1
|
Weng S, Li Q, Zhang T, Lin T, He Y, Yang G, Wang H, Xu Y. Enhanced Glycosylation Caused by Overexpression of Rv1002c in a Recombinant BCG Promotes Immune Response and Protects against Mycobacterium tuberculosis Infection. Vaccines (Basel) 2024; 12:622. [PMID: 38932351 PMCID: PMC11209282 DOI: 10.3390/vaccines12060622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Tuberculosis (TB) is a major global health threat despite its virtual elimination in developed countries. Issues such as drug accessibility, emergence of multidrug-resistant strains, and limitations of the current BCG vaccine highlight the urgent need for more effective TB control measures. This study constructed BCG strains overexpressing Rv1002c and found that the rBCG-Rv1002c strain secreted more glycosylated proteins, significantly enhancing macrophage activation and immune protection against Mycobacterium tuberculosis (M. tb). These results indicate that Rv1002c overexpression promotes elevated levels of O-glycosylation in BCG bacteriophages, enhancing their phagocytic and antigenic presentation functions. Moreover, rBCG-Rv1002c significantly upregulated immune regulatory molecules on the macrophage surface, activated the NF-κB pathway, and facilitated the release of large amounts of NO and H2O2, thereby enhancing bacterial control. In mice, rBCG-Rv1002c immunization induced greater innate and adaptive immune responses, including increased production of multifunctional and long-term memory T cells. Furthermore, rBCG-Rv1002c-immunized mice exhibited reduced lung bacterial load and histological damage upon M. tb infection. This result shows that it has the potential to be an excellent candidate for a preventive vaccine against TB.
Collapse
Affiliation(s)
- Shufeng Weng
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai 200437, China; (S.W.); (Q.L.); (T.Z.); (T.L.); (Y.H.); (G.Y.); (H.W.)
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai 200052, China
| | - Qingchun Li
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai 200437, China; (S.W.); (Q.L.); (T.Z.); (T.L.); (Y.H.); (G.Y.); (H.W.)
| | - Tianran Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai 200437, China; (S.W.); (Q.L.); (T.Z.); (T.L.); (Y.H.); (G.Y.); (H.W.)
| | - Taiyue Lin
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai 200437, China; (S.W.); (Q.L.); (T.Z.); (T.L.); (Y.H.); (G.Y.); (H.W.)
| | - Yumo He
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai 200437, China; (S.W.); (Q.L.); (T.Z.); (T.L.); (Y.H.); (G.Y.); (H.W.)
| | - Guang Yang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai 200437, China; (S.W.); (Q.L.); (T.Z.); (T.L.); (Y.H.); (G.Y.); (H.W.)
| | - Honghai Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai 200437, China; (S.W.); (Q.L.); (T.Z.); (T.L.); (Y.H.); (G.Y.); (H.W.)
| | - Ying Xu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai 200437, China; (S.W.); (Q.L.); (T.Z.); (T.L.); (Y.H.); (G.Y.); (H.W.)
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai 200052, China
| |
Collapse
|
2
|
Bigi MM, Forrellad MA, García JS, Blanco FC, Vázquez CL, Bigi F. An update on Mycobacterium tuberculosis lipoproteins. Future Microbiol 2023; 18:1381-1398. [PMID: 37962486 DOI: 10.2217/fmb-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/29/2023] [Indexed: 11/15/2023] Open
Abstract
Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.
Collapse
Affiliation(s)
- María M Bigi
- Instituto de Investigaciones Biomédicas, CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
| | - Marina A Forrellad
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Julia S García
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Federico C Blanco
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Cristina L Vázquez
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| |
Collapse
|
3
|
Mizuno S, Chuma Y, Shibuya Y, Horibata S, Baba T, Yokokawa E, Matsuo K. Culture filtrate proteins from BCG act as adjuvants for cytotoxic T lymphocyte induction. Front Immunol 2023; 14:1271228. [PMID: 37928526 PMCID: PMC10622798 DOI: 10.3389/fimmu.2023.1271228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Mycobacterium bovis bacilli Calmette-Guerin (BCG) is a licensed vaccine against tuberculosis. It requires attenuated live bacteria to be effective, possibly because actively secreted proteins play a critical role in inducing anti-tuberculosis immunity. BCG also functions as an effective adjuvant. Moreover, the effects of BCG components as adjuvants are not important as those of attenuated live BCG, which is used in cancer immunotherapy. However, the BCG secreted proteins have not been paid attention in anticancer immunity. To understand mycobacterial secreted proteins' function, we investigate immune responses to BCG culture filtrate proteins (CFP). Here, CFP strongly induce both antigen-specific CD4+ T cells and specific CD8+ T cells, which may be functional cytotoxic T lymphocytes (CTLs). In this study, we clearly demonstrate that CFP acts as an adjuvant for CTL induction against specific co-administered proteins and propose CFP as a new protein adjuvant. The CTL response shows potent anticancer effects in mice. These findings could provide insight into the contribution of mycobacterial secreted proteins in both anticancer and antimycobacterial immunity.
