1
|
Sausen DG, Shechter O, Bietsch W, Shi Z, Miller SM, Gallo ES, Dahari H, Borenstein R. Hepatitis B and Hepatitis D Viruses: A Comprehensive Update with an Immunological Focus. Int J Mol Sci 2022; 23:15973. [PMID: 36555623 PMCID: PMC9781095 DOI: 10.3390/ijms232415973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12-72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality. Therefore, a thorough understanding of these viruses and the immune response they generate is essential to enhance disease management. This review includes an overview of the HBV and HDV viruses, including life cycle, structure, natural course of infection, and histopathology. A discussion of the interplay between HDV RNA and HBV DNA during chronic infection is also included. It then discusses characteristics of the immune response with a focus on reactions to the antigenic hepatitis B surface antigen, including small, middle, and large surface antigens. This paper also reviews characteristics of the immune response to the hepatitis D antigen (including small and large antigens), the only protein expressed by hepatitis D. Lastly, we conclude with a discussion of recent therapeutic advances pertaining to these viruses.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Oren Shechter
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William Bietsch
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Zhenzhen Shi
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
2
|
Kallas EG, Grunenberg NA, Yu C, Manso B, Pantaleo G, Casapia M, Baden LR, Valencia J, Sobieszczyk M, Van Tieu H, Allen M, Hural J, Graham BS, Kublin J, Gilbert PB, Corey L, Goepfert PA, McElrath MJ, Johnson RP, Huang Y, Frahm N. Antigenic competition in CD4 + T cell responses in a randomized, multicenter, double-blind clinical HIV vaccine trial. Sci Transl Med 2020; 11:11/519/eaaw1673. [PMID: 31748227 DOI: 10.1126/scitranslmed.aaw1673] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 10/04/2019] [Indexed: 11/02/2022]
Abstract
T cell responses have been implicated in reduced risk of HIV acquisition in uninfected persons and control of viral replication in HIV-infected individuals. HIV Gag-specific T cells have been predominantly associated with post-infection control, whereas Env antigens are the target for protective antibodies; therefore, inclusion of both antigens is common in HIV vaccine design. However, inclusion of multiple antigens may provoke antigenic competition, reducing the potential effectiveness of the vaccine. HVTN 084 was a randomized, multicenter, double-blind phase 1 trial to investigate whether adding Env to a Gag/Pol vaccine decreases the magnitude or breadth of Gag/Pol-specific T cell responses. Fifty volunteers each received one intramuscular injection of 1 × 1010 particle units (PU) of rAd5 Gag/Pol and EnvA/B/C (3:1:1:1 mixture) or 5 × 109 PU of rAd5 Gag/Pol. CD4+ T cell responses to Gag/Pol measured 4 weeks after vaccination by cytokine expression were significantly higher in the group vaccinated without Env, whereas CD8+ T cell responses did not differ significantly between the two groups. Mapping of individual epitopes revealed greater breadth of the Gag/Pol-specific T cell response in the absence of Env compared to Env coimmunization. Addition of an Env component to a Gag/Pol vaccine led to reduced Gag/Pol CD4+ T cell response rate and magnitude as well as reduced epitope breadth, confirming the presence of antigenic competition. Therefore, T cell-based vaccine strategies should aim at choosing a minimalist set of antigens to reduce interference of individual vaccine components with the induction of the maximally achievable immune response.
Collapse
Affiliation(s)
- Esper G Kallas
- Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo 05508, Brazil
| | - Nicole A Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bryce Manso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | | | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Valencia
- Asociación Civil Impacta Salud Y Educación, Lima 15063, Peru
| | - Magdalena Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10025, USA
| | - Hong Van Tieu
- Laboratory of Infectious Disease Prevention, New York Blood Center, New York, NY 10065, USA
| | - Mary Allen
- Division of AIDS, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul A Goepfert
- Division of Infectious Disease and Department of Surgery, Division of Gastroenterology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Global Health, University of Washington, Seattle, WA 98195, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - R Paul Johnson
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. .,Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Si X, Zhang X, Hao X, Li Y, Chen Z, Ding Y, Shi H, Bai J, Gao Y, Cheng T, Yang FC, Zhou Y. Upregulation of miR-99a is associated with poor prognosis of acute myeloid leukemia and promotes myeloid leukemia cell expansion. Oncotarget 2018; 7:78095-78109. [PMID: 27801668 PMCID: PMC5363646 DOI: 10.18632/oncotarget.12947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
Leukemia stem cells (LSCs) can resist available treatments that results in disease progression and/or relapse. To dissect the microRNA (miRNA) expression signature of relapse in acute myeloid leukemia (AML), miRNA array analysis was performed using enriched LSCs from paired bone marrow samples of an AML patient at different disease stages. We identified that miR-99a was significantly upregulated in the LSCs obtained at relapse compared to the LSCs collected at the time of initial diagnosis. We also found that miR-99a was upregulated in LSCs compared to non-LSCs in a larger cohort of AML patients, and higher expression levels of miR-99a were significantly correlated with worse overall survival and event-free survival in these AML patients. Ectopic expression of miR-99a led to increased colony forming ability and expansion in myeloid leukemia cells after exposure to chemotherapeutic drugs in vitro and in vivo, partially due to overcoming of chemotherapeutic agent-mediated cell cycle arrest. Gene profiling and bioinformatic analyses indicated that ectopic expression of miR-99a significantly upregulated genes that are critical for LSC maintenance, cell cycle, and downstream targets of E2F and MYC. This study suggests that miR-99a has a novel role and potential use as a biomarker in myeloid leukemia progression.
