1
|
Clark RD, Rabito F, Munyonho FT, Remcho TP, Kolls JK. Evaluation of anti-vector immune responses to adenovirus-mediated lung gene therapy and modulation by αCD20. Mol Ther Methods Clin Dev 2024; 32:101286. [PMID: 39070292 PMCID: PMC11283059 DOI: 10.1016/j.omtm.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Although the last decade has seen tremendous progress in drugs that treat cystic fibrosis (CF) due to mutations that lead to protein misfolding, there are approximately 8%-10% of subjects with mutations that result in no significant CFTR protein expression demonstrating the need for gene editing or gene replacement with inhaled mRNA or vector-based approaches. A limitation for vector-based approaches is the formation of neutralizing humoral responses. Given that αCD20 has been used to manage post-transplant lymphoproliferative disease in CF subjects with lung transplants, we studied the ability of αCD20 to module both T and B cell responses in the lung to one of the most immunogenic vectors, E1-deleted adenovirus serotype 5. We found that αCD20 significantly blocked luminal antibody responses and efficiently permitted re-dosing. αCD20 had more limited impact on the T cell compartment, but reduced tissue resident memory T cell responses in bronchoalveolar lavage fluid. Taken together, these pre-clinical studies suggest that αCD20 could be re-purposed for lung gene therapy protocols to permit re-dosing.
Collapse
Affiliation(s)
- Robert D.E. Clark
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Felix Rabito
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ferris T. Munyonho
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - T. Parks Remcho
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K. Kolls
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Lomunova MA, Gershovich PM. Gene Therapy for Cystic Fibrosis: Recent Advances and Future Prospects. Acta Naturae 2023; 15:20-31. [PMID: 37538805 PMCID: PMC10395777 DOI: 10.32607/actanaturae.11708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 08/05/2023] Open
Abstract
Gene replacement therapies are novel therapeutic approaches that seek to tackle hereditary diseases caused by a congenital deficiency in a particular gene, when a functional copy of a gene can be delivered to the cells and tissues using various delivery systems. To do this, viral particles carrying a functional copy of the gene of interest and various nonviral gene delivery systems, including liposomes, nanoparticles, etc., can be used. In this review, we discuss the state of current knowledge regarding the molecular mechanisms and types of genetic mutations that lead to cystic fibrosis and highlight recent developments in gene therapy that can be leveraged to correct these mutations and to restore the physiological function of the carrier protein transporting sodium and chlorine ions in the airway epithelial cells. Restoration of carrier protein expression could lead to the normalization of ion and water transport across the membrane and induce a decrease in the viscosity of airway surface fluid, which is one of the pathological manifestations of this disease. This review also summarizes recently published preclinical and clinical data for various gene therapies to allow one to make some conclusions about future prospects for gene therapy in cystic fibrosis treatment.
Collapse
|
3
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
4
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
5
|
Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci 2020; 21:E3643. [PMID: 32455640 PMCID: PMC7279171 DOI: 10.3390/ijms21103643] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.
Collapse
Affiliation(s)
| | | | | | | | - Ruben Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA. Navarra Institute of Health Research, 31008 Pamplona, Spain; (A.R.); (M.G.-A.); (L.M.-J.); (S.L.)
