1
|
Larouche JD, Laumont CM, Trofimov A, Vincent K, Hesnard L, Brochu S, Côté C, Humeau JF, Bonneil É, Lanoix J, Durette C, Gendron P, Laverdure JP, Richie ER, Lemieux S, Thibault P, Perreault C. Transposable elements regulate thymus development and function. eLife 2024; 12:RP91037. [PMID: 38635416 PMCID: PMC11026094 DOI: 10.7554/elife.91037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.
Collapse
Affiliation(s)
- Jean-David Larouche
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Medicine, Université de MontréalMontréalCanada
| | - Céline M Laumont
- Deeley Research Centre, BC CancerVictoriaCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| | - Assya Trofimov
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Computer Science and Operations Research, Université de MontréalMontréalCanada
- Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Physics, University of WashingtonSeattleUnited States
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Caroline Côté
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Juliette F Humeau
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Joel Lanoix
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | | | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer CenterHoustonUnited States
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Biochemistry and Molecular Medicine, Université de MontréalMontrealCanada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Chemistry, Université de MontréalMontréalCanada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Department of Medicine, Université de MontréalMontréalCanada
| |
Collapse
|
2
|
Bhat J, Placek K, Faissner S. Contemplating Dichotomous Nature of Gamma Delta T Cells for Immunotherapy. Front Immunol 2022; 13:894580. [PMID: 35669772 PMCID: PMC9163397 DOI: 10.3389/fimmu.2022.894580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
γδ T cells are unconventional T cells, distinguished from αβ T cells in a number of functional properties. Being small in number compared to αβ T cells, γδ T cells have surprised us with their pleiotropic roles in various diseases. γδ T cells are ambiguous in nature as they can produce a number of cytokines depending on the (micro) environmental cues and engage different immune response mechanisms, mainly due to their epigenetic plasticity. Depending on the disease condition, γδ T cells contribute to beneficial or detrimental response. In this review, we thus discuss the dichotomous nature of γδ T cells in cancer, neuroimmunology and infectious diseases. We shed light on the importance of equal consideration for systems immunology and personalized approaches, as exemplified by changes in metabolic requirements. While providing the status of immunotherapy, we will assess the metabolic (and other) considerations for better outcome of γδ T cell-based treatments.
Collapse
Affiliation(s)
- Jaydeep Bhat
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
3
|
Apavaloaei A, Laverdure JP, Perreault C. PSMB11 regulates gene expression in cortical thymic epithelial cells. Cell Rep 2021; 36:109546. [PMID: 34496243 DOI: 10.1016/j.celrep.2021.109546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/30/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The PSMB11 proteasomal subunit, expressed only in cortical thymic epithelial cells (cTECs), is essential for the development of functional CD8+ T cells. An attractive yet unproven theory holds that PSMB11 generates unique major histocompatibility complex class I (MHC I)-associated peptides required for positive selection. We recently reported that PSMB11 regulates the expression of hundreds of genes in cTECs, mainly by differential proteolysis of transcription factors. Thereby, PSMB11 maintains the distinctness of cTECs relative to medullary TECs (mTECs) and promotes cortex-to-medulla migration of developing thymocytes. These conclusions have been challenged by Ohigashi and colleagues, who suggest that their data show that PSMB11 uniquely controls antigen presentation without affecting cTEC biology. Here, we perform a comprehensive reanalysis of transcriptomic and proteomic data from the Ohigashi lab and confirm our original conclusions. This Matters Arising paper is in response to Ohigashi et al. (2019), published in Cell Reports. See also the response by Ohigashi and Takahama (2021), published in this issue of Cell Reports.
Collapse
Affiliation(s)
- Anca Apavaloaei
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | | | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
4
|
Farini A, Sitzia C, Villa C, Cassani B, Tripodi L, Legato M, Belicchi M, Bella P, Lonati C, Gatti S, Cerletti M, Torrente Y. Defective dystrophic thymus determines degenerative changes in skeletal muscle. Nat Commun 2021; 12:2099. [PMID: 33833239 PMCID: PMC8032677 DOI: 10.1038/s41467-021-22305-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/24/2021] [Indexed: 02/02/2023] Open
Abstract
In Duchenne muscular dystrophy (DMD), sarcolemma fragility and myofiber necrosis produce cellular debris that attract inflammatory cells. Macrophages and T-lymphocytes infiltrate muscles in response to damage-associated molecular pattern signalling and the release of TNF-α, TGF-β and interleukins prevent skeletal muscle improvement from the inflammation. This immunological scenario was extended by the discovery of a specific response to muscle antigens and a role for regulatory T cells (Tregs) in muscle regeneration. Normally, autoimmunity is avoided by autoreactive T-lymphocyte deletion within thymus, while in the periphery Tregs monitor effector T-cells escaping from central regulatory control. Here, we report impairment of thymus architecture of mdx mice together with decreased expression of ghrelin, autophagy dysfunction and AIRE down-regulation. Transplantation of dystrophic thymus in recipient nude mice determine the up-regulation of inflammatory/fibrotic markers, marked metabolic breakdown that leads to muscle atrophy and loss of force. These results indicate that involution of dystrophic thymus exacerbates muscular dystrophy by altering central immune tolerance.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Clementina Sitzia
- Residency Program in Clinical Pathology and Clinical Biochemistry, Università degli Studi di Milano, Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Barbara Cassani
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy
- IRCCS Humanitas clinical and research center, Rozzano, 20089, Milan, Italy
| | - Luana Tripodi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Mariella Legato
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Pamela Bella
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Caterina Lonati
- Center for Surgical Research, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Gatti
- Center for Surgical Research, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Cerletti
- UCL Research Department for Surgical Biotechnology, University College London, London, UK
- UCL Institute for Immunity and Transplantation, University College London, London, UK
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy.
