.0b013e3181ac9f92] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE The purpose of this study was to investigate the distribution and characterization of Langerhans cells (LCs) in the rat corneal epithelium and to compare the findings with those obtained earlier in the mouse corneal epithelium. METHODS Normal and cauterized corneal tissues were excised from Wistar rats, and immunofluorescence staining for major histocompatibility complex (MHC) class II, CD3, CD11c, CD11b, CD45, CD80(B-1), and CD86(B-2) was performed by confocal microscopy. The density of intraepithelial MHC class II+ LCs was quantified. RESULTS In the normal corneal epithelium, CD11c+ cells were exclusively distributed in the limbal and peripheral areas. Double staining showed that these cells were CD45 and MHC class II positive and B7 (CD80 or CD86) costimulatory molecules, CD11b, and CD3 negative, exhibiting a dendritic cell phenotype. In cauterized cornea, the expression of MHC class II was significantly enhanced in the limbal basal epithelium. The expression of the activation markers, CD80 and CD86, by MHC class II+ LCs was first present in the limbal basal epithelium as early as 4 hours after corneal inflammation and later throughout the entire corneal epithelium. CONCLUSIONS The present study demonstrates for the first time the distribution and characterization of LCs in the rat corneal epithelium, which largely resembles most of those observed in the mouse cornea. In the cauterized cornea, B7+ LCs were first present in the limbal basal epithelium, suggesting that these cells play an important role in corneal inflammatory reaction.
Collapse
|
34
|
Cervantes Gonzalez M, Kostrzak A, Guetard D, Pniewski T, Sala M. HIV-1 derived peptides fused to HBsAg affect its immunogenicity. Virus Res 2009; 146:107-14. [DOI: 10.1016/j.virusres.2009.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 02/05/2023]
|
35
|
Knickelbein JE, Watkins SC, McMenamin PG, Hendricks RL. Stratification of Antigen-presenting Cells within the Normal Cornea. OPHTHALMOLOGY AND EYE DISEASES 2009; 1:45-54. [PMID: 20431695 PMCID: PMC2860608 DOI: 10.4137/oed.s2813] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The composition and location of professional antigen presenting cells (APC) varies in different mucosal surfaces. The cornea, long considered an immune-privileged tissue devoid of APCs, is now known to host a heterogeneous network of bone marrow-derived cells. Here, we utilized transgenic mice that express enhanced green fluorescent protein (EGFP) from the CD11c promoter (pCD11c) in conjunction with immunohistochemical staining to demonstrate an interesting stratification of APCs within non-inflamed murine corneas. pCD11c+ dendritic cells (DCs) reside in the basal epithelium, seemingly embedded in the basement membrane. Most DCs express MHC class II on at least some dendrites, which extend up to 50 μm in length and traverse up 20 μm tangentially towards the apical surface of the epithelium. The DC density diminishes from peripheral to central cornea. Beneath the DCs and adjacent to the stromal side of the basement membrane reside pCD11c−CD11b+ putative macrophages that express low levels of MHC class II. Finally, MHC class II-pCD11c−CD11b+ cells form a network throughout the remainder of the stroma. This highly reproducible stratification of bone marrow-derived cells is suggestive of a progression from an APC function at the exposed corneal surface to an innate immune barrier function deeper in the stroma.
Collapse
Affiliation(s)
- Jared E Knickelbein
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
36
|
Kela-Madar N, de Rosbo NK, Ronen A, Mor F, Ben-Nun A. Autoimmune spread to myelin is associated with experimental autoimmune encephalomyelitis induced by a neuronal protein, β-Synuclein. J Neuroimmunol 2009; 208:19-29. [DOI: 10.1016/j.jneuroim.2008.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/16/2008] [Accepted: 12/22/2008] [Indexed: 01/07/2023]
|
37
|
Coster DJ, Jessup CF, Williams KA. Mechanisms of corneal allograft rejection and regional immunosuppression. Eye (Lond) 2009; 23:1894-7. [PMID: 19229274 DOI: 10.1038/eye.2009.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Corneal transplantation has not matched the improvements in outcome seen with other clinical transplantation procedures. The therapeutic strategies, which have improved the outcomes of solid vascularised organs are not applicable to corneal transplantation. Corneal transplantation is different with respect to relevant transplantation biology and the clinical context in which it is practiced. New approaches need to be developed which provide regional rather than systemic immunosuppression. The accessibility of the cornea makes it particularly suitable for topical medication and for gene therapy approaches. Engineered antibodies, small enough to pass through the cornea, and directed at key molecules in the allograft response have been developed. Gene therapy had been developed using viral vectors to transfect the corneal endothelium with the genes for immunosuppressive lymphokines. Both approaches show promise.