| |
Collapse
|
6
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Yan Z, McCray Jr PB, Engelhardt JF. Advances in gene therapy for cystic fibrosis lung disease. Hum Mol Genet 2019; 28:R88-R94. [PMID: 31332440 PMCID: PMC6796993 DOI: 10.1093/hmg/ddz139] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is a multiorgan recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Gene therapy efforts have focused on treating the lung, since it manifests the most significant life-threatening disease. Over two decades have past since the first CF lung gene therapy trials and significant advances in the therapeutic implementation of pharmacologic CFTR modulators have renewed the field's focus on developing gene therapies for the 10% of CF patients these modulators cannot help. This review summarizes recent progress made in developing vectors for airway transduction and CF animal models required for understanding the relevant cellular targets in the lung and testing the efficacy of gene therapy approaches. We also highlight future opportunities in emerging gene editing strategies that may offer advantages for treating diseases like CF where the gene target is highly regulated at the cellular level. The outcomes of CF lung gene therapy trials will likely inform productive paths toward gene therapy for other complex genetic disorders, while also advancing treatments for all CF patients.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Paul B McCray Jr
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
9
|
van Haasteren J, Hyde SC, Gill DR. Lessons learned from lung and liver in-vivo gene therapy: implications for the future. Expert Opin Biol Ther 2018; 18:959-972. [PMID: 30067117 PMCID: PMC6134476 DOI: 10.1080/14712598.2018.1506761] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Ex-vivo gene therapy has had significant clinical impact over the last couple of years and in-vivo gene therapy products are being approved for clinical use. Gene therapy and gene editing approaches have huge potential to treat genetic disease and chronic illness. AREAS COVERED This article provides a review of in-vivo approaches for gene therapy in the lung and liver, exploiting non-viral and viral vectors with varying serotypes and pseudotypes to target-specific cells. Antibody responses inhibiting viral vectors continue to constrain effective repeat administration. Lessons learned from ex-vivo gene therapy and genome editing are also discussed. EXPERT OPINION The fields of lung and liver in-vivo gene therapy are thriving and a comparison highlights obstacles and opportunities for both. Overcoming immunological issues associated with repeated administration of viral vectors remains a key challenge. The addition of targeted small molecules in combination with viral vectors may offer one solution. A substantial bottleneck to the widespread adoption of in-vivo gene therapy is how to ensure sufficient capacity for clinical-grade vector production. In the future, the exploitation of gene editing approaches for in-vivo disease treatment may facilitate the resurgence of non-viral gene transfer approaches, which tend to be eclipsed by more efficient viral vectors.
Collapse
Affiliation(s)
- Joost van Haasteren
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C. Hyde
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah R. Gill
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Williams EL, Stimpson ML, Collins PL, Enki DG, Sinha A, Lee RW, Dhanda AD. Development and validation of a novel bioassay to determine glucocorticoid sensitivity. Biomark Res 2016; 4:26. [PMID: 27999674 PMCID: PMC5157083 DOI: 10.1186/s40364-016-0079-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Glucocorticoids (GCs) remain the first line treatment for almost all non-infectious inflammatory diseases, ranging from acute asthma to rheumatoid arthritis. However, across all conditions, patients have a variable response to GCs with approximately 30% being non-responders. This group of GC resistant patients is typically exposed to high-dose GCs and their side-effects before more appropriate immunotherapy is instituted. Hence, there is a pressing clinical need for a predictive biomarker of GC responsiveness. The availability of such a tool would also enable patient stratification for the conduct of smart clinical trials in GC resistance. Lymphocyte GC sensitivity has been shown to be closely associated with clinical GC sensitivity in a number of inflammatory diseases. However, the method for determining in vitro GC response is not standardized and requires the use of specialist equipment, including a radioisotope to quantify cellular proliferation, making it challenging to translate into clinical practice. Results Here we describe the optimization and validation of a novel non-radioactive in vitro bioassay based on measuring cellular proliferation by incorporation of bromodeoxyuridine (BrdU), termed the BrdU incorporation in lymphocyte steroid sensitivity assay (BLISS). In comparison to the current gold standard lymphocyte GC sensitivity assay in 101 healthy control samples, BLISS has an area under receiver operating characteristic of 0.82 and a sensitivity of 83% for correctly identifying GC resistant subjects. Conclusions The performance of the novel BLISS bioassay makes it a strong candidate biomarker for clinical application. It now requires validation in a prospective patient cohort. Electronic supplementary material The online version of this article (doi:10.1186/s40364-016-0079-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily L Williams