| |
Collapse
|
5
|
Bekpen C, Xie C, Tautz D. Dealing with the adaptive immune system during de novo evolution of genes from intergenic sequences. BMC Evol Biol 2018; 18:121. [PMID: 30075701 PMCID: PMC6091031 DOI: 10.1186/s12862-018-1232-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
Background The adaptive immune system of vertebrates has an extraordinary potential to sense and neutralize foreign antigens entering the body. De novo evolution of genes implies that the genome itself expresses novel antigens from intergenic sequences which could cause a problem with this immune system. Peptides from these novel proteins could be presented by the major histocompatibility complex (MHC) receptors to the cell surface and would be recognized as foreign. The respective cells would then be attacked and destroyed, or would cause inflammatory responses. Hence, de novo expressed peptides have to be introduced to the immune system as being self-peptides to avoid such autoimmune reactions. The regulation of the distinction between self and non-self starts during embryonic development, but continues late into adulthood. It is mostly mediated by specialized cells in the thymus, but can also be conveyed in peripheral tissues, such as the lymph nodes and the spleen. The self-antigens need to be exposed to the reactive T-cells, which requires the expression of the genes in the respective tissues. Since the initial activation of a promotor for new intergenic transcription of a de novo gene could occur in any tissue, we should expect that the evolutionary establishment of a de novo gene in animals with an adaptive immune system should also involve expression in at least one of the tissues that confer self-recognition. Results We have studied this question by analyzing the transcriptomes of multiple tissues from young mice in three closely related natural populations of the house mouse (M. m. domesticus). We find that new intergenic transcription occurs indeed mostly in only a single tissue. When a second tissue becomes involved, thymus and spleen are significantly overrepresented. Conclusions We conclude that the inclusion of de novo transcripts in the processes for the induction of self-tolerance is indeed an important step in the evolution of functional de novo genes in vertebrates. Electronic supplementary material The online version of this article (10.1186/s12862-018-1232-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cemalettin Bekpen
- Max-Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany
| | - Chen Xie
- Max-Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany.
| |
Collapse
|
6
|
St-Pierre C, Trofimov A, Brochu S, Lemieux S, Perreault C. Differential Features of AIRE-Induced and AIRE-Independent Promiscuous Gene Expression in Thymic Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:498-506. [PMID: 26034170 DOI: 10.4049/jimmunol.1500558] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2023]
Abstract
Establishment of self-tolerance in the thymus depends on promiscuous expression of tissue-restricted Ags (TRA) by thymic epithelial cells (TEC). This promiscuous gene expression (pGE) is regulated in part by the autoimmune regulator (AIRE). To evaluate the commonalities and discrepancies between AIRE-dependent and -independent pGE, we analyzed the transcriptome of the three main TEC subsets in wild-type and Aire knockout mice. We found that the impact of AIRE-dependent pGE is not limited to generation of TRA. AIRE decreases, via non-cell autonomous mechanisms, the expression of genes coding for positive regulators of cell proliferation, and it thereby reduces the number of cortical TEC. In mature medullary TEC, AIRE-driven pGE upregulates non-TRA coding genes that enhance cell-cell interactions (e.g., claudins, integrins, and selectins) and are probably of prime relevance to tolerance induction. We also found that AIRE-dependent and -independent TRA present several distinctive features. In particular, relative to AIRE-induced TRA, AIRE-independent TRA are more numerous and show greater splicing complexity. Furthermore, we report that AIRE-dependent versus -independent TRA project nonredundant representations of peripheral tissues in the thymus.
Collapse
Affiliation(s)
- Charles St-Pierre
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and
| | - Assya Trofimov
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and
| |
Collapse
|
7
|
Roles of small RNAs in the effects of nutrition on apoptosis and spermatogenesis in the adult testis. Sci Rep 2015; 5:10372. [PMID: 25996545 PMCID: PMC4440528 DOI: 10.1038/srep10372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
We tested whether reductions in spermatozoal quality induced by under-nutrition are associated with increased germ cell apoptosis and disrupted spermatogenesis, and whether these effects are mediated by small RNAs. Groups of 8 male sheep were fed for a 10% increase or 10% decrease in body mass over 65 days. Underfeeding increased the number of apoptotic germ cells (P < 0.05) and increased the expression of apoptosis-related genes (P < 0.05) in testicular tissue. We identified 44 miRNAs and 35 putative piRNAs that were differentially expressed in well-fed and underfed males (FDR < 0.05). Some were related to reproductive system development, apoptosis (miRNAs), and sperm production and quality (piRNAs). Novel-miR-144 (miR-98), was found to target three apoptotic genes (TP53, CASP3, FASL). The proportion of miRNAs as a total of small RNAs was greater in well-fed males than in underfed males (P < 0.05) and was correlated (r = 0.8, P < 0.05) with the proportion of piRNAs in well-fed and underfed males. In conclusion, the reductions in spermatozoal quality induced by under-nutrition are caused, at least partly, by disruptions to Sertoli cell function and increased germ cell apoptosis, mediated by changes in the expression of miRNAs and piRNAs.
