1
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Immunosenescence, Inflammaging, and Lung Senescence in Asthma in the Elderly. Biomolecules 2022; 12:biom12101456. [PMID: 36291665 PMCID: PMC9599177 DOI: 10.3390/biom12101456] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Prevalence of asthma in older adults is growing along with increasing global life expectancy. Due to poor clinical consequences such as high mortality, advancement in understanding the pathophysiology of asthma in older patients has been sought to provide prompt treatment for them. Age-related alterations of functions in the immune system and lung parenchyma occur throughout life. Alterations with advancing age are promoted by various stimuli, including pathobionts, fungi, viruses, pollutants, and damage-associated molecular patterns derived from impaired cells, abandoned cell debris, and senescent cells. Age-related changes in the innate and adaptive immune response, termed immunosenescence, includes impairment of phagocytosis and antigen presentation, enhancement of proinflammatory mediator generation, and production of senescence-associated secretory phenotype. Immnunosenescence could promote inflammaging (chronic low-grade inflammation) and contribute to late-onset adult asthma and asthma in the elderly, along with age-related pulmonary disease, such as chronic obstructive pulmonary disease and pulmonary fibrosis, due to lung parenchyma senescence. Aged patients with asthma exhibit local and systemic type 2 and non-type 2 inflammation, associated with clinical manifestations. Here, we discuss immunosenescence’s contribution to the immune response and the combination of type 2 inflammation and inflammaging in asthma in the elderly and present an overview of age-related features in the immune system and lung structure.
Collapse
|
3
|
Mazidi M, Shekoohi N, Katsiki N, Rakowski M, Mikhailidis DP, Banach M. Serum anti-inflammatory and inflammatory markers have no causal impact on telomere length: a Mendelian randomization study. Arch Med Sci 2021; 17:739-751. [PMID: 34025845 PMCID: PMC8130476 DOI: 10.5114/aoms/119965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The relationship between inflammatory and anti-inflammatory markers and telomere length (TL), a biological index of aging, is still poorly understood. By applying a 2-sample Mendelian randomization (MR), we investigated the causal associations between adiponectin, bilirubin, C-reactive protein (CRP), leptin, and serum uric acid (SUA) with TL. MATERIAL AND METHODS MR was implemented by using summary-level data from the largest ever genome-wide association studies (GWAS) conducted on our interested exposure and TL. Inverse variance weighted method (IVW), weighted median (WM)-based method, MR-Egger, MR-Robust Adjusted Profile Score (RAPS), and MR-Pleiotropy RESidual Sum and Outlier (PRESSO) were applied. Sensitivity analysis was conducted using the leave-one-out method. RESULTS With regard to adiponectin, CRP, leptin, and SUA levels, we found no effect on TL for all 4 types of tests (all p > 0.108). Results of the MR-Egger (p = 0.892) and IVW (p = 0.124) showed that bilirubin had no effect on telomere maintenance, whereas the results of the WM (p = 0.030) and RAPS (p = 0.022) were negative, with higher bilirubin concentrations linked to shorter TL. There was a low likelihood of heterogeneity for all the estimations, except for bilirubin (IVW p = 0.026, MR Egger p = 0.018). MR-PRESSO highlighted no outlier. For all the estimations, we observed negligible intercepts that were indicative of low likelihood of the pleiotropy (all p > 0.161). The results of leave-one-out method demonstrated that the links are not driven because of single nucleotide polymorphisms (SNPs). CONCLUSIONS Our results highlight that neither the anti-inflammatory nor pro-inflammatory markers tested have any significant causal effect on TL. The casual role of bilirubin on TL still needs to be investigated.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital, Strand, London, UK
| | - Niloofar Shekoohi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Niki Katsiki
- Second Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Michal Rakowski
- Polish Lipid Association (PoLA) & Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
4
|
Albarrán-Tamayo F, Murillo-Ortiz B, González Amaro R, López Briones S. Both in vitro T cell proliferation and telomere length are decreased, but CD25 expression and IL-2 production are not affected in aged men. Arch Med Sci 2021; 17:775-784. [PMID: 34025848 PMCID: PMC8130486 DOI: 10.5114/aoms.2019.87593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/03/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Aging is a natural process involving dysfunction of multiple organs and is characterized by increased susceptibility to infections, cancer and autoimmune diseases. The functionality of the immune system depends on the capacity of lymphocytes to proliferate in response to antigenic challenges, and telomere length has an important role regulating the number of cell divisions. The aim of this study was to determine the possible relationship between telomere length, interleukin 2 (IL-2) production, CD25 expression and proliferation of peripheral blood mononuclear cells (PBMCs) in aged men. MATERIAL AND METHODS Telomere length was measured by RT-PCR in PBMCs from young and aged men. IL-2 production and CD25 expression were determined by ELISA and flow cytometry, respectively. Cell proliferation was measured by CFSE dilution assays upon in vitro stimulation with concanavalin A (Con A). RESULTS PBMCs from aged men showed a shorter telomere length and a reduced capacity to proliferate in vitro, compared to young men. In contrast, no significant differences in the level of CD25 expression on T lymphocytes, and in vitro production of IL-2 were detected in both groups. In addition, no significant correlation was detected between levels of CD25 expression, IL-2 production, cell proliferation, and telomere length in aged men. CONCLUSIONS In aged men the telomere length shortening and the reduced T cell proliferation are not related to the capacity of IL-2 production and CD25 expression on T lymphocytes.