Collapse
Affiliation(s)
- Satoru Mizuno
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Yasushi Chuma
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Yukihiro Shibuya
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Shigeo Horibata
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Tomoe Baba
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Emi Yokokawa
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
5
|
Potential Plasticity of the Mannoprotein Repertoire Associated to Mycobacterium tuberculosis Virulence Unveiled by Mass Spectrometry-Based Glycoproteomics. Molecules 2020; 25:molecules25102348. [PMID: 32443484 PMCID: PMC7287972 DOI: 10.3390/molecules25102348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
To date, Mycobacterium tuberculosis (Mtb) remains the world’s greatest infectious killer. The rise of multidrug-resistant strains stresses the need to identify new therapeutic targets to fight the epidemic. We previously demonstrated that bacterial protein-O-mannosylation is crucial for Mtb infectiousness, renewing the interest of the bacterial-secreted mannoproteins as potential drug-targetable virulence factors. The difficulty of inventorying the mannoprotein repertoire expressed by Mtb led us to design a stringent multi-step workflow for the reliable identification of glycosylated peptides by large-scale mass spectrometry-based proteomics. Applied to the differential analyses of glycoproteins secreted by the wild-type Mtb strain—and by its derived mutant invalidated for the protein-O-mannosylating enzyme PMTub—this approach led to the identification of not only most already known mannoproteins, but also of yet-unknown mannosylated proteins. In addition, analysis of the glycoproteome expressed by the isogenic recombinant Mtb strain overexpressing the PMTub gene revealed an unexpected mannosylation of proteins, with predicted or demonstrated functions in Mtb growth and interaction with the host cell. Since in parallel, a transient increased expression of the PMTub gene has been observed in the wild-type bacilli when infecting macrophages, our results strongly suggest that the Mtb mannoproteome may undergo adaptive regulation during infection of the host cells. Overall, our results provide deeper insights into the complexity of the repertoire of mannosylated proteins expressed by Mtb, and open the way to novel opportunities to search for still-unexploited potential therapeutic targets.
Collapse
|
6
|
Deng G, Zhang W, Ji N, Zhai Y, Shi X, Liu X, Yang S. Identification of Secreted O-Mannosylated Proteins From BCG and Characterization of Immunodominant Antigens BCG_0470 and BCG_0980. Front Microbiol 2020; 11:407. [PMID: 32231652 PMCID: PMC7082424 DOI: 10.3389/fmicb.2020.00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
Bacterial glycoproteins have been investigated as vaccine candidates as well as diagnostic biomarkers. However, they are poorly understood in Mycobacterium bovis strain bacille Calmette-Guérin (BCG), a non-pathogenic model of Mycobacterium tuberculosis. To understand the roles of secreted O-mannosylated glycoproteins in BCG, we conducted a ConA lectin-affinity chromatography and mass spectra analysis to identify O-mannosylated proteins in BCG culture filtrate. Subsequent screening of antigens was performed using polyclonal antibodies obtained from a BCG-immunized mouse, with 15 endogenous O-mannosylated proteins eventually identified. Of these, BCG_0470 and BCG_0980 (PstS3) were revealed as the immunodominant antigens. To examine the protective effects of the antigens, recombinant antigens proteins were first expressed in Mycobacterium smegmatis and Escherichia coli, with the purified proteins then used to boost BCG primed-mice. Overall, the treated mice showed a greater delayed-type hypersensitivity response in vivo, as well as stronger Th1 responses, including higher level of IFN-γ, TNF-α, and specific-IgG. Therefore, mannosylated proteins BCG_0470 and BCG_0980 effectively amplified the immune responses induced by BCG in mice. Together, our results suggest that the oligosaccharide chains containing mannose are the antigenic determinants of glycoproteins, providing key insight for future vaccine optimization and design.
Collapse
Affiliation(s)
- Guoying Deng
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenli Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Ji
- Department of Clinical Laboratory, Dalian Third People's Hospital, Dalian, China
| | - Yunpeng Zhai
- Department of Clinical Laboratory, Dalian Municipal Women and Children's Medical Center, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shufeng Yang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Mycobacteria and their sweet proteins: An overview of protein glycosylation and lipoglycosylation in M. tuberculosis. Tuberculosis (Edinb) 2019; 115:1-13. [PMID: 30948163 DOI: 10.1016/j.tube.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Post-translational modifications represent a key aspect of enzyme and protein regulation and function. Post-translational modifications are involved in signaling and response to stress, adaptation to changing environments, regulation of toxic and damaged proteins, proteins localization and host-pathogen interactions. Glycosylation in Mycobacterium tuberculosis (Mtb), is a post-translational modification often found in conjunction with acylation in mycobacterial proteins. Since the discovery of glycosylated proteins in the early 1980's, important advances in our understanding of the mechanisms of protein glycosylation have been made. The number of known glycosylated substrates in Mtb has grown through the years, yet many questions remain. This review will explore the current knowledge on protein glycosylation in Mtb, causative agent of Tuberculosis and number one infectious killer in the world. The mechanism and significance of this post-translational modification, as well as maturation, export and acylation of glycosylated proteins will be reviewed. We expect to provide the reader with an overall view of protein glycosylation in Mtb, as well as the significance of this post-translational modification to the physiology and host-pathogen interactions of this important pathogen. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD011081 and 10.6019/PXD011081.