Collapse
|
8
|
Guan Y, Liang G, Hawken PAR, Meachem SJ, Malecki IA, Ham S, Stewart T, Guan LL, Martin GB. Nutrition affects Sertoli cell function but not Sertoli cell numbers in sexually mature male sheep. Reprod Fertil Dev 2014; 28:RD14368. [PMID: 25515817 DOI: 10.1071/rd14368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 01/18/2023] Open
Abstract
We tested whether the reversible effects of nutrition on spermatogenesis in sexually mature sheep were mediated by Sertoli cells. Rams were fed with diets designed to achieve a 10% increase (High), no change (Maintenance) or a 10% decrease (Low) in body mass after 65 days. At the end of treatment, testes were lighter in the Low than the High group (PP<0.05) in the expression of seven Sertoli cell-specific genes. Under-nutrition appeared to reverse cellular differentiation leading to disruption of tight-junction morphology. In conclusion, in sexually mature sheep, reversible reductions in testis mass and spermatogenesis caused by under-nutrition were associated with impairment of basic aspects of Sertoli cell function but not with changes in the number of Sertoli cells.
Collapse
|
9
|
de Verteuil DA, Rouette A, Hardy MP, Lavallée S, Trofimov A, Gaucher É, Perreault C. Immunoproteasomes Shape the Transcriptome and Regulate the Function of Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:1121-32. [DOI: 10.4049/jimmunol.1400871] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Transcriptome sequencing of neonatal thymic epithelial cells. Sci Rep 2013; 3:1860. [PMID: 23681267 PMCID: PMC3656389 DOI: 10.1038/srep01860] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/02/2013] [Indexed: 12/28/2022] Open
Abstract
In order to gain novel insights into thymus biology, we analysed the whole transcriptome of cortical and medullary thymic epithelial cells (cTECs and mTECs) and of skin epithelial cells (ECs). Consistent with their ability to express ectopic genes, mTECs expressed more genes than other cell populations. Out of a total of 15,069 genes expressed in TECs, 25% were differentially expressed by at least 5-fold in cTECs vs. mTECs. Genes expressed at higher levels in cTECs than mTECs regulate numerous cell functions including cell differentiation, cell movement and microtubule dynamics. Many positive regulators of the cell cycle were overexpressed in skin ECs relative to TECs. Our RNA-seq data provide novel systems-level insights into the transcriptional landscape of TECs, highlight substantial divergences in the transcriptome of TEC subsets and suggest that cell cycle progression is differentially regulated in TECs and skin ECs.
Collapse
|
11
|
Holland AM, Zakrzewski JL, Tsai JJ, Hanash AM, Dudakov JA, Smith OM, West ML, Singer NV, Brill J, Sun JC, van den Brink MRM. Extrathymic development of murine T cells after bone marrow transplantation. J Clin Invest 2012; 122:4716-26. [PMID: 23160195 DOI: 10.1172/jci60630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Restoring T cell competence is a significant clinical challenge in patients whose thymic function is severely compromised due to age or cytoreductive conditioning. Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T cell development in euthymic and athymic recipients of bone marrow transplantation (BMT). Furthermore, in aged murine BMT recipients, the contribution of the MLNs to the generation of T cells was maintained, while the contribution of the thymus was significantly impaired. Thymic impairment resulted in a proportional increase in extrathymic-derived T cell progenitors. Extrathymic development in athymic recipients generated conventional naive TCRαβ T cells with a broad Vβ repertoire and intact functional and proliferative potential. Moreover, in the absence of a functional thymus, immunity against known pathogens could be augmented using engineered precursor T cells with viral specificity. These findings demonstrate the potential of extrathymic T cell development for T cell reconstitution in patients with limited thymic function.
Collapse
Affiliation(s)
- Amanda M Holland
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pishel I, Shytikov D, Orlova T, Peregudov A, Artyuhov I, Butenko G. Accelerated aging versus rejuvenation of the immune system in heterochronic parabiosis. Rejuvenation Res 2012; 15:239-48. [PMID: 22533440 DOI: 10.1089/rej.2012.1331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The emergence of immune disorders in aging is explained by many factors, including thymus dysfunction, decrease in the proportion and function of naïve T cells, and so forth. There are several approaches to preventing these changes, such as thymus rejuvenation, stem cells recovery, modulation of hormone production, and others. Our investigations of heterochronic parabiosis have shown that benefits of a young immune system, e.g., actively working thymus and regular migration of young hematopoietic stem cells between parabiotic partners, appeared unable to restore the immune system of the old partner. At the same time, we have established a progressive immune impairment in the young heterochronic partners. The mechanism of age changes in the immune system in this model, which may lead to reduced life expectancy, has not been fully understood. The first age-related manifestation in the young partners observed 3 weeks after the surgery was a dramatic increase of CD8(+)44(+) cells population in the spleen. A detailed analysis of further changes revealed a progressive decline of most immunological functions observable for up to 3 months after the surgery. This article reviews possible mechanisms of induction of age-related changes in the immune system of young heterochronic partners. The data obtained suggest the existence of certain factors in the old organisms that trigger aging, thus preventing the rejuvenation process.