Collapse
Affiliation(s)
- D J Coster
- Department of Ophthalmology, Flinders University, Adelaide, Australia.
| | | | | |
Collapse
|
38
|
Zhang X, Shen L, Jin Y, Saban DR, Chauhan SK, Dana R. Depletion of passenger leukocytes from corneal grafts: an effective means of promoting transplant survival? Invest Ophthalmol Vis Sci 2009; 50:3137-44. [PMID: 19136708 DOI: 10.1167/iovs.08-1899] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To develop and compare effective strategies for depleting graft-derived passenger leukocytes that include antigen-presenting cells from corneal buttons and to assess the effectiveness of this strategy in promoting graft survival using a high-risk (HR) model of corneal transplantation. METHODS Corneal buttons harvested from C57BL/6 mice were used in three ex vivo strategies of passenger leukocyte depletion. Two strategies involved storage in medium at different temperatures for prolonged periods. A third strategy used complement-dependent cytotoxicity (CDC) by treating the buttons with anti-CD45 mAb plus complement. Wholemount corneal buttons or cells from enzyme-digested corneas were analyzed using confocal microscopy or flow cytometry, respectively, for the pan-leukocyte surface marker CD45. HR host beds were created and used to evaluate the efficacy of passenger leukocyte depletion on transplant survival. RESULTS Passenger leukocyte numbers in the buttons were significantly reduced by all three treatments. CDC was the most efficient strategy for passenger leukocyte depletion with 39% reduction (P < 0.00005) of CD45(+) cells, and negligible damage to the endothelial layer, achievable within 24 hours. However, passenger leukocyte depletion failed to improve HR graft longevity. CONCLUSIONS Anti-CD45 antibody plus complement-mediated targeting of donor tissue is the most efficient way to deplete corneal passenger leukocytes and can considerably reduce the time required for cell depletion. However, depletion of graft passenger leukocytes does not have a significant effect on promoting graft survival even in the HR setting.
Collapse
Affiliation(s)
- Xian Zhang
- Schepens Eye Research Institute, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
39
|
Forrester JV. Privilege revisited: an evaluation of the eye's defence mechanisms. Eye (Lond) 2008; 23:756-66. [PMID: 18989350 DOI: 10.1038/eye.2008.259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immune privilege has been considered for many years to be an interesting phenomenon associated with certain specialised tissues such as the eye and the brain. In recent years however, it has become clear that the active and passive mechanisms which underpin immune privilege are in fact a form of tissue-based immunological tolerance, perhaps of equal importance in providing defence against antigenic attack as the well established mechanisms based on the thymus (central tolerance) and circulating regulatory cells (peripheral tolerance). It would appear that each tissue possesses a degree of intrinsic immunological resistance which varies depending on the tissues and provides some degree of protection. In some tissues, such as the eye, this is protection from 'danger' has been developed to a high level of sophistication, but at a price. The mechanisms involved are presented in his lecture.
Collapse
Affiliation(s)
- J V Forrester
- Department of Ophthalmology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland, UK.
| |
Collapse
|
40
|
|
41
|
Chinnery HR, Humphries T, Clare A, Dixon AE, Howes K, Moran CB, Scott D, Zakrzewski M, Pearlman E, McMenamin PG. Turnover of bone marrow-derived cells in the irradiated mouse cornea. Immunology 2008; 125:541-8. [PMID: 18540963 DOI: 10.1111/j.1365-2567.2008.02868.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1(gfp) transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1(+/gfp) recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP(+) cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1(+/gfp) cornea was 366 cells/mm(2). In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP(+) cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation.
Collapse
Affiliation(s)
- Holly R Chinnery
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Perth, Western Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|