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Madeleine L Stimpson
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Peter L Collins
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,Department of Liver Medicine, University Hospitals Bristol NHS Foundation Trust, Bristol, BS2 8HW UK
| | - Doyo G Enki
- Biostatistics, Bioinformatics and Biomarkers research group, Plymouth University, N15 Plymouth Science Park, Plymouth, PL6 8BX UK
| | - Ashish Sinha
- Department of Liver Medicine, University Hospitals Bristol NHS Foundation Trust, Bristol, BS2 8HW UK
| | - Richard W Lee
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ashwin D Dhanda
- School of Clinical Sciences, Medical Sciences Building, University of Bristol, Bristol, BS9 1TD UK.,Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth, PL6 8BU UK.,South West Liver Unit, Plymouth Hospitals NHS Trust, Plymouth, UK
| |
Collapse
|
11
|
Huang S, Mao J, Wei B, Pei G. The anti-spasticity drug baclofen alleviates collagen-induced arthritis and regulates dendritic cells. J Cell Physiol 2015; 230:1438-47. [PMID: 25556830 DOI: 10.1002/jcp.24884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/05/2014] [Indexed: 12/27/2022]
Abstract
Baclofen is used clinically as a drug that treats spasticity, which is a syndrome characterized by excessive contraction of the muscles and hyperflexia in the central nervous system (CNS), by activating GABA(B) receptors (GABA(B)Rs). Baclofen was recently reported to desensitize chemokine receptors and to suppress inflammation through the activation of GABA(B)Rs. GABA(B)Rs are expressed in various immune cells, but the functions of these receptors in autoimmune diseases remain largely unknown. In this study, we investigated the effects of baclofen in murine collagen-induced arthritis (CIA). Oral administration of baclofen alleviated the clinical development of CIA, with a reduced number of IL-17-producing T helper 17 (T(H)17) cells. In addition, baclofen treatment suppressed dendritic cell (DC)-primed T(H)17 cell differentiation by reducing the production of IL-6 by DCs in vitro. Furthermore, the pharmacological and genetic blockade of GABA(B)Rs in DCs weakened the effects of baclofen, indicating that GABA(B)Rs are the molecular targets of baclofen on DCs. Thus, our findings revealed a potential role for baclofen in the treatment of CIA, as well as a previously unknown signaling pathway that regulates DC function.
Collapse
Affiliation(s)
- Shichao Huang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | | | | | | |
Collapse
|
12
|
CD154 and IL-2 signaling of CD4+ T cells play a critical role in multiple phases of CD8+ CTL responses following adenovirus vaccination. PLoS One 2012; 7:e47004. [PMID: 23071696 PMCID: PMC3465321 DOI: 10.1371/journal.pone.0047004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/10/2012] [Indexed: 01/22/2023] Open
Abstract
Adenoviral (AdV) vectors represent most commonly utilized viral vaccines in clinical studies. While the role of CD8+ cytotoxic T lymphocyte (CTL) responses in mediating AdV-induced protection is well understood, the involvement of CD4+ T cell-provided signals in the development of functional CD8+ CTL responses remain unclear. To explore CD4+ T helper signals required for AdVova-stimulated CTL responses, we established an adoptive transfer system by transferring CD4+ T cells derived from various knock out and transgenic mice into wild-type and/or CD4-deficient animals, followed by immunizing with recombinant ovalbumin (OVA)-expressing AdVova vector. Without CD4+ T help, both primary and memory CTL responses were greatly reduced in this model, and were associated with increased PD-1 expression. The provision of OVA-specific CD4+ T help in CD4+ T cell-deficient mice restored AdVova-induced primary CTL responses, and supported survival and recall responses of AdVova-stimulated memory CTLs. These effects were specifically mediated by CD4+ T cell-produced IL-2 and CD154 signals. Adoptive transfer of “helped” or “unhelped” effector and memory CTLs into naïve CD4+ T cell-deficient or -sufficient mice also revealed an additional role for polyclonal CD4+ T cell environment in the survival of AdVova-stimulated CTLs, partially explaining the extension of CTL contraction phase. Finally, during recall responses, CD4+ T cell environment, particularly involving memory CD4+ T cells, greatly enhanced expansion of memory CTLs. Collectively, our data strongly suggest a critical role for CD4+ T help in multiple phases of AdV-stimulated CTL responses, and could partially explain certain failures in AdV-based immunization trials targeting malignant tumors and chronic diseases that are often associated with compromised CD4+ T cell population and function.