Collapse
Affiliation(s)
- Iryna Pishel
- Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine.
| | | | | | | | | | | |
Collapse
|
13
|
Méndez-Lagares G, Díaz L, Correa-Rocha R, León Leal JA, Ferrando-Martínez S, Ruiz-Mateos E, Pozo-Balado MM, Gurbindo MD, de José MI, Muñoz-Fernández MA, Leal M, Pacheco YM. Specific patterns of CD4-associated immunosenescence in vertically HIV-infected subjects. Clin Microbiol Infect 2012; 19:558-65. [PMID: 22735071 DOI: 10.1111/j.1469-0691.2012.03934.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vertical transmission of human immunodeficiency virus (HIV) represents an important world-wide health problem although the incidence in developed countries has been drastically reduced by the extensive use of highly active antiretroviral therapy. Vertically HIV-infected subjects have been exposed to the virus during the maturation of their immune systems and have suffered a persistent chronic activation throughout their lifetime; the consequences of this situation for their immune system are not fully understood. The objective of this study was to analyse immunosenescence-related parameters in different CD4 T-cell subsets. Fifty-seven vertically HIV-infected subjects and 32 age-matched healthy subjects were studied. Activation (HLA(-) DR(+) ), senescence (CD28(-) CD57(+) ) and proliferation (Ki67(+) ) were analysed on different CD4 T-cell subsets: naive (CD45RA(+) CD27(+) ), memory (CD45RO(+) CD27(+) ), effector memory (CD45RO(+) CD27(-) ) and effector memory RA (CD45RA(+) CD27(-) ). Compared with healthy subjects, vertically HIV-infected subjects showed increased naive and memory CD4 T-cell frequencies (p 0.035 and p 0.010, respectively) but similar frequencies of both effector subsets. Whereas naive CD4 T cells were not further altered, memory CD4 T cells presented increased levels of senescence and proliferation markers (p <0.001), effector memory CD4 T cells presented increased levels of activation, senescence and proliferation markers (p <0.001) and effector memory RA CD4 T cells presented increased levels of activation and senescence (p <0.001) compared with healthy subjects. Despite long periods of infection, vertically HIV-infected subjects show specific patterns of immunosenescence, revealing a preserved CD4 T-cell homeostasis for subset differentiation and distribution. Nevertheless, excepting the naive subpopulation, all subsets experienced some immunosenescence, pointing to uncertain consequences of the future aging process in these subjects.
Collapse
Affiliation(s)
- G Méndez-Lagares
- Laboratory of Immunovivology, Clinic Unit of Infectious Diseases, Microbiology and preventive Medicine of Seville, IBiS, Virgen del Rocion University Hospital/CSiC/University of Seville, Seville 41013, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Albuquerque AS, Marques JG, Silva SL, Ligeiro D, Devlin BH, Dutrieux J, Cheynier R, Pignata C, Victorino RMM, Markert ML, Sousa AE. Human FOXN1-deficiency is associated with αβ double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation. PLoS One 2012; 7:e37042. [PMID: 22590644 PMCID: PMC3349657 DOI: 10.1371/journal.pone.0037042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/12/2012] [Indexed: 01/03/2023] Open
Abstract
Forkhead box N1 (FOXN1) is a transcription factor crucial for thymic epithelium development and prevention of its involution. Investigation of a patient with a rare homozygous FOXN1 mutation (R255X), leading to alopecia universalis and thymus aplasia, unexpectedly revealed non-maternal circulating T-cells, and, strikingly, large numbers of aberrant double-negative αβ T-cells (CD4negCD8neg, DN) and regulatory-like T-cells. These data raise the possibility that a thymic rudiment persisted, allowing T-cell development, albeit with disturbances in positive/negative selection, as suggested by DN and FoxP3+ cell expansions. Although regulatory-like T-cell numbers normalized following HLA-mismatched thymic transplantation, the αβDN subset persisted 5 years post-transplantation. Involution of thymus allograft likely occurred 3 years post-transplantation based on sj/βTREC ratio, which estimates intrathymic precursor T-cell divisions and, consequently, thymic explant output. Nevertheless, functional immune-competence was sustained, providing new insights for the design of immunological reconstitution strategies based on thymic transplantation, with potential applications in other clinical settings.
