1
|
Analysis of Sepsis Markers and Pathogenesis Based on Gene Differential Expression and Protein Interaction Network. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6878495. [PMID: 35190763 PMCID: PMC8858053 DOI: 10.1155/2022/6878495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022]
Abstract
Objective The purpose of the present study is to screen the hub genes associated with sepsis, comprehensively understand the occurrence and progress mechanism of sepsis, and provide new targets for clinical diagnosis and treatment of sepsis. Methods The microarray data of GSE9692 and GSE95233 were downloaded from the Gene Expression Omnibus (GEO) database. The dataset GSE9692 contained 29 children with sepsis and 16 healthy children, while the dataset GSE95233 included 102 septic subjects and 22 healthy volunteers. Differentially expressed genes (DEGs) were screened by GEO2R online analysis. The DAVID database was applied to conduct functional enrichment analysis of the DEGs. The STRING database was adopted to acquire protein-protein interaction (PPI) networks. Results We identified 286 DEGs (217 upregulated DEGs and 69 downregulated DEGs) in the dataset GSE9692 and 357 DEGs (236 upregulated DEGs and 121 downregulated DEGs) in the dataset GSE95233. After the intersection of DEGs of the two datasets, a total of 98 co-DEGs were obtained. DEGs associated with sepsis were involved in inflammatory responses such as T cell activation, leukocyte cell-cell adhesion, leukocyte-mediated immunity, cytokine production, immune effector process, lymphocyte-mediated immunity, defense response to fungus, and lymphocyte-mediated immunity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that sepsis was connected to bacterial and viral infections. Through PPI network analysis, we screened the most important hub genes, including ITK, CD247, MMP9, CD3D, MMP8, KLRK1, and GZMK. Conclusions In conclusion, the present study revealed an unbalanced immune response at the transcriptome level of sepsis and identified genes for potential biomarkers of sepsis, such as ITK, CD247, MMP9, CD3D, MMP8, KLRK1, and GZMK.
Collapse
|
2
|
McGee MC, August A, Huang W. TCR/ITK Signaling in Type 1 Regulatory T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:115-124. [PMID: 33523446 DOI: 10.1007/978-981-15-6407-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 regulatory T (Tr1) cells can modulate inflammation through multiple direct and indirect molecular and cellular mechanisms and have demonstrated potential for anti-inflammatory therapies. Tr1 cells do not express the master transcription factor of conventional regulatory T cells, Foxp3, but express high levels of the immunomodulatory cytokine, IL-10. IL-2-inducible T-cell kinase (ITK) is conserved between mouse and human and is highly expressed in T cells. ITK signaling downstream of the T-cell receptor (TCR) is critical for T-cell subset differentiation and function. Upon activation by TCR, ITK is critical for Ras activation, leading to downstream activation of MAPKs and upregulation of IRF4, which further enable Tr1 cell differentiation and suppressive function. We summarize here the structure, signaling pathway, and function of ITK in T-cell lineage designation, with an emphasis on Tr1 cell development and function.
Collapse
Affiliation(s)
- Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA. .,Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med (Berl) 2020; 98:1385-1395. [PMID: 32808093 PMCID: PMC7524833 DOI: 10.1007/s00109-020-01958-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 01/18/2023]
Abstract
ITK (IL-2-inducible tyrosine kinase) belongs to the Tec family kinases and is mainly expressed in T cells. It is involved in TCR signalling events driving processes like T cell development as well as Th2, Th9 and Th17 responses thereby controlling the expression of pro-inflammatory cytokines. Studies have shown that ITK is involved in the pathogenesis of autoimmune diseases as well as in carcinogenesis. The loss of ITK or its activity either by mutation or by the use of inhibitors led to a beneficial outcome in experimental models of asthma, inflammatory bowel disease and multiple sclerosis among others. In humans, biallelic mutations in the ITK gene locus result in a monogenetic disorder leading to T cell dysfunction; in consequence, mainly EBV infections can lead to severe immune dysregulation evident by lymphoproliferation, lymphoma and hemophagocytic lymphohistiocytosis. Furthermore, patients who suffer from angioimmunoblastic T cell lymphoma have been found to express significantly more ITK. These findings put ITK in the strong focus as a target for drug development.