Collapse
Affiliation(s)
- Xiaohui Si
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoyun Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xing Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahui Ding
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Collaborative Innovation Center for Cancer Medicine, Tianjin, China
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
4
|
Distinct gene-expression profiles associated with the susceptibility of pathogen-specific CD4 T cells to HIV-1 infection. Blood 2012; 121:1136-44. [PMID: 23258923 DOI: 10.1182/blood-2012-07-446278] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In HIV infection, CD4 responses to opportunistic pathogens such as Candida albicans are lost early, but CMV-specific CD4 response persists. Little is currently known about HIV infection of CD4 T cells of different pathogen/antigen specificities. CFSE-labeled PBMCs were stimulated with CMV, tetanus toxoid (TT), and C albicans antigens and subsequently exposed to HIV. HIV infection was monitored by intracellular p24 in CFSE(low) population. We found that although TT- and C albicans-specific CD4 T cells were permissive, CMV-specific CD4 T cells were highly resistant to both R5 and X4 HIV. Quantification of HIV DNA in CFSE(low) cells showed a reduction of strong-stop and full-length DNA in CMV-specific cells compared with TT- and C albicans-specific cells. β-Chemokine neutralization enhanced HIV infection in TT- and C albicans-specific cells, whereas HIV infection in CMV-specific cells remained low despite increased entry by β-chemokine neutralization, suggesting postentry HIV restriction by CMV-specific cells. Microarray analysis (Gene Expression Omnibus accession number: GSE42853) revealed distinct transcriptional profiles that involved selective up-regulation of comprehensive innate antiviral genes in CMV-specific cells, whereas TT- and C albicans-specific cells mainly up-regulated Th17 inflammatory response. Our data suggest a mechanism for the persistence of CMV-specific CD4 response and earlier loss of mucosal Th17-associated TT- and C albicans-specific CD4 response in AIDS.
Collapse
|
5
|
Klasse PJ, Sanders RW, Cerutti A, Moore JP. How can HIV-type-1-Env immunogenicity be improved to facilitate antibody-based vaccine development? AIDS Res Hum Retroviruses 2012; 28:1-15. [PMID: 21495876 DOI: 10.1089/aid.2011.0053] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
No vaccine candidate has induced antibodies (Abs) that efficiently neutralize multiple primary isolates of HIV-1. Preexisting high titers of neutralizing antibodies (NAbs) are essential, because the virus establishes infection before anamnestic responses could take effect. HIV-1 infection elicits Abs against Env, Gag, and other viral proteins, but of these only a subset of the anti-Env Abs can neutralize the virus. Whereas the corresponding proteins from other viruses form the basis of successful vaccines, multiple large doses of HIV-1 Env elicit low, transient titers of Abs that are not protective in humans. The inaccessibility of neutralization epitopes hinders NAb induction, but Env may also subvert the immune response by interacting with receptors on T cells, B cells, monocytes, macrophages, and dendritic cells. Here, we discuss evidence from immunizations of different species with various modified Env constructs. We also suggest how the divergent Ab responses to Gag and Env during infection may reflect differences in B cell regulation. Drawing on these analyses, we outline strategies for improving Env as a component of a vaccine aimed at inducing strong and sustained NAb responses.
Collapse
Affiliation(s)
- Per Johan Klasse
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, New York, New York
| | - Rogier W. Sanders
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, New York, New York
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Andrea Cerutti
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, New York
- Catalan Institute for Research and Advanced Studies, Barcelona Biomedical Research Park, IMIM-Hospital del Mar, Barcelona, Spain
| | - John P. Moore
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, New York, New York
| |
Collapse
|
6
|
Santosuosso M, Righi E, Hill ED, Leblanc PR, Kodish B, Mylvaganam HN, Siddappa NB, Stevceva L, Hu SL, Ghebremichael M, Chenine AL, Hovav AH, Ruprecht RM, Poznansky MC. R5-SHIV induces multiple defects in T cell function during early infection of rhesus macaques including accumulation of T reg cells in lymph nodes. PLoS One 2011; 6:e18465. [PMID: 21483689 PMCID: PMC3071731 DOI: 10.1371/journal.pone.0018465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/09/2011] [Indexed: 11/18/2022] Open
Abstract
Background HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. Methods Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. Results/Conclusions We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.