Collapse
|
13
|
Kushwah R, Hu J. Analysis of pulmonary dendritic cell maturation and migration during allergic airway inflammation. J Vis Exp 2012:e4014. [PMID: 22847488 DOI: 10.3791/4014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response. DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms. Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.
Collapse
Affiliation(s)
- Rahul Kushwah
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton
| | | |
Collapse
|
14
|
Induction of immunological tolerance to adenoviral vectors by using a novel dendritic cell-based strategy. J Virol 2012; 86:3422-35. [PMID: 22258241 DOI: 10.1128/jvi.06172-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The success of helper-dependent adenoviral (HD-Ad) vector-mediated lung gene therapy is hampered by the host immune response, which limits pulmonary transgene expression following multiple rounds of vector readminstration. Here, we show that HD-Ad-mediated pulmonary gene expression is sustained even upon three rounds of readministration to immunodeficient mice, highlighting the need to suppress the adaptive immune response for sustained gene expression following vector readministration. Therefore, we devised a dendritic cell (DC)-based strategy for induction of immunological tolerance toward HD-Ad vectors. DCs derived in the presence of interleukin-10 (IL-10) are refractory to HD-Ad-induced maturation and instead facilitate generation of IL-10-producing Tr1 regulatory T cells which suppress HD-Ad-induced T cell proliferation. Delivery of HD-Ad-pulsed, IL-10-modified DCs to mice induces long-lasting immunological tolerance to HD-Ad vectors, whereby pulmonary DC maturation, the T cell response, and antibody response to HD-Ad vectors are suppressed even after three rounds of pulmonary HD-Ad readministration. Moreover, sustained transgene expression is also observed in the lungs of mice immunized with HD-Ad-pulsed, IL-10-modified DCs even after three rounds of pulmonary HD-Ad delivery. Taken together, these studies identify the use of DCs generated in the presence of IL-10 as a novel strategy to induce long-lasting immune tolerance to HD-Ad vectors.
Collapse
|
15
|
Kushwah R, Oliver JR, Wu J, Chang Z, Hu J. Elf3 regulates allergic airway inflammation by controlling dendritic cell-driven T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4639-53. [PMID: 21948981 DOI: 10.4049/jimmunol.1101967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Elf3 belongs to the Ets family of transcription factors and has been implicated in inflammation. Elf3 is highly expressed in the lungs, and Elf3(-/-) mice are impaired in IL-6 production after intranasal LPS exposure. To identify the role of Elf3 in Th17-driven pulmonary inflammation, we have performed epicutaneous sensitization of Elf3(-/-) mice with OVA followed by airway OVA challenge and have identified Elf3(-/-) mice to be impaired in induction of Th17 response, attributable to impairment of IL-6 production by dendritic cells (DCs). However, increased serum levels of OVA-specific IgG1 and IgE were observed, pointing toward an exaggerated Th2 response. To study Th2 response, we performed i.p. sensitization of Elf3(-/-) mice with OVA and confirmed loss of Elf3 to result in an aggravated Th2 response, characterized by increased generation of IL-4-producing T cells, increased levels of OVA-specific IgE and IgG1 Ab titers, and increased serum levels of Th2 cytokines, together with extensive inflammation and mucus production in airways. Elf3(-/-) DCs were impaired in priming Th1 differentiation, which, in turn, promoted Th2 differentiation. This was mediated by the ability of Elf3(-/-) DCs to undergo hypermaturation but secrete significantly lower levels of IL-12 in response to inflammatory stimuli. The impairment of IL-12 production was due to impairment of IL-12p40 gene induction in Elf3(-/-) DCs in response to inflammatory stimuli. Taken together, our study identifies a novel function of Elf3 in regulating allergic airway inflammation by regulating DC-driven Th1, Th2, and Th17 differentiation.