Collapse
Affiliation(s)
- Kristina S Lechner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany
- Ludwig Demling Endoscopy Center of Excellence, Ulmenweg 18, 91054, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, 91052, Erlangen, Germany.
| |
Collapse
|
4
|
Tuning T helper cell differentiation by ITK. Biochem Soc Trans 2020; 48:179-185. [PMID: 32049330 DOI: 10.1042/bst20190486] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
Abstract
CD4+ effector T cells effectuate T cell immune responses, producing cytokines to orchestrate the nature and type of immune responses. The non-receptor tyrosine kinase IL-2 inducible T cell kinase (ITK), a mediator of T cell Receptor signaling, plays a critical role in tuning the development of these effector cells. In this review we discussed the role that signals downstream of ITK, including the Ras/MAPK pathway, play in differentially controlling the differentiation of TH17, Foxp3+ T regulatory (Treg) cells, and Type 1 regulatory T (Tr1) cells, supporting a model of ITK signals controlling a decision point in the effector T cell differentiation process.
Collapse
|
5
|
Huang L, Ye K, McGee MC, Nidetz NF, Elmore JP, Limper CB, Southard TL, Russell DG, August A, Huang W. Interleukin-2-Inducible T-Cell Kinase Deficiency Impairs Early Pulmonary Protection Against Mycobacterium tuberculosis Infection. Front Immunol 2020; 10:3103. [PMID: 32038633 PMCID: PMC6993117 DOI: 10.3389/fimmu.2019.03103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Interleukin-2 (IL-2) inducible T-cell kinase (ITK) is a non-receptor tyrosine kinase highly expressed in T-cell lineages and regulates multiple aspects of T-cell development and function, mainly through its function downstream of the T-cell receptor. Itk deficiency can lead to CD4 lymphopenia and Epstein-Bar virus (EBV)-associated lymphoproliferation and recurrent pulmonary infections in humans. However, the role of the ITK signaling pathway in pulmonary responses in active tuberculosis due to Mtb infection is not known. We show here that human lungs with active tuberculosis exhibit altered T-cell receptor/ITK signaling and that Itk deficiency impaired early protection against Mtb in mice, accompanied by defective development of IL-17A-producing γδ T cells in the lungs. These findings have important implications of human genetics associated with susceptibility to Mtb due to altered immune responses and molecular signals modulating host immunity that controls Mtb activity. Enhancing ITK signaling pathways may be an alternative strategy to target Mtb infection, especially in cases with highly virulent strains in which IL-17A plays an essential protective role.
Collapse
Affiliation(s)
- Lu Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, United States.,Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jessica P Elmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Candice B Limper
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Teresa L Southard
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
6
|
Sallam AM, Zare Y, Shook G, Collins M, Kirkpatrick BW. A positional candidate gene association analysis of susceptibility to paratuberculosis on bovine chromosome 7. INFECTION GENETICS AND EVOLUTION 2018; 65:163-169. [DOI: 10.1016/j.meegid.2018.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 01/14/2023]
|
7
|
Talele TT. Natural-Products-Inspired Use of the gem-Dimethyl Group in Medicinal Chemistry. J Med Chem 2017; 61:2166-2210. [DOI: 10.1021/acs.jmedchem.7b00315] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, United States
| |
Collapse
|
8
|
Talele TT. The "Cyclopropyl Fragment" is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J Med Chem 2016; 59:8712-8756. [PMID: 27299736 DOI: 10.1021/acs.jmedchem.6b00472] [Citation(s) in RCA: 565] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, there has been an increasing use of the cyclopropyl ring in drug development to transition drug candidates from the preclinical to clinical stage. Important features of the cyclopropane ring are, the (1) coplanarity of the three carbon atoms, (2) relatively shorter (1.51 Å) C-C bonds, (3) enhanced π-character of C-C bonds, and (4) C-H bonds are shorter and stronger than those in alkanes. The present review will focus on the contributions that a cyclopropyl ring makes to the properties of drugs containing it. Consequently, the cyclopropyl ring addresses multiple roadblocks that can occur during drug discovery such as (a) enhancing potency, (b) reducing off-target effects,
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , 8000 Utopia Parkway, Queens, New York 11439, United States
| |
Collapse
|
9
|
Sun Y, Peng I, Webster JD, Suto E, Lesch J, Wu X, Senger K, Francis G, Barrett K, Collier JL, Burch JD, Zhou M, Chen Y, Chan C, Eastham-Anderson J, Ngu H, Li O, Staton T, Havnar C, Jaochico A, Jackman J, Jeet S, Riol-Blanco L, Wu LC, Choy DF, Arron JR, McKenzie BS, Ghilardi N, Ismaili MHA, Pei Z, DeVoss J, Austin CD, Lee WP, Zarrin AA. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response. Sci Signal 2015; 8:ra122. [PMID: 26628680 DOI: 10.1126/scisignal.aab0949] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2 (IL-2)-inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C-γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.