Collapse
Affiliation(s)
- Michael Santosuosso
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Elda Righi
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - E. David Hill
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Pierre R. Leblanc
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Brett Kodish
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Hari N. Mylvaganam
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Nagadenahalli B. Siddappa
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Liljana Stevceva
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Musie Ghebremichael
- Department of Biostatistics and Computational Biology, Harvard School of Public Health and Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Agnes-L. Chenine
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Avi-Hai Hovav
- Faculty of Dental Medicine, Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Ruth M. Ruprecht
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Mark C. Poznansky
- Infectious Diseases Medicine Division, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Huang X, Stone DK, Yu F, Zeng Y, Gendelman HE. Functional proteomic analysis for regulatory T cell surveillance of the HIV-1-infected macrophage. J Proteome Res 2010; 9:6759-73. [PMID: 20954747 PMCID: PMC3108468 DOI: 10.1021/pr1009178] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Treg) induce robust neuroprotection in murine models of neuroAIDS, in part, through eliciting anti-inflammatory responses for HIV-1-infected brain mononuclear phagocytes (MP; macrophage and microglia). Herein, using both murine and human primary cell cultures in proteomic and cell biologic tests, we report that Treg promotes such neuroprotection by an even broader range of mechanisms than previously seen including inhibition of virus release, killing infected MP, and inducing phenotypic cell switches. Changes in individual Treg-induced macrophage proteins were quantified by iTRAQ labeling followed by mass spectrometry identifications. Reduction in virus release paralleled the upregulation of interferon-stimulated gene 15, an ubiquitin-like protein involved in interferon-mediated antiviral immunity. Treg killed virus-infected macrophages through caspase-3 and granzyme and perforin pathways. Independently, Treg transformed virus-infected macrophages from an M1 to an M2 phenotype by down- and up- regulation of inducible nitric oxide synthase and arginase 1, respectively. Taken together, Treg affects a range of virus-infected MP functions. The observations made serve to challenge the dogma of solitary Treg immune suppressor functions and provides novel insights into how Treg affects adaptive immunosurveillance for control of end organ diseases, notably neurocognitive disorders associated with advanced viral infection.
Collapse
Affiliation(s)
- Xiuyan Huang
- Department of Pharmacology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | | | | | | | | |
Collapse
|
8
|
Protection from graft-versus-host disease by HIV-1 envelope protein gp120-mediated activation of human CD4+CD25+ regulatory T cells. Blood 2009; 114:1263-9. [PMID: 19439734 DOI: 10.1182/blood-2009-02-206730] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Naturally occurring CD4(+)CD25(+) regulatory T cells (Tregs) represent a unique T-cell lineage that is endowed with the ability to actively suppress immune responses. Therefore, approaches to modulate Treg function in vivo could provide ways to enhance or reduce immune responses and lead to novel therapies. Here we show that the CD4 binding human immunodeficiency virus-1 envelope glycoprotein gp120 is a useful and potent tool for functional activation of human Tregs in vitro and in vivo. Gp120 activates human Tregs by binding and signaling through CD4. Upon stimulation with gp120, human Tregs accumulate cyclic adenosine monophosphate (cAMP) in their cytosol. Inhibition of endogeneous cAMP synthesis prevents gp120-mediated Treg activation. Employing a xenogeneic graft versus host disease model that has been shown to be applicable for the functional analysis of human Tregs in vivo, we further show that a single dose of gp120 is sufficient to prevent lethal graft versus host disease and that the tolerizing effect of gp120 is strictly dependent on the presence of human Tregs and their up-regulation of cAMP upon gp120-mediated activation. Our findings demonstrate that stimulation via the CD4 receptor represents a T-cell receptor-independent Treg activating pathway with potential to induce immunologic tolerance in vivo.
Collapse
|
9
|
Engagement of the CD4 receptor affects the redistribution of Lck to the immunological synapse in primary T cells: implications for T-cell activation during human immunodeficiency virus type 1 infection. J Virol 2008; 83:1193-200. [PMID: 19019957 DOI: 10.1128/jvi.01023-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Understanding the molecular mechanisms underlying dysregulated immune responses in human immunodeficiency virus type 1 (HIV-1) infection is crucial for the control of HIV/AIDS. Despite the postulate that HIV envelope glycoprotein gp120-CD4 interactions lead to impaired T-cell responses, the precise mechanisms underlying such association are not clear. To address this, we analyzed Lck and F-actin redistribution into the immunological synapse in stimulated human primary CD4(+) T cells from HIV-1-infected donors. Similar experiments were performed with CD4(+) T cells from HIV-uninfected donors, which were exposed to anti-CD4 domain 1 antibodies, as an in vitro model of gp120-CD4 interactions, or aldithriol-inactivated HIV-1 virions before stimulation. CD4(+) T cells from HIV-infected patients exhibited a two- to threefold inhibition of both Lck and F-actin recruitment into the synapse, compared to cells from uninfected donors. Interestingly, defective recruitment of Lck was ameliorated following suppressive highly active antiretroviral therapy. Engagement of the CD4 receptor on T cells from HIV-uninfected donors before anti-CD3/CD28 stimulation led to similar defects. Furthermore, the redistribution of Lck into lipid rafts was abrogated by CD4 preengagement. Our results suggest that the engagement of CD4 by HIV gp120 prior to T-cell receptor stimulation leads to dysregulation of early signaling events and could consequently play an important role in impaired CD4(+) T-cell function.
Collapse
|