Collapse
Affiliation(s)
- Rahul Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
16
|
Kushwah R, Hu J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology 2011; 133:409-19. [PMID: 21627652 DOI: 10.1111/j.1365-2567.2011.03457.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that are critical for induction of adaptive immunity and tolerance. Traditionally DCs have been divided into two discrete subtypes, which comprise conventional and non-conventional DCs. They are distributed across various organs in the body and comprise a heterogeneous population, which has been shown to display differences in terms of surface marker expression, function and origins. Recent studies have shed new light on the process of DC differentiation and distribution of DC subtypes in various organs. Although monocytes, macrophages and DCs share a common macrophage-DC progenitor, a common DC progenitor population has been identified that exclusively gives rise to DCs and not monocytes or macrophages. In this review, we discuss the recent advances in our understanding of DC differentiation and subtypes and provide a comprehensive overview of various DC subtypes with emphasis on their function and origins. Furthermore, in light of recent developments in the field of DC biology, we classify DCs based on the precursor populations from which the various DC subsets originate. We classify DCs derived from common DC progenitor and pre-DC populations as conventional DCs, which includes both migratory and lymphoid-resident DC subsets and classify monocyte-derived DCs and plasmacytoid DCs as non-conventional DCs.
Collapse
Affiliation(s)
- Rahul Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Abstract
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.
Collapse
Affiliation(s)
- Amanda Rosewell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Francesco Vetrini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|
18
|
Mu J, Jeyanathan M, Shaler CR, Horvath C, Damjanovic D, Zganiacz A, Kugathasan K, McCormick S, Xing Z. Respiratory mucosal immunization with adenovirus gene transfer vector induces helper CD4 T cell-independent protective immunity. J Gene Med 2010; 12:693-704. [PMID: 20694950 DOI: 10.1002/jgm.1487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Virus-vectored vaccine is a powerful activator of CD8 T cell-mediated immunity and is especially amenable to respiratory mucosal immunization, offering hopes for use in humans with diminished helper CD4 T cell function. However, whether virus-mediated mucosal immunization can produce immune protective CD8 T cells without the CD4 T cell help remains to be investigated. METHODS We used a replication-deficient adenovirus vector expressing an Mycobacterium tuberculosis antigen Ag85A for intranasal vaccination and evaluated its effect on CD8 T cell activation and protection in mice depleted of CD4 T cells. RESULTS Intranasal vaccination of CD4 T cell-depleted mice led to suboptimal generation of Ag-specific tetramer(+) or interferon (IFN)-gamma-producing CD8 T cells in the lung and spleen but this was observed mainly at the early time after vaccination. Reduced CD8 T cell priming was also accompanied by decreased CD8 T cell responses (CTL). Nevertheless, the ratio of Ag-specific CD8 T cells to IFN-gamma-producing CD8 T cells in CD4 T cell-depleted hosts remained comparable to that in CD4 T cell-competent hosts. Furthermore, the 'unhelped' CD8 T cells also displayed a similar immune phenotype as the 'helped' counterparts. The animals with 'unhelped' CD8 T cells were as well-protected from pulmonary M. tuberculosis challenge as those with 'helped' CD8 T cells in the absence of CD4 T cells. CONCLUSIONS The data obtained in the present study suggest that the fully immune protective CD8 T cells can still be generated by respiratory mucosal viral-mediated immunization without CD4 T cells and that CD8 T cells, 'helped' or 'unhelped', can confer significant protection against pulmonary tuberculosis independent of CD4 T cells.