Collapse
Affiliation(s)
- Yonglian Sun
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ivan Peng
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Eric Suto
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Justin Lesch
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - George Francis
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kathy Barrett
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jenna L Collier
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason D Burch
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Meijuan Zhou
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Connie Chan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Hai Ngu
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Olga Li
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Tracy Staton
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Charles Havnar
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Allan Jaochico
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Janet Jackman
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Surinder Jeet
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lorena Riol-Blanco
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Immunology, Tissue Growth, and Repair Diagnostics Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Brent S McKenzie
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Zhonghua Pei
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
10
|
Burch JD, Barrett K, Chen Y, DeVoss J, Eigenbrot C, Goldsmith R, Ismaili MHA, Lau K, Lin Z, Ortwine DF, Zarrin AA, McEwan PA, Barker JJ, Ellebrandt C, Kordt D, Stein DB, Wang X, Chen Y, Hu B, Xu X, Yuen PW, Zhang Y, Pei Z. Tetrahydroindazoles as Interleukin-2 Inducible T-Cell Kinase Inhibitors. Part II. Second-Generation Analogues with Enhanced Potency, Selectivity, and Pharmacodynamic Modulation in Vivo. J Med Chem 2015; 58:3806-16. [PMID: 25844760 DOI: 10.1021/jm501998m] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The medicinal chemistry community has directed considerable efforts toward the discovery of selective inhibitors of interleukin-2 inducible T-cell kinase (ITK), given its role in T-cell signaling downstream of the T-cell receptor (TCR) and the implications of this target for inflammatory disorders such as asthma. We have previously disclosed a structure- and property-guided lead optimization effort which resulted in the discovery of a new series of tetrahydroindazole-containing selective ITK inhibitors. Herein we disclose further optimization of this series that resulted in further potency improvements, reduced off-target receptor binding liabilities, and reduced cytotoxicity. Specifically, we have identified a correlation between the basicity of solubilizing elements in the ITK inhibitors and off-target antiproliferative effects, which was exploited to reduce cytotoxicity while maintaining kinase selectivity. Optimized analogues were shown to reduce IL-2 and IL-13 production in vivo following oral or intraperitoneal dosing in mice.
Collapse
Affiliation(s)
- Jason D Burch
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kathy Barrett
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yuan Chen
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason DeVoss
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Charles Eigenbrot
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Goldsmith
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - M Hicham A Ismaili
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kevin Lau
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zhonghua Lin
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel F Ortwine
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ali A Zarrin
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul A McEwan
- ‡Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - John J Barker
- ‡Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Claire Ellebrandt
- §Evotec AG, Manfred Eigen Campus, Essener Bogen 7, D-22419 Hamburg, Germany
| | - Daniel Kordt
- §Evotec AG, Manfred Eigen Campus, Essener Bogen 7, D-22419 Hamburg, Germany
| | - Daniel B Stein
- §Evotec AG, Manfred Eigen Campus, Essener Bogen 7, D-22419 Hamburg, Germany
| | - Xiaolu Wang
- §Evotec AG, Manfred Eigen Campus, Essener Bogen 7, D-22419 Hamburg, Germany
| | - Yong Chen
- ∥Pharmaron Beijing Ltd. Co., No. 6 TaiHe Road BDA, 100176 Beijing, P. R. China
| | - Baihua Hu
- ∥Pharmaron Beijing Ltd. Co., No. 6 TaiHe Road BDA, 100176 Beijing, P. R. China
| | - Xiaofeng Xu
- ∥Pharmaron Beijing Ltd. Co., No. 6 TaiHe Road BDA, 100176 Beijing, P. R. China
| | - Po-Wai Yuen
- ∥Pharmaron Beijing Ltd. Co., No. 6 TaiHe Road BDA, 100176 Beijing, P. R. China
| | - Yamin Zhang
- ∥Pharmaron Beijing Ltd. Co., No. 6 TaiHe Road BDA, 100176 Beijing, P. R. China
| | - Zhonghua Pei
- †Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
11
|
Stokes K, LaMarche NM, Islam N, Wood A, Huang W, August A. Cutting edge: STAT6 signaling in eosinophils is necessary for development of allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:2477-81. [PMID: 25681342 DOI: 10.4049/jimmunol.1402096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophils are critical cellular mediators in allergic asthma and inflammation; however, the signals that regulate their functions are unclear. The transcription factor STAT6 regulates Th2 cytokine responses, acting downstream of IL-4 and IL-13. We showed previously that eosinophil-derived IL-13 plays an important role in the recruitment of T cells to the lung and the subsequent development of allergic asthma. However, whether eosinophils respond to Th2 signals to control allergic airway inflammation is unclear. In this report, we show that STAT6(-/-) eosinophils are unable to induce the development of allergic lung inflammation, including recruitment of CD4(+) T cells, mucus production, and development of airways hyperresponsiveness. This is likely due to the reduced migration of STAT6(-/-) eosinophils to the lung and in response to eotaxin. These data indicate that, like Th cells, eosinophils need to respond to Th2 cytokines via STAT6 during the development of allergic airway inflammation.