Collapse
Affiliation(s)
| | - Blanca Murillo-Ortiz
- Unidad de Investigación en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) No. 1 Bajío, Instituto Mexicano del Seguro Social (IMSS), León, Guanajuato, México
| | - Roberto González Amaro
- Departamento de Inmunología, Escuela de Medicina, Universidad Autónoma de San Luís Potosí, San Luís Potosí, México
| | - Sergio López Briones
- Departamento de Medicina y Nutrición, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato, México
| |
Collapse
|
5
|
J. Heath J, D. Grant M. The Immune Response Against Human Cytomegalovirus Links Cellular to Systemic Senescence. Cells 2020; 9:cells9030766. [PMID: 32245117 PMCID: PMC7140628 DOI: 10.3390/cells9030766] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Aging reflects long-term decline in physiological function and integrity. Changes arise at a variable pace governed by time-dependent and -independent mechanisms that are themselves complex, interdependent and variable. Molecular decay produces inferior cells that eventually dominate over healthy counterparts in tissues they comprise. In a form of biological entropy, progression from molecular through cellular to tissue level degeneration culminates in organ disease or dysfunction, affecting systemic health. To better understand time-independent contributors and their potential modulation, common biophysical bases for key molecular and cellular changes underlying age-related physiological deterioration must be delineated. This review addresses the potential contribution of cytomegalovirus (CMV)-driven T cell proliferation to cellular senescence and immunosenescence. We first describe molecular processes imposing cell cycle arrest, the foundation of cellular senescence, then focus on the unique distribution, phenotype and function of CMV-specific CD8+ T cells in the context of cellular senescence and "inflammaging". Their features position CMV infection as a pathogenic accelerant of immune cell proliferation underlying immune senescence. In human immunodeficiency virus (HIV) infection, where increased inflammation and exaggerated anti-CMV immune responses accelerate immune senescence, CMV infection has emerged as a major factor in unhealthy aging. Thus, we speculate on mechanistic links between CMV-specific CD8+ T-cell expansion, immune senescence and prevalence of age-related disorders in HIV infection.
Collapse
Affiliation(s)
- John J. Heath
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
- Lady Davis Institute for Medical Research, Jewish General Hospital, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
- Correspondence:
| |
Collapse
|
6
|
Patrick M, Weng NP. Expression and regulation of telomerase in human T cell differentiation, activation, aging and diseases. Cell Immunol 2019; 345:103989. [PMID: 31558266 DOI: 10.1016/j.cellimm.2019.103989] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Telomeres are essential for chromosomal integrity. Telomere shortening during cell division restricts cellular proliferative capacity and leads to cellular senescence when critically shortened telomere lengths are reached. Similar to hematopoietic stem cells, T cells can upregulate telomerase activity to compensate for telomere loss incurred during proliferation in response to engagement of the T cell antigen receptor (TCR) or exposure to homeostatic cytokines. However, this compensation for telomere loss by telomerase in T cells is imperfect or limited, as shortening of T cell telomeres is observed in human aging and during in vitro longterm culture. In this review, we summarize the current state of knowledge regarding the expression and regulation of telomerase in human T cells and changes of telomerase expression during development, activation, differentiation, aging and disease conditions. In conclusion, we discuss how controlled enhancement of telomerase activity could be a potential strategy to improve T cell function in the elderly and in immunotherapy.