Collapse
Affiliation(s)
- Adriana S. Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José G. Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Susana L. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Dario Ligeiro
- Immunogenetics Laboratory, Centro de Histocompatibilidade do Sul – CHSul, Lisboa, Portugal
| | - Blythe H. Devlin
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jacques Dutrieux
- Institut Cochin, Département Immunologie-Hematologie, Paris, France
- Inserm, U567, Paris, France
- CNRS, UMR 8104, Paris, France
| | - Rémi Cheynier
- Institut Cochin, Département Immunologie-Hematologie, Paris, France
- Inserm, U567, Paris, France
- Université Paris Descartes, Faculté de Médecine René Descartes, UMR-S 8104, Paris, France
- CNRS, UMR 8104, Paris, France
| | - Claudio Pignata
- Pediatric Immunology Unit, Department of Pediatrics, “Federico II” University, Naples, Italy
| | - Rui M. M. Victorino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - M. Louise Markert
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ana E. Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
15
|
Rafei M, Hardy MP, Williams P, Vanegas JR, Forner KA, Dulude G, Labrecque N, Galipeau J, Perreault C. Development and function of innate polyclonal TCRalphabeta+ CD8+ thymocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:3133-44. [PMID: 21844388 DOI: 10.4049/jimmunol.1101097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Innate CD8 T cells are found in mutant mouse models, but whether they are produced in a normal thymus remains controversial. Using the RAG2p-GFP mouse model, we found that ∼10% of TCRαβ(+) CD4(-)CD8(+) thymocytes were innate polyclonal T cells (GFP(+)CD44(hi)). Relative to conventional T cells, innate CD8 thymocytes displayed increased cell surface amounts of B7-H1, CD2, CD5, CD38, IL-2Rβ, and IL-4Rα and downmodulation of TCRβ. Moreover, they overexpressed several transcripts, including T-bet, Id3, Klf2, and, most of all, Eomes. Innate CD8 thymocytes were positively selected, mainly by nonhematopoietic MHCIa(+) cells. They rapidly produced high levels of IFN-γ upon stimulation and readily proliferated in response to IL-2 and IL-4. Furthermore, low numbers of innate CD8 thymocytes were sufficient to help conventional CD8 T cells expand and secrete cytokine following Ag recognition. This helper effect depended on CD44-mediated interactions between innate and conventional CD8 T cells. We concluded that innate TCRαβ(+) CD8 T cells represent a sizeable proportion of normal thymocytes whose development and function differ in many ways from those of conventional CD8 T cells.
Collapse
Affiliation(s)
- Moutih Rafei
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hermes HM, Cohen GA, Mehrotra AK, McMullan DM, Permut LC, Goodwin S, Stevens AM. Association of Thymectomy With Infection Following Congenital Heart Surgery. World J Pediatr Congenit Heart Surg 2011; 2:351-8. [DOI: 10.1177/2150135111403328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Congenital absence of the thymus can lead to profound immunodeficiency, suggesting that thymic function during fetal development is essential to normal lymphocyte development. How vital the thymus after birth is to human immune competence and regulation is not known. Routine thymectomy, especially at an early age, may influence immunity, and therefore the risk of infection, autoimmunity, or malignancy. Methods: A retrospective review of cardiac surgery patients followed at Seattle Children’s Hospital was performed. The primary outcome was rate of serious infections requiring hospitalization. Secondary analyses included age, type of infection, cardiac diagnosis, surgical procedure, and comorbidities. Results: Patients fell into 2 groups: 60 with complete thymectomy and 35 with partial or no thymectomy. There was no statistical difference between groups in the overall prevalence of serious infections (16.7% vs 17.2%, P = 1.0). There was a nonsignificant trend toward reduced time between surgery and onset of first infection in patients in the total thymectomy group versus those without thymectomy (1.7 years vs 4.6 years, P = .07). Total thymectomy before 6 months of age also tended to increase infection rate, but the effect was not significant (0.09/year vs 0.02, P = .14). Gastroesophageal reflux in patients with total thymectomy increased the risk of infection ( P = .013), suggesting a cumulative effect. Conclusions: Though infections occurred frequently in the childhood cardiac surgery population, total thymectomy was not associated with increased risk of serious infection. Comorbid conditions may be more important contributing factors increasing the risk of infection in this complex and vulnerable population.
Collapse
Affiliation(s)
- Heidi M. Hermes
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gordon A. Cohen
- Seattle Children’s Hospital, Seattle, WA, USA
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Anjuli K. Mehrotra
- Seattle Children’s Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - David M. McMullan
- Seattle Children’s Hospital, Seattle, WA, USA
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Lester C. Permut
- Seattle Children’s Hospital, Seattle, WA, USA
- Department of Surgery, University of Washington, Seattle, WA, USA
| | | | - Anne M. Stevens
- Seattle Children’s Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Bukovsky A. Immune maintenance of self in morphostasis of distinct tissues, tumour growth and regenerative medicine. Scand J Immunol 2011; 73:159-89. [PMID: 21204896 DOI: 10.1111/j.1365-3083.2010.02497.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Morphostasis (tissue homeostasis) is a complex process consisting of three circumstances: (1) tissue renewal from stem cells, (2) preservation of tissue cells in a proper differentiated state and (3) maintenance of tissue quantity. This can be executed by a tissue control system (TCS) consisting of vascular pericytes, immune system-related components--monocyte-derived cells (MDC), T cells and immunoglobulins and autonomic innervation. Morphostasis is established epigenetically, during the critical developmental period corresponding to the morphogenetic immune adaptation. Subsequently, the tissues are maintained in a state of differentiation reached during the adaptation by a 'stop effect' of MDC influencing markers of differentiating tissue cells and presenting self-antigens to T cells. Retardation or acceleration of certain tissue differentiation during adaptation results in its persistent functional immaturity or premature ageing. The tissues being absent during adaptation, like ovarian corpus luteum, are handled as a 'graft.' Morphostasis is altered with age advancement, because of the degenerative changes of the immune system. That is why the ageing of individuals and increased incidence of neoplasia and degenerative diseases occur. Hybridization of tumour stem cells with normal tissue cells causes an augmentation of neoplasia by host pericytes and MDC stimulating a 'regeneration' of depleted functional cells. Degenerative diseases are associated with apoptosis. If we are able to change morphostasis in particular tissue, we may disrupt apoptotic process of the cell. An ability to manage the 'stop effect' of MDC may provide treatment for early post-natal tissue disorders, improve regenerative medicine and delay physical, mental and hormonal ageing.