Collapse
Affiliation(s)
- Jingyu Mu
- Department of Pathology & Molecular Medicine, Centre for Gene Therapeutics & M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vetrini F, Ng P. Gene therapy with helper-dependent adenoviral vectors: current advances and future perspectives. Viruses 2010; 2:1886-1917. [PMID: 21994713 PMCID: PMC3186006 DOI: 10.3390/v2091886] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 11/21/2022] Open
Abstract
Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd) vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application.
Collapse
Affiliation(s)
| | - Philip Ng
- Author to whom correspondence should be addressed; Tel.: +1 7137984158; E-Mail:
| |
Collapse
|
20
|
Kushwah R, Wu J, Oliver JR, Jiang G, Zhang J, Siminovitch KA, Hu J. Uptake of apoptotic DC converts immature DC into tolerogenic DC that induce differentiation of Foxp3+ Treg. Eur J Immunol 2010; 40:1022-35. [PMID: 20101618 DOI: 10.1002/eji.200939782] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DC apoptosis has been observed in patients with cancer and sepsis, and defects in DC apoptosis have been implicated in the development of autoimmune diseases. However, the mechanisms of how DC apoptosis affects immune responses, are unclear. In this study, we showed that immature viable DC have the ability to uptake apoptotic DC as well as necrotic DC without it being recognized as an inflammatory event by immature viable DC. However, the specific uptake of apoptotic DC converted immature viable DC into tolerogenic DC, which were resistant to LPS-induced maturation. These tolerogenic DC secreted increased levels of TGF-beta1, which induced differentiation of naïve T cells into Foxp3(+) Treg. Furthermore, induction of Treg differentiation only occurred upon uptake of apoptotic DC and not apoptotic splenocytes by viable DC, indicating that it is specifically the uptake of apoptotic DC that gives viable immature DC the potential to induce Foxp3(+) Treg. Taken together, these findings identify uptake of apoptotic DC by viable immature DC as an immunologically tolerogenic event.
Collapse
Affiliation(s)
- Rahul Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Kushwah R, Oliver JR, Zhang J, Siminovitch KA, Hu J. Apoptotic dendritic cells induce tolerance in mice through suppression of dendritic cell maturation and induction of antigen-specific regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:7104-18. [PMID: 19917707 DOI: 10.4049/jimmunol.0900824] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cell (DC) apoptosis has been shown to play a role in maintaining a balance between tolerance and immunity. However, the mechanisms of how DC apoptosis affects the immune response are unclear. We have shown that in vitro culture of apoptotic DCs with immature DCs, results in their uptake by immature DCs, which subsequently turn into tolerogenic DCs, which then secrete TGF-beta1 and induce Foxp3(+) regulatory T cells (T(regs)). In this study we looked at the effects of apoptotic DCs in vivo. Here we show that apoptotic DCs are taken up by viable DCs in vivo, which suppresses the ability of viable DCs to undergo maturation and subsequent migration to the lymph nodes in response to LPS. Additionally, delivery of apoptotic DCs to LPS inflamed lungs results in resolution of inflammation, which is mediated by the ability of apoptotic DCs to suppress response of viable DCs to LPS. Additionally, apoptotic DCs also induce TGF-beta1 secretion in the mediastinal lymph nodes, which results in expansion of Foxp3(+) T(regs). Most importantly, we show that delivery of apoptotic DCs followed by OVA in CFA to mice suppresses T cell response to OVA and instead induces de novo generation of OVA-specific T(regs). Furthermore, delivery of apoptotic DCs followed by OVA in CFA results in expansion of T(regs) in TCR transgenic (OT-II) mice. These findings demonstrate that apoptotic DCs are taken up by viable DCs in vivo, which promotes tolerance through suppression of DC maturation and induction of T(regs).
Collapse
Affiliation(s)
- Rahul Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | |
Collapse
|