Collapse
Affiliation(s)
- Kindra Stokes
- Pathobiology Graduate Program, Center for Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802; and Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Nelson M LaMarche
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Nasif Islam
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Amie Wood
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
12
|
Deakin A, Duddy G, Wilson S, Harrison S, Latcham J, Fulleylove M, Fung S, Smith J, Pedrick M, McKevitt T, Felton L, Morley J, Quint D, Fattah D, Hayes B, Gough J, Solari R. Characterisation of a K390R ITK kinase dead transgenic mouse--implications for ITK as a therapeutic target. PLoS One 2014; 9:e107490. [PMID: 25250764 PMCID: PMC4174519 DOI: 10.1371/journal.pone.0107490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/05/2014] [Indexed: 11/23/2022] Open
Abstract
Interleukin-2 inducible tyrosine kinase (ITK) is expressed in T cells and plays a critical role in signalling through the T cell receptor. Evidence, mainly from knockout mice, has suggested that ITK plays a particularly important function in Th2 cells and this has prompted significant efforts to discover ITK inhibitors for the treatment of allergic disease. However, ITK is known to have functions outside of its kinase domain and in general kinase knockouts are often not good models for the behaviour of small molecule inhibitors. Consequently we have developed a transgenic mouse where the wild type Itk allele has been replaced by a kinase dead Itk allele containing an inactivating K390R point mutation (Itk-KD mice). We have characterised the immune phenotype of these naive mice and their responses to airway inflammation. Unlike Itk knockout (Itk−/−) mice, T-cells from Itk-KD mice can polymerise actin in response to CD3 activation. The lymph nodes from Itk-KD mice showed more prominent germinal centres than wild type mice and serum antibody levels were significantly abnormal. Unlike the Itk−/−, γδ T cells in the spleens of the Itk-KD mice had an impaired ability to secrete Th2 cytokines in response to anti-CD3 stimulation whilst the expression of ICOS was not significantly different to wild type. However ICOS expression is markedly increased on αβCD3+ cells from the spleens of naïve Itk-KD compared to WT mice. The Itk-KD mice were largely protected from inflammatory symptoms in an Ovalbumin model of airway inflammation. Consequently, our studies have revealed many similarities but some differences between Itk−/−and Itk-KD transgenic mice. The abnormal antibody response and enhanced ICOS expression on CD3+ cells has implications for the consideration of ITK as a therapeutic target.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Blotting, Western
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Enzyme Inhibitors/immunology
- Enzyme Inhibitors/therapeutic use
- Female
- Flow Cytometry
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Inducible T-Cell Co-Stimulator Protein/immunology
- Inducible T-Cell Co-Stimulator Protein/metabolism
- Lymphocyte Count
- Male
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/immunology
- Pneumonia/drug therapy
- Pneumonia/genetics
- Pneumonia/immunology
- Point Mutation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Angela Deakin
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Graham Duddy
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Steve Wilson
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Steve Harrison
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Judi Latcham
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Mick Fulleylove
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Sylvia Fung
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Jason Smith
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Mike Pedrick
- Platform Technology and Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Tom McKevitt
- Platform Technology and Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Leigh Felton
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Joanne Morley
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Diana Quint
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Dilniya Fattah
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Brian Hayes
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Jade Gough
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Roberto Solari
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Selectively targeting an inactive conformation of interleukin-2-inducible T-cell kinase by allosteric inhibitors. Biochem J 2014; 460:211-22. [PMID: 24593284 DOI: 10.1042/bj20131139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ITK (interleukin-2-inducible T-cell kinase) is a critical component of signal transduction in T-cells and has a well-validated role in their proliferation, cytokine release and chemotaxis. ITK is an attractive target for the treatment of T-cell-mediated inflammatory diseases. In the present study we describe the discovery of kinase inhibitors that preferentially bind to an allosteric pocket of ITK. The novel ITK allosteric site was characterized by NMR, surface plasmon resonance, isothermal titration calorimetry, enzymology and X-ray crystallography. Initial screening hits bound to both the allosteric pocket and the ATP site. Successful lead optimization was achieved by improving the contribution of the allosteric component to the overall inhibition. NMR competition experiments demonstrated that the dual-site binders showed higher affinity for the allosteric site compared with the ATP site. Moreover, an optimized inhibitor displayed non-competitive inhibition with respect to ATP as shown by steady-state enzyme kinetics. The activity of the isolated kinase domain and auto-activation of the full-length enzyme were inhibited with similar potency. However, inhibition of the activated full-length enzyme was weaker, presumably because the allosteric site is altered when ITK becomes activated. An optimized lead showed exquisite kinome selectivity and is efficacious in human whole blood and proximal cell-based assays.