Collapse
Affiliation(s)
- A Bukovsky
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
18
|
Francis RS, Feng G, Tha-In T, Lyons IS, Wood KJ, Bushell A. Induction of transplantation tolerance converts potential effector T cells into graft-protective regulatory T cells. Eur J Immunol 2011; 41:726-38. [PMID: 21243638 PMCID: PMC3175037 DOI: 10.1002/eji.201040509] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/28/2010] [Accepted: 11/29/2010] [Indexed: 12/14/2022]
Abstract
Naturally occurring FOXP3(+) CD4(+) Treg have a crucial role in self-tolerance. The ability to generate similar populations against alloantigens offers the possibility of preventing transplant rejection without indefinite global immunosuppression. Exposure of mice to donor alloantigens combined with anti-CD4 antibody induces operational tolerance to cardiac allografts, and generates Treg that prevent skin and islet allograft rejection in adoptive transfer models. If protocols that generate Treg in vivo are to be developed in the clinical setting it will be important to know the origin of the Treg population and the mechanisms responsible for their generation. In this study, we demonstrate that graft-protective Treg arise in vivo both from naturally occurring FOXP3(+) CD4(+) Treg and from non-regulatory FOXP3(-) CD4(+) cells. Importantly, tolerance induction also inhibits CD4(+) effector cell priming and T cells from tolerant mice have impaired effector function in vitro. Thus, adaptive tolerance induction shapes the immune response to alloantigen by converting potential effector cells into graft-protective Treg and by expanding alloreactive naturally occurring Treg. In relation to clinical tolerance induction, the data indicate that while the generation of alloreactive Treg may be critical for long-term allograft survival without chronic immunosuppression, successful protocols will also require strategies that target potential effector cells.
Collapse
Affiliation(s)
- Ross S Francis
- Transplant Research Immunology Group, Nuffield Department of Surgery, University of Oxford John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | |
Collapse
|
19
|
Meek B, Van Elssen CHMJ, Huijskens MJAJ, van der Stegen SJC, Tonnaer S, Lumeij SBJ, Vanderlocht J, Kirkland MA, Hesselink R, Germeraad WTV, Bos GMJ. T cells fail to develop in the human skin-cell explants system; an inconvenient truth. BMC Immunol 2011; 12:17. [PMID: 21332988 PMCID: PMC3056828 DOI: 10.1186/1471-2172-12-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/18/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Haplo-identical hematopoietic stem cell (HSC) transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. RESULTS Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL). In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. CONCLUSIONS Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.
Collapse
Affiliation(s)
- Bob Meek
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Photodepletion differentially affects CD4+ Tregs versus CD4+ effector T cells from patients with chronic graft-versus-host disease. Blood 2010; 116:4859-69. [PMID: 20798236 DOI: 10.1182/blood-2010-03-273193] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Even the most potent immunosuppressive drugs often fail to control graft-versus-host disease (GVHD), the most frequent and deleterious posttransplantation complication. We previously reported that photodepletion using dibromorhodamine (TH9402) eliminates T cells from healthy donors activated against major histocompatibility complex-incompatible cells and spares resting T cells. In the present study, we identified photodepletion conditions selectively eradicating endogenous proliferating T cells from chronic GVHD patients, with the concomittant sparing and expansion of CD4(+)CD25(+) forkhead box protein 3-positive T cells. The regulatory T-cell (Treg) nature and function of these photodepletion-resistant cells was demonstrated in coculture and depletion/repletion experiments. The mechanism by which Tregs escape photodepletion involves active P-glycoprotein-mediated drug efflux. This Treg-inhibitory activity is attributable to interleukin-10 secretion, requires cell-cell contact, and implies binding with cytotoxic T-lymphocyte antigen 4 (CTLA-4). Preventing CTLA-4 ligation abrogated the in vitro generation of Tregs, thus identifying CTLA-4-mediated cell-cell contact as a crucial priming event for Treg function. Moreover, the frequency of circulating Tregs increased in chronic GVHD patients treated with TH9402 photodepleted cells. In conclusion, these results identify a novel approach to both preserve and expand Tregs while selectively eliminating CD4(+) effector T cells. They also uncover effector pathways that could be used advantageously for the treatment of patients with refractory GVHD.