Collapse
Affiliation(s)
- Michael Patrick
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
Zole E, Ranka R. Mitochondrial DNA copy number and telomere length in peripheral blood mononuclear cells in comparison with whole blood in three different age groups. Arch Gerontol Geriatr 2019; 83:131-137. [DOI: 10.1016/j.archger.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 01/14/2023]
|
8
|
Brazvan B, Ebrahimi-Kalan A, Velaei K, Mehdipour A, Aliyari Serej Z, Ebrahimi A, Ghorbani M, Cheraghi O, Nozad Charoudeh H. Telomerase activity and telomere on stem progeny senescence. Biomed Pharmacother 2018; 102:9-17. [PMID: 29547744 DOI: 10.1016/j.biopha.2018.02.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/03/2018] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
The end of linear chromosomes is formed of a special nucleoprotein heterochromatin structure with repetitive TTAGGG sequences called telomere. Telomere length is regulated by a special enzyme called telomerase, a specific DNA polymerase that adds new telomeric sequences to the chromosome ends. Telomerase consists of two parts; the central protein part and the accessory part which is a RNA component transported by the central part. Regulation of telomere length by this enzyme is a multi-stage process. Telomere length elongation is strongly influenced by the level of telomerase and has a strong correlation with the activity of telomerase enzyme. Human Telomerase Reverse Transcriptase (hTERT) gene expression plays an important role in maintaining telomere length and high proliferative property of cells. Except a low activity of telomerase enzyme in hematopoietic and few types of stem cells, most of somatic cells didn't showed telomerase activity. Moreover, cytokines are secretory proteins that control many aspects of hematopoiesis, especially immune responses and inflammation. Also, the induction of hTERT gene expression by cytokines is organized through the PI3K/AKT and NF/kB signaling pathways. In this review we have tried to talk about effects of immune cell cytokines on telomerase expression/telomere length and the induction of telomerase expression by cytokines.
Collapse
Affiliation(s)
- Balal Brazvan
- Department of Basic Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Aliyari Serej
- Applied Cell Sciences Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetic, Faculty of Arts and Sciences, Halic Uuniversity, Istanbul, Turkey
| | - Mohammad Ghorbani
- Department of Basic Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Omid Cheraghi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
9
|
Klinger M, Banasik M. Immunological characteristics of the elderly allograft recipient. Transplant Rev (Orlando) 2015; 29:219-23. [DOI: 10.1016/j.trre.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/28/2015] [Accepted: 07/28/2015] [Indexed: 01/24/2023]
|
10
|
Salam N, Rane S, Das R, Faulkner M, Gund R, Kandpal U, Lewis V, Mattoo H, Prabhu S, Ranganathan V, Durdik J, George A, Rath S, Bal V. T cell ageing: effects of age on development, survival & function. Indian J Med Res 2013; 138:595-608. [PMID: 24434315 PMCID: PMC3928693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age associated decline of the immune system continues to be a major health concern. All components of innate and adaptive immunity are adversely affected to lesser or greater extent by ageing resulting in an overall decline of immunocompetence. As a result in the aged population, there is increased susceptibility to infection, poor responses to vaccination, and increased incidence of autoreactivity. There is an increasing focus on the role of T cells during ageing because of their impact on the overall immune responses. A steady decline in the production of fresh naïve T cells, more restricted T cell receptor (TCR) repertoire and weak activation of T cells are some of the effects of ageing. In this review we summarize our present understanding of the effects of ageing on naïve CD4 T cells and potential approaches for therapeutic interventions to restore protective immunity in the aged population.