Collapse
|
14
|
Harling JD, Deakin AM, Campos S, Grimley R, Chaudry L, Nye C, Polyakova O, Bessant CM, Barton N, Somers D, Barrett J, Graves RH, Hanns L, Kerr WJ, Solari R. Discovery of novel irreversible inhibitors of interleukin (IL)-2-inducible tyrosine kinase (Itk) by targeting cysteine 442 in the ATP pocket. J Biol Chem 2013; 288:28195-206. [PMID: 23935099 DOI: 10.1074/jbc.m113.474114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IL-2-inducible tyrosine kinase (Itk) plays a key role in antigen receptor signaling in T cells and is considered an important target for anti-inflammatory drug discovery. In order to generate inhibitors with the necessary potency and selectivity, a compound that targeted cysteine 442 in the ATP binding pocket and with an envisaged irreversible mode of action was designed. We incorporated a high degree of molecular recognition and specific design features making the compound suitable for inhaled delivery. This study confirms the irreversible covalent binding of the inhibitor to the kinase by x-ray crystallography and enzymology while demonstrating potency, selectivity, and prolonged duration of action in in vitro biological assays. The biosynthetic turnover of the kinase was also examined as a critical factor when designing irreversible inhibitors for extended duration of action. The exemplified Itk inhibitor demonstrated inhibition of both TH1 and TH2 cytokines, was additive with fluticasone propionate, and inhibited cytokine release from human lung fragments. Finally, we describe an in vivo pharmacodynamic assay that allows rapid preclinical development without animal efficacy models.
Collapse
Affiliation(s)
- John D Harling
- From the Allergic Inflammation Discovery Performance Unit and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zapf CW, Gerstenberger BS, Xing L, Limburg DC, Anderson DR, Caspers N, Han S, Aulabaugh A, Kurumbail R, Shakya S, Li X, Spaulding V, Czerwinski RM, Seth N, Medley QG. Covalent Inhibitors of Interleukin-2 Inducible T Cell Kinase (Itk) with Nanomolar Potency in a Whole-Blood Assay. J Med Chem 2012; 55:10047-63. [DOI: 10.1021/jm301190s] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christoph W. Zapf
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridgepark Drive, Cambridge, Massachusetts
02140, United States
| | - Brian S. Gerstenberger
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Li Xing
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridgepark Drive, Cambridge, Massachusetts
02140, United States
| | - David C. Limburg
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David R. Anderson
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nicole Caspers
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Seungil Han
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Ann Aulabaugh
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Ravi Kurumbail
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Subarna Shakya
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Xin Li
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Vikki Spaulding
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Robert M. Czerwinski
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Nilufer Seth
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Quintus G. Medley
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| |
Collapse
|
16
|
August A, Ragin MJ. Regulation of T-cell responses and disease by tec kinase Itk. Int Rev Immunol 2012; 31:155-65. [PMID: 22449075 DOI: 10.3109/08830185.2012.668981] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Itk is a member of the Tec family tyrosine kinases involved in T-cell receptor signaling. The authors review the background and most recent findings of the role of Itk T-cell activation and development of αβ T cells. They also discuss the role of Itk in development of nonconventional T cells, including CD8(+) innate memory phenotype T cells, different γδ T-cell populations, and invariant NKT cells. They close by reviewing the regulation of T helper differentiation and cytokine secretion, the immune response to infectious disease, and diseases such as allergic asthma and atopic dermatitis by Itk.