Collapse
|
21
|
Giroux M, Delisle JS, O'Brien A, Hébert MJ, Perreault C. T cell activation leads to protein kinase C theta-dependent inhibition of TGF-beta signaling. THE JOURNAL OF IMMUNOLOGY 2010; 185:1568-76. [PMID: 20592275 DOI: 10.4049/jimmunol.1000137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TGF-beta is an ubiquitous cytokine that plays a pivotal role in the maintenance of self-tolerance and prevention of immunopathologies. Under steady-state conditions, TGF-beta keeps naive T cells in a resting state and inhibits Th1 and Th2 cell differentiation. Because rapid generation of Th1 and Th2 effector cells is needed in response to pathogen invasion, how do naive T cells escape from the quiescent state maintained by TGF-beta? We hypothesized that stimulation by strong TCR agonists might interfere with TGF-beta signaling. Using both primary mouse CD4(+) T cells and human Jurkat cells, we observed that strong TCR agonists swiftly suppress TGF-beta signaling. TCR engagement leads to a rapid increase in SMAD7 levels and decreased SMAD3 phosphorylation. We present evidence that TCR signaling hinders SMAD3 activation by inducing recruitment of TGF-betaRs in lipid rafts together with inhibitory SMAD7. This effect is dependent on protein kinase C, a downstream TCR signaling intermediary, as revealed by both pharmacological inhibition and expression of dominant-negative and constitutively active protein kinase C mutants. This work broadens our understanding of the cross-talk occurring between the TCR and TGF-beta signaling pathways and reveals that strong TCR agonists can release CD4 T cells from constitutive TGF-beta signaling. We propose that this process may be of vital importance upon confrontation with microbial pathogens.
Collapse
Affiliation(s)
- Martin Giroux
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
22
|
Wahn U, Malling HJ, Kleine-Tebbe J. Sublingual immunotherapy in children--ready for prime time? Pediatr Allergy Immunol 2010; 21:559-63. [PMID: 20636895 DOI: 10.1111/j.1399-3038.2010.01082.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- U Wahn
- Klinik für Pädiatrie m. S. Pneumologie und Immunologie, Charité, Berlin, Germany
| | | | | |
Collapse
|
23
|
Gorantla S, Makarov E, Finke-Dwyer J, Gebhart CL, Domm W, Dewhurst S, Gendelman HE, Poluektova LY. CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. THE JOURNAL OF IMMUNOLOGY 2010; 184:7082-91. [PMID: 20495069 DOI: 10.4049/jimmunol.1000438] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stable engraftment of human lymphoid tissue in NOD/scid-IL-2Rgammacnull mice after CD34+ hematopoietic stem cell reconstitution permits the evaluation of ongoing HIV-1 infection for weeks to months. We demonstrate that HIV-1-infected rodents develop virus-specific cellular immune responses. CD8+ cell depletion, 2 or 5-7 wk after viral infection, resulted in a significant increase of HIV-1 load, robust immune cell activation, and cytopathology in lymphoid tissues but preserved CD4/CD8 double-positive thymic T cell pools. Human CD8+ cells reappeared in circulation as early as 2-3 wk. These data support a role of CD8+ cells in viral surveillance and the relevance of this humanized mouse model for the studies of HIV-1 pathobiology and virus-specific immunity.
Collapse
Affiliation(s)
- Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zlamy M, Prelog M. Thymectomy in early childhood: a model for premature T cell immunosenescence? Rejuvenation Res 2010; 12:249-58. [PMID: 19673593 DOI: 10.1089/rej.2009.0864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The thymus is the main source of recent thymic emigrants (RTE) and naïve T cells. The aging of the immune system (immunosenescence) is characterized by loss of thymic function, decreased numbers of RTE, peripheral proliferation of mature T cells, and oligoclonal expansions of specific T cell subpopulations. As shown in several studies, thymectomized patients demonstrate signs of premature immunosenescence reminiscent of aged people, such as decreased proportions of naïve T cells and RTE, a compensatory increase of mature T cell subpopulations with increased proliferation rates, restriction of the T cell receptor repertoire, and a delayed response to new antigens and vaccinations. This review demonstrates that, despite some limitations, childhood thymectomy may serve as an useful model for premature immunosenescence, mimicking changes expected after physiological thymus involution in the elderly. Thus, it may prove an insightful tool for obtaining better understanding of human naïve T cell development, thymic function, and maintenance of the naïve T cell pool.