Collapse
Affiliation(s)
- Nasir Salam
- National Institute of Immunology, New Delhi, India,Reprint requests: Dr Nasir Salam / Dr Vineeta Bal, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India e-mail: and
| | - Sanket Rane
- National Institute of Immunology, New Delhi, India
| | | | - Matthew Faulkner
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Rupali Gund
- National Institute of Immunology, New Delhi, India
| | - Usha Kandpal
- National Institute of Immunology, New Delhi, India
| | - Virginia Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Hamid Mattoo
- National Institute of Immunology, New Delhi, India
| | - Savit Prabhu
- National Institute of Immunology, New Delhi, India
| | | | - Jeannine Durdik
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Anna George
- National Institute of Immunology, New Delhi, India
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India,Reprint requests: Dr Nasir Salam / Dr Vineeta Bal, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110 067, India e-mail: and
| |
Collapse
|
11
|
Heinbokel T, Elkhal A, Liu G, Edtinger K, Tullius SG. Immunosenescence and organ transplantation. Transplant Rev (Orlando) 2013; 27:65-75. [PMID: 23639337 PMCID: PMC3718545 DOI: 10.1016/j.trre.2013.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 12/17/2012] [Accepted: 03/19/2013] [Indexed: 12/22/2022]
Abstract
Increasing numbers of elderly transplant recipients and a growing demand for organs from older donors impose pressing challenges on transplantation medicine. Continuous and complex modifications of the immune system in parallel to aging have a major impact on transplant outcome and organ quality. Both, altered alloimmune responses and increased immunogenicity of organs present risk factors for inferior patient and graft survival. Moreover, a growing body of knowledge on age-dependent modifications of allorecognition and alloimmune responses may require age-adapted immunosuppression and organ allocation. Here, we summarize relevant aspects of immunosenescence and their possible clinical impact on organ transplantation.
Collapse
Affiliation(s)
- Timm Heinbokel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Guangxiang Liu
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Karoline Edtinger
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
CD27 expression discriminates porcine T helper cells with functionally distinct properties. Vet Res 2013; 44:18. [PMID: 23497134 PMCID: PMC3610194 DOI: 10.1186/1297-9716-44-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/14/2013] [Indexed: 12/11/2022] Open
Abstract
Differentiation of porcine T helper cells is still poorly investigated, partly due to a lack of monoclonal antibodies (mAbs) specific for molecules involved in this process. Recently, we identified a mAb specific for porcine CD27 and showed that CD27 is expressed by all naïve CD8α- T helper cells but divides CD8α+ T helper cells into a CD27+ and a CD27- subset. In the present study, detailed phenotypical and functional analyses of these T-helper cell subpopulations were performed. Naïve CD8α-CD27+ T helper cells predominantly resided in various lymph nodes, whereas higher proportions of CD8α+CD27+ and CD8α+CD27- T helper cells were found in blood, spleen and liver. Both CD8α+CD27+ and CD8α+CD27- T helper cells were capable of producing IFN-γ upon in vitro polyclonal stimulation and antigen-specific restimulation. Experiments with sorted CD8α-CD27+, CD8α+CD27+ and CD8α+CD27- T-helper cell subsets following polyclonal stimulation revealed the lowest proliferative response but the highest ability for IFN-γ and TNF-α production in the CD8α+CD27- subset. Therefore, these cells resembled terminally differentiated effector memory cells as described in human. This was supported by analyses of CCR7 and CD62L expression. CD8α+CD27- T helper cells were mostly CCR7- and had considerably reduced CD62L mRNA levels. In contrast, expression of both homing-receptors was increased on CD8α+CD27+ T helper cells, which also had a proliferation rate similar to naïve CD8α-CD27+ T helper cells and showed intermediate levels of cytokine production. Therefore, similar to human, CD8α+CD27+ T helper cells displayed a phenotype and functional properties of central memory cells.
Collapse
|
13
|
Ratts RB, Weng NP. Homeostasis of lymphocytes and monocytes in frequent blood donors. Front Immunol 2012; 3:271. [PMID: 22936935 PMCID: PMC3424600 DOI: 10.3389/fimmu.2012.00271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/07/2012] [Indexed: 11/13/2022] Open
Abstract
Age-associated decline of immune function is believed to be mainly due to alterations of immune cells. However, longitudinal changes of human immune cells with age have not yet been adequately addressed. To test the hypothesis that regeneration of lymphocytes and monocytes is robust throughout most of adult life until advanced age, we examined six leukapheresis donors (3 young and 3 middle-aged/old) who donated approximately 10% of their peripheral blood mononuclear cells (PBMC) every other month over 3–5 years. We found the number of both lymphocytes and monocytes were quite stable in the blood of all six donors. As expected, young donors had more T cell receptor excision circles (TRECs), CD31{}+ cells (CD4 only) and longer telomeres in T cells than did the middle-aged donors. Interestingly, more variation in TREC number, Vβ usages, and telomere lengths were observed in young donors during the 3–5 years course of donation whereas the middle-aged/old donors showed a rather striking stability in these measurements. This may reflect a more prominent role of thymic output in T cell regeneration in young than in middle-aged/old donors. Together, these findings provide an in vivo glimpse into the homeostasis of lymphocytes and monocytes in the blood at different ages, and support the notion that regeneration of lymphocytes and monocytes is robust throughout adult life up to the early 70s.