Collapse
Affiliation(s)
- Avery August
- Department of Microbiology & Immunology, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
17
|
X-ray crystallographic structure-based design of selective thienopyrazole inhibitors for interleukin-2-inducible tyrosine kinase. Bioorg Med Chem Lett 2012; 22:3296-300. [DOI: 10.1016/j.bmcl.2012.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 11/22/2022]
|
18
|
Boucheron N, Ellmeier W. The Role of Tec Family Kinases in the Regulation of T-helper-cell Differentiation. Int Rev Immunol 2012; 31:133-54. [DOI: 10.3109/08830185.2012.664798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Kannan Y, Wilson MS. TEC and MAPK Kinase Signalling Pathways in T helper (T H) cell Development, T H2 Differentiation and Allergic Asthma. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; Suppl 12:11. [PMID: 24116341 PMCID: PMC3792371 DOI: 10.4172/2155-9899.s12-011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Significant advances in our understanding of the signalling events during T cell development and differentiation have been made in the past few decades. It is clear that ligation of the T cell receptor (TCR) triggers a series of proximal signalling cascades regulated by an array of protein kinases. These orchestrated and highly regulated series of events, with differential requirements of particular kinases, highlight the disparities between αβ+CD4+ T cells. Throughout this review we summarise both new and old studies, highlighting the role of Tec and MAPK in T cell development and differentiation with particular focus on T helper 2 (TH2) cells. Finally, as the allergy epidemic continues, we feature the role played by TH2 cells in the development of allergy and provide a brief update on promising kinase inhibitors that have been tested in vitro, in pre-clinical disease models in vivo and into clinical studies.
Collapse
Affiliation(s)
- Yashaswini Kannan
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| | - Mark S. Wilson
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| |
Collapse
|
20
|
Itk: the rheostat of the T cell response. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:297868. [PMID: 21747996 PMCID: PMC3116522 DOI: 10.1155/2011/297868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
The nonreceptor tyrosine kinase Itk plays a key role in TCR-initiated signaling that directly and significantly affects the regulation of PLCγ1 and the consequent mobilization of Ca2+. Itk also participates in the regulation of cytoskeletal reorganization as well as cellular adhesion, which is necessary for a productive T cell response. The functional cellular outcome of these molecular regulations by Itk renders it an important mediator of T cell development and differentiation. This paper encompasses the structure of Itk, the signaling parameters leading to Itk activation, and Itk effects on molecular pathways resulting in functional cellular outcomes. The incorporation of these factors persuades one to believe that Itk serves as a modulator, or rheostat, critically fine-tuning the T cell response.
Collapse
|
21
|
von Bonin A, Rausch A, Mengel A, Hitchcock M, Krüger M, von Ahsen O, Merz C, Röse L, Stock C, Martin SF, Leder G, Döcke WD, Asadullah K, Zügel U. Inhibition of the IL-2-inducible tyrosine kinase (Itk) activity: a new concept for the therapy of inflammatory skin diseases. Exp Dermatol 2011; 20:41-7. [PMID: 21158938 DOI: 10.1111/j.1600-0625.2010.01198.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
T-cell-mediated processes play an essential role in the pathogenesis of several inflammatory skin diseases such as atopic dermatitis, allergic contact dermatitis and psoriasis. The aim of this study was to investigate the role of the IL-2-inducible tyrosine kinase (Itk), an enzyme acting downstream of the T-cell receptor (TCR), in T-cell-dependent skin inflammation using three approaches. Itk knockout mice display significantly reduced inflammatory symptoms in mouse models of acute and subacute contact hypersensitivity (CHS) reactions. Systemic administration of a novel small molecule Itk inhibitor, Compound 44, created by chemical optimization of an initial high-throughput screening hit, inhibited Itk's activity with an IC50 in the nanomolar range. Compound 44 substantially reduced proinflammatory immune responses in vitro and in vivo after systemic administration in two acute CHS models. In addition, our data reveal that human Itk, comparable to its murine homologue, is expressed mainly in T cells and is increased in lesional skin from patients with atopic dermatitis and allergic contact dermatitis. Finally, silencing of Itk by RNA interference in primary human T cells efficiently blocks TCR-induced lymphokine secretion. In conclusion, Itk represents an interesting new target for the therapy of T-cell-mediated inflammatory skin diseases.