Collapse
Affiliation(s)
- Manuela Zlamy
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Austria
| | | |
Collapse
|
25
|
Response to Questions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010. [DOI: 10.1016/s1877-1173(10)92015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Perreault C. The Origin and Role of MHC Class I-Associated Self-Peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:41-60. [DOI: 10.1016/s1877-1173(10)92003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Isensee J, Meoli L, Zazzu V, Nabzdyk C, Witt H, Soewarto D, Effertz K, Fuchs H, Gailus-Durner V, Busch D, Adler T, de Angelis MH, Irgang M, Otto C, Noppinger PR. Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology 2009; 150:1722-30. [PMID: 19095739 DOI: 10.1210/en.2008-1488] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple reports implicated the function of G protein-coupled receptor (GPR)-30 with nongenomic effects of estrogen, suggesting that GPR30 might be a G-protein coupled estrogen receptor. However, the findings are controversial and the expression pattern of GPR30 on a cell type level as well as its function in vivo remains unclear. Therefore, the objective of this study was to identify cell types that express Gpr30 in vivo by analyzing a mutant mouse model that harbors a lacZ reporter (Gpr30-lacZ) in the Gpr30 locus leading to a partial deletion of the Gpr30 coding sequence. Using this strategy, we identified the following cell types expressing Gpr30: 1) an endothelial cell subpopulation in small arterial vessels of multiple tissues, 2) smooth muscle cells and pericytes in the brain, 3) gastric chief cells in the stomach, 4) neuronal subpopulations in the cortex as well as the polymorph layer of the dentate gyrus, 5) cell populations in the intermediate and anterior lobe of the pituitary gland, and 6) in the medulla of the adrenal gland. In further experiments, we aimed to decipher the function of Gpr30 by analyzing the phenotype of Gpr30-lacZ mice. The body weight as well as fat mass was unchanged in Gpr30-lacZ mice, even if fed with a high-fat diet. Flow cytometric analysis revealed lower frequencies of T cells in both sexes of Gpr30-lacZ mice. Within the T-cell cluster, the amount of CD62L-expressing cells was clearly reduced, suggesting an impaired production of T cells in the thymus of Gpr30-lacZ mice.
Collapse
Affiliation(s)
- Jörg Isensee
- Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Granados DP, Tanguay PL, Hardy MP, Caron E, de Verteuil D, Meloche S, Perreault C. ER stress affects processing of MHC class I-associated peptides. BMC Immunol 2009; 10:10. [PMID: 19220912 PMCID: PMC2657905 DOI: 10.1186/1471-2172-10-10] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 02/16/2009] [Indexed: 12/19/2022] Open
Abstract
Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER) stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR). The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I)-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL)-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.
Collapse
Affiliation(s)
- Diana P Granados
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.
| | | | | | | | | | | | | |
Collapse
|
29
|
Significant immunomodulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: possible link in human sepsis. Clin Sci (Lond) 2008; 115:343-51. [PMID: 18363571 DOI: 10.1042/cs20080018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathogenic bacteria use quorum-sensing signal molecules to co-ordinate the expression of virulence genes. Animal-based studies have demonstrated the immunomodulatory effects of quorum-sensing signal molecules. In the present study, we have examined the impact of these molecules on normal human immune function in vitro and compared this with immune changes in patients with sepsis where quorum-sensing signal molecules were detected in the sera of patients. Quorum-sensing signal molecules inhibited normal dendritic cell and T-cell activation and proliferation, and down-regulated the expression of co-stimulatory molecules on dendritic cells; in MLDCRs (mixed lymphocyte dendritic cell reactions), secretion of IL (interleukin)-4 and IL-10 was enhanced, but TNF-alpha (tumour necrosis factor-alpha), IFN-gamma (interferon-gamma) and IL-6 was reduced. Quorum-sensing signal molecules induced apoptosis in dendritic cells and CD4(+) cells, but not CD8(+) cells. Dendritic cells from patients with sepsis were depleted and ex vivo showed defective expression of co-stimulatory molecules and dysfunctional stimulation of allogeneic T-lymphocytes. Enhanced apoptosis of dendritic cells and differential CD4(+) Th1/Th2 (T-helper 1/2) cell apoptotic rate, and modified Th1/Th2 cell cytokine profiles in MLDCRs were also demonstrated in patients with sepsis. The pattern of immunological changes in patients with sepsis mirrors the effects of quorum-sensing signal molecules on responses of immune cells from normal individuals in vitro, suggesting that quorum-sensing signal molecules should be investigated further as a cause of immune dysfunction in sepsis.
Collapse
|
30
|
Prelog M, Keller M, Geiger R, Brandstätter A, Würzner R, Schweigmann U, Zlamy M, Zimmerhackl LB, Grubeck-Loebenstein B. Thymectomy in early childhood: significant alterations of the CD4(+)CD45RA(+)CD62L(+) T cell compartment in later life. Clin Immunol 2008; 130:123-32. [PMID: 18977182 DOI: 10.1016/j.clim.2008.08.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/13/2008] [Accepted: 08/21/2008] [Indexed: 01/01/2023]
Abstract
The study was aimed to assess indicators of immunosenescence, such as the total counts of peripheral blood CD4(+)CD45RA(+)CD62L(+) (naive) T cells, the numbers of T cell receptor excision circles (TRECs), and Ki67-expression as marker of peripheral replication in thymectomized patients (TP) (n=101) compared to age-matched healthy donors (HD) (n=81). In TP, there was an inverse correlation between naive T cells and chronological age (p<0.001) or time post thymectomy (p<0.001). TP demonstrated lower TREC numbers in naive T cells compared to HD (p<0.001). TREC numbers negatively correlated with time post thymectomy (p<0.001). Percentages of Ki67-expresssing naive T cells were higher in TP compared to HD (p<0.05). The findings of the presented long-term follow up cohort of thymectomized patients indicate that changes of the peripheral naive T cell subset in TP may resemble the findings of an aging immune system in elderly persons after thymic involution. Our data provide evidence that peripheral T cell homeostasis in TP is maintained at minimal levels mainly by extrathymic expansion of existing naive T cells in the periphery to compensate the diminished thymic output.
Collapse
Affiliation(s)
- Martina Prelog
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Anichstr. 35 A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|