Collapse
Affiliation(s)
- Robert B Ratts
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | | |
Collapse
|
14
|
Barsov EV. Immortalization of human and rhesus macaque primary antigen-specific T cells by retrovirally transduced telomerase reverse transcriptase. CURRENT PROTOCOLS IN IMMUNOLOGY 2011; Chapter 7:Unit 7.21B. [PMID: 22048804 PMCID: PMC3226752 DOI: 10.1002/0471142735.im0721bs95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human and rhesus macaque primary antigen-specific T cells derived from infected or immunized individuals or animals are a valuable material with which to study cellular immune responses against pathogens and tumors. Antigen-specific T cells can be expanded in vitro but have a finite proliferative life span. After a limited period in culture, primary T cells undergo replicative senescence and stop dividing. This restricts their applicability to short-term experiments and complicates their use in adoptive immunotherapy. The proliferative life span of primary human and rhesus macaque T cells can be considerably extended by ectopically expressed human telomerase reverse transcriptase (TERT). Antigen-specific T cells transduced with TERT-expressing retroviral vectors can proliferate and expand in culture for long periods of time while maintaining their primary T cell characteristics, including antigen-specific responses. Thus, TERT-immortalized T cells are an important and valuable resource for studying T cell-mediated immune responses and, potentially, for adoptive immunotherapy.
Collapse
Affiliation(s)
- Eugene V Barsov
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick, Maryland, USA
| |
Collapse
|
15
|
Barsov EV. Telomerase and primary T cells: biology and immortalization for adoptive immunotherapy. Immunotherapy 2011; 3:407-21. [PMID: 21395382 PMCID: PMC3120014 DOI: 10.2217/imt.10.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Telomeres are specialized repeats, present at the end of chromosomes, whose loss during cell division is followed by growth arrest, a central mechanism of replicative senescence in human cells. Telomere length in stem cells is maintained by telomerase, a specialized reverse transcriptase, whose function is to restore shortening telomeres. Unlike most somatic cell types, human T lymphocytes are capable of briefly reactivating telomerase expression at the time of stimulation. Telomerase expression in T lymphocytes is modulated by a variety of external stimuli and by viral infections. However, telomerase reactivation in stimulated, proliferating human T lymphocytes is limited and cannot prevent the ultimate onset of senescence. Ectopic telomerase expression can rescue human and macaque antigen-specific T cells from senescence. Primary T cells have been engineered with telomerase to have substantially extended replicative lifespans without the loss of primary cell functions or malignant transformation. 'Immortal' antigen-specific T-cell lines and clones overexpressing telomerase are an invaluable source of well-characterized quasi-primary T cells for research of T-cell biology and are potentially useful for immunotherapy of cancer and AIDS.
Collapse
Affiliation(s)
- Eugene V Barsov
- SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
The analysis of CD45 isoforms expression on HBV-specific T cells after liver transplantation. Med Oncol 2011; 29:899-908. [DOI: 10.1007/s12032-011-9833-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/10/2011] [Indexed: 01/12/2023]
|
17
|
Busse PJ, Mathur SK. Age-related changes in immune function: effect on airway inflammation. J Allergy Clin Immunol 2010; 126:690-9; quiz 700-1. [PMID: 20920759 DOI: 10.1016/j.jaci.2010.08.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/30/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
Immunosenescence is defined as changes in the innate and adaptive immune response associated with increased age. The clinical consequences of immunosenescence include increased susceptibility to infection, malignancy and autoimmunity, decreased response to vaccination, and impaired wound healing. However, there are several immune alterations that might facilitate persistence of asthma into late adulthood or development of asthma after the age of 50 to 60 years. Asthma in older patients is not uncommon, and this is a growing population as the average lifespan increases. Specific innate changes that might affect severity of asthma in older patients or be involved in the development of late-onset asthma include impaired mucociliary clearance and changes in airway neutrophil, eosinophil, and mast cell numbers and function. Additionally, age-related altered antigen presentation and decreased specific antibody responses might increase the risk of respiratory tract infections. Respiratory tract infections exacerbate asthma in older patients and possibly play a role in the pathogenesis of late-onset asthma. Furthermore, cytokine profiles might be modified with aging, with some investigators suggesting a trend toward T(H)2 cytokine expression. This review examines specific innate and adaptive immune responses affected by aging that might affect the inflammatory response in older adults with asthma.