Collapse
Affiliation(s)
- Arne von Bonin
- Corporate Development-Innovation, Bayer AG, Leverkusen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sahu N, Morales JL, Fowell D, August A. Modeling susceptibility versus resistance in allergic airway disease reveals regulation by Tec kinase Itk. PLoS One 2010; 5:e11348. [PMID: 20596543 PMCID: PMC2893210 DOI: 10.1371/journal.pone.0011348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/18/2010] [Indexed: 01/26/2023] Open
Abstract
Murine models of allergic asthma have been used to understand the mechanisms of development and pathology in this disease. In addition, knockout mice have contributed significantly to our understanding of the roles of specific molecules and cytokines in these models. However, results can vary significantly depending on the mouse strain used in the model, and in particularly in understanding the effect of specific knockouts. For example, it can be equivocal as to whether specific gene knockouts affect the susceptibility of the mice to developing the disease, or lead to resistance. Here we used a house dust mite model of allergic airway inflammation to examine the response of two strains of mice (C57BL/6 and BALB/c) which differ in their responses in allergic airway inflammation. We demonstrate an algorithm that can facilitate the understanding of the behavior of these models with regards to susceptibility (to allergic airway inflammation) (S(aai)) or resistance (R(aai)) in this model. We verify that both C57BL/6 and BALB/c develop disease, but BALB/c mice have higher S(aai) for development. We then use this approach to show that the absence of the Tec family kinase Itk, which regulates the production of Th2 cytokines, leads to R(aai) in the C57BL/6 background, but decreases S(aai) on the BALB/c background. We suggest that the use of such approaches could clarify the behavior of various knockout mice in modeling allergic asthma.
Collapse
Affiliation(s)
- Nisebita Sahu
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - J. Luis Morales
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Deborah Fowell
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Avery August
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Andreotti AH, Schwartzberg PL, Joseph RE, Berg LJ. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2010; 2:a002287. [PMID: 20519342 DOI: 10.1101/cshperspect.a002287] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-gamma. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both alphabeta and gammadelta T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.
Collapse
Affiliation(s)
- Amy H Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
24
|
Xia M, Qi Q, Jin Y, Wiest DL, August A, Xiong N. Differential roles of IL-2-inducible T cell kinase-mediated TCR signals in tissue-specific localization and maintenance of skin intraepithelial T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6807-14. [PMID: 20483745 DOI: 10.4049/jimmunol.1000453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-specific innate-like gammadelta T cells are important components of the immune system critical for the first line of defense, but mechanisms underlying their tissue-specific development are poorly understood. Our study with prototypical skin-specific intraepithelial gammadeltaT lymphocytes (sIELs) found that among different thymic gammadelta T cell subsets fetal thymic precursors of sIELs specifically acquire a unique skin-homing property after positive selection, suggesting an important role of the TCR selection signaling in "programming" them for tissue-specific development. In this study, we identified IL-2-inducible T cell kinase (ITK) as a critical signal molecule regulating the acquirement of the skin-homing property by the fetal thymic sIEL precursors. In ITK knockout mice, the sIEL precursors could not undergo positive selection-associated upregulation of thymus-exiting and skin-homing molecules sphingosine-1-phosphate receptor 1 and CCR10 and accumulated in the thymus. However, the survival and expansion of sIELs in the skin did not require ITK-transduced TCR signaling, whereas its persistent activation impaired sIEL development by inducing apoptosis. These findings provide insights into molecular mechanisms underlying differential requirements of TCR signaling in peripheral localization and maintenance of the tissue-specific T cells.
Collapse
Affiliation(s)
- Mingcan Xia
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
In vitro data have suggested that activation of the inducible T-cell kinase (ITK) requires an interaction with the adaptor protein SLP-76. One means for this interaction involves binding of the ITK SH3 domain to the polyproline-rich (PR) region of SLP-76. However, the biological significance of this association in live cells and the consequences of its disruption have not been demonstrated. Here, we utilized a polyarginine-rich, cell-permeable peptide that represents the portion of the SLP-76 PR region that interacts with the ITK SH3 domain as a competitive inhibitor to disrupt the association between ITK and SLP-76 in live cells. We demonstrate that treatment of cells with this peptide, by either in vitro incubation or intraperitoneal injection of the peptide in mice, inhibits the T-cell receptor (TCR)-induced association between ITK and SLP-76, recruitment and transphosphorylation of ITK, actin polarization at the T-cell contact site, and expression of Th2 cytokines. The inhibition is specific, as indicated by lack of effects by the polyarginine vehicle alone or a scrambled sequence of the cargo peptide. In view of the role of ITK as a regulator of Th2 cytokine expression, the data underscore the significance of ITK as a target for pharmacological intervention.