Collapse
Affiliation(s)
- Paula J Busse
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
18
|
Liu JP, Chen SM, Cong YS, Nicholls C, Zhou SF, Tao ZZ, Li H. Regulation of telomerase activity by apparently opposing elements. Ageing Res Rev 2010; 9:245-56. [PMID: 20362078 DOI: 10.1016/j.arr.2010.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 01/08/2023]
Abstract
Telomeres, the ends of chromosomes, undergo frequent remodeling events that are important in cell development, proliferation and differentiation, and neoplastic immortalization. It is not known how the cellular environment influences telomere remodeling, stability, and lengthening or shortening. Telomerase is a ribonucleoprotein complex that maintains and lengthens telomeres in the majority of cancers. Recent studies indicate that a number of factors, including hormones, cytokines, ligands of nuclear receptor, vitamins and herbal extracts have significantly influence telomerase activity and, in some instances, the remodeling of telomeres. This review summarizes the advances in understanding of the positive and negative regulation by extracellular factors of telomerase activity in cancer, stem cells and other systems in mammals.
Collapse
Affiliation(s)
- Jun-Ping Liu
- Molecular Signaling Laboratory, Department of Immunology, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Dolcetti R, De Rossi A. Telomere/telomerase interplay in virus-driven and virus-independent lymphomagenesis: pathogenic and clinical implications. Med Res Rev 2010; 32:233-53. [PMID: 20549676 DOI: 10.1002/med.20211] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase is a ribonucleoprotein complex critically involved in extending and maintaining telomeres. Unlike the majority of somatic cells, in which hTERT and telomerase activity are generally silent, normal lymphocytes show transient physiological hTERT expression and telomerase activity according to their differentiation/activation status. During lymphomagenesis, induction of persistent telomerase expression and activity may occur before or after telomere shortening, as a consequence of the different mechanisms through which transforming factors/agents may activate telomerase. Available data indicate that the timing of telomerase activation may allow the distinction of two different lymphomagenetic models: (i) an early activation of telomerase via exogenous regulators of hTERT, along with an increased lymphocyte growth and a subsequent selection of cells with increased transforming potential may characterize several virus-related lymphoid malignancies; (ii) a progressive shortening of telomeres, leading to genetic instability which favors a subsequent activation of telomerase via endogenous regulators may occur in most virus-unrelated lymphoid tumors. These models may have clinically relevant implications, particularly for the tailoring of therapeutic strategies targeting telomerase.
Collapse
Affiliation(s)
- Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Department of Medical Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy.
| | | |
Collapse
|
20
|
Agarwal S, Busse PJ. Innate and adaptive immunosenescence. Ann Allergy Asthma Immunol 2010; 104:183-90; quiz 190-2, 210. [PMID: 20377107 DOI: 10.1016/j.anai.2009.11.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To review the effect of increasing age on the immune system and some of its clinical implications. DATA SOURCES MEDLINE and PubMed searches were performed cross-referencing the keywords immunosenescence, aging, and immunity. Articles were reviewed for additional citations. STUDY SELECTION Articles were reviewed and selected based on relevance to subject matter. RESULTS The study of immunosenescence is complex and not completely understood. Aging affects both the innate and adaptive arms of the immune response. With increased age, there may be a decrease in phagocytosis, alteration of cellular migration, changes in cell populations and numbers, and a decreased ability to produce specific antibodies. Clinically, these changes potentially increase morbidity and mortality in elderly individuals through an increased rate of infections, malignancy, and autoimmunity. CONCLUSIONS The process of aging is accompanied by diverse changes in immunity. Several therapeutic approaches are under investigation, including cytokine therapy, hormonal replacement, antioxidant supplementation, and caloric restriction, to attenuate or potentially reverse immunosenescence.
Collapse
Affiliation(s)
- Shradha Agarwal
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|