Collapse
|
26
|
Sahu N, August A. ITK inhibitors in inflammation and immune-mediated disorders. Curr Top Med Chem 2009; 9:690-703. [PMID: 19689375 DOI: 10.2174/156802609789044443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2-inducible T cell kinase (ITK) is a non-receptor tyrosine kinase expressed in T cells, NKT cells and mast cells which plays a crucial role in regulating the T cell receptor (TCR), CD28, CD2, chemokine receptor CXCR4, and FcepsilonR-mediated signaling pathways. In T cells, ITK is an important mediator for actin reorganization, activation of PLCgamma, mobilization of calcium, and activation of the NFAT transcription factor. ITK plays an important role in the secretion of IL-2, but more critically, also has a pivotal role in the secretion of Th2 cytokines, IL-4, IL-5 and IL-13. As such, ITK has been shown to regulate the development of effective Th2 response during allergic asthma as well as infections of parasitic worms. This ability of ITK to regulate Th2 responses, along with its pattern of expression, has led to the proposal that it would represent an excellent target for Th2-mediated inflammation. We discuss here the possibilities and pitfalls of targeting ITK for inflammatory disorders.
Collapse
Affiliation(s)
- Nisebita Sahu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
27
|
Benson M, Mobini R, Barrenäs F, Halldén C, Naluai AT, Säll T, Cardell LO. A haplotype in the inducible T-cell tyrosine kinase is a risk factor for seasonal allergic rhinitis. Allergy 2009; 64:1286-91. [PMID: 19222422 DOI: 10.1111/j.1398-9995.2009.01991.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Identification of disease-associated single nucleotide polymorphisms (SNPs) in seasonal allergic rhinitis (SAR) may be facilitated by focusing on genes in a disease-associated pathway. OBJECTIVE To search for SNPs in genes that belong to the T-cell receptor (TCR) pathway and that change in expression in allergen-challenged CD4+ cells from patients with SAR. METHODS CD4+ cells from patients with SAR were analysed with gene expression microarrays. Allele, genotype and haplotype frequencies were compared in 251 patients and 386 healthy controls. RESULTS Gene expression microarray analysis of allergen-challenged CD4+ cells from patients with SAR showed that 25 of 38 TCR pathway genes were differentially expressed. A total of 62 SNPs were analysed in eight of the 25 genes; ICOS, IL4, IL5, IL13, CSF2, CTLA4, the inducible T-cell tyrosine kinase (ITK) and CD3D. Significant chi-squared values were identified for several markers in the ITK kinase gene region. A total of five SNPs were nominally significant at the 5% level. Haplotype analysis of the five significant SNPs showed increased frequency of a haplotype that covered most of the coding part of ITK. The functional relevance of ITK was supported by analysis of an independent material, which showed increased expression of ITK in allergen-challenged CD4+ cells from patients, but not from controls. CONCLUSION Analysis of SNPs in TCR pathway genes revealed that a haplotype that covers a major part of the coding sequence of ITK is a risk factor for SAR.
Collapse
MESH Headings
- Adolescent
- Adult
- Alleles
- Allergens/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Exons/genetics
- Exons/immunology
- Female
- Gene Expression Profiling
- Gene Frequency/genetics
- Gene Frequency/immunology
- Genetic Predisposition to Disease
- Haplotypes/genetics
- Haplotypes/immunology
- Humans
- Introns/genetics
- Introns/immunology
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Pollen/immunology
- Polymorphism, Single Nucleotide/genetics
- Polymorphism, Single Nucleotide/immunology
- Protein-Tyrosine Kinases/drug effects
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Receptors, Antigen, T-Cell/drug effects
- Receptors, Antigen, T-Cell/immunology
- Rhinitis, Allergic, Seasonal/genetics
- Rhinitis, Allergic, Seasonal/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Th2 Cells/drug effects
- Th2 Cells/enzymology
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Young Adult
Collapse
Affiliation(s)
- M Benson
- Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|