Collapse
|
8
|
Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm. Sci Rep 2017; 7:43682. [PMID: 28272507 PMCID: PMC5341126 DOI: 10.1038/srep43682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/30/2017] [Indexed: 11/26/2022] Open
Abstract
Post-translational modifications (PTMs) are essential processes conditioning the biophysical properties and biological activities of the vast majority of mature proteins. However, occurrence of several distinct PTMs on a same protein dramatically increases its molecular diversity. The comprehensive understanding of the functionalities resulting from any particular PTM association requires a highly challenging full structural description of the PTM combinations. Here, we report the in-depth exploration of the natural structural diversity of the M. tuberculosis (Mtb) virulence associated 19 kDa lipoglycoprotein antigen (LpqH) using intact protein high-resolution mass spectrometry (HR-MS) coupled to liquid chromatography. Combined top-down and bottom-up HR-MS analyses of the purified Mtb LpqH protein allow, for the first time, to uncover a complex repertoire of about 130 molecular species resulting from the intrinsically heterogeneous combination of lipidation and glycosylation together with some truncations. Direct view on the co-occurring PTMs stoichiometry reveals the presence of functionally distinct LpqH lipidation states and indicates that glycosylation is independent from lipidation. This work allowed the identification of a novel unsuspected phosphorylated form of the unprocessed preprolipoglycoprotein totally absent from the current lipoglycoprotein biogenesis pathway and providing new insights into the biogenesis and functional determinants of the mycobacterial lipoglycoprotein interacting with the host immune PRRs.
Collapse
|
9
|
Vallecillo AJ, Parada C, Morales P, Espitia C. Rhodococcus erythropolis as a host for expression, secretion and glycosylation of Mycobacterium tuberculosis proteins. Microb Cell Fact 2017; 16:12. [PMID: 28103877 PMCID: PMC5248525 DOI: 10.1186/s12934-017-0628-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Background Glycosylation is one of the most abundant posttranslational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. There is growing evidence about the importance of these modifications in host bacteria interactions in tuberculosis. It is known, that the sugars present in some Mycobacterium tuberculosis glycoproteins play an important role in both humoral and cellular immune response against the pathogen. Since this modification is lost in the recombinant proteins expressed in Escherichia coli, it is fundamental to search for host bacteria with the capacity to modify the foreign proteins. Amongst the bacteria that are likely to have this possibility are some members of Rhodococcus genus which are Gram-positive bacteria, with high GC-content and genetically very close related to M. tuberculosis. Results In this work, apa, pstS1 and lprG genes that coding for M. tuberculosis glycoproteins were cloned and expressed in Rhodococcus erythropolis. All recombinant proteins were mannosylated as demonstrated by their interaction with mannose binding lectin Concanavalin A. In addition, as native proteins recombinants Apa and PstS1 were secreted to the culture medium in contrast with LprG that was retained in the cell wall. Conclusions Together these results, point out R. erythropolis, as a new host for expression of M. tuberculosis glycoproteins.
Collapse
Affiliation(s)
- Antonio J Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico.,Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, C.P. 010220, Cuenca, Azu., Ecuador
| | - Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico
| | - Pedro Morales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico.
| |
Collapse
|
10
|
Sun L, Middleton DR, Wantuch PL, Ozdilek A, Avci FY. Carbohydrates as T-cell antigens with implications in health and disease. Glycobiology 2016; 26:1029-1040. [PMID: 27236197 DOI: 10.1093/glycob/cww062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease.
Collapse
Affiliation(s)
- Lina Sun
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dustin R Middleton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Paeton L Wantuch
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ahmet Ozdilek
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
O'Gorman WE, Hsieh EWY, Savig ES, Gherardini PF, Hernandez JD, Hansmann L, Balboni IM, Utz PJ, Bendall SC, Fantl WJ, Lewis DB, Nolan GP, Davis MM. Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. J Allergy Clin Immunol 2015; 136:1326-36. [PMID: 26037552 DOI: 10.1016/j.jaci.2015.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/20/2015] [Accepted: 04/01/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Activation of Toll-like receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in patients with systemic lupus erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a system-wide manner has not been described. OBJECTIVE We sought to characterize TLR activation across multiple immune cell subsets and subjects, with the goal of establishing a reference framework against which to compare pathologic processes. METHODS Peripheral whole-blood samples were stimulated with TLR ligands and analyzed by means of mass cytometry simultaneously for surface marker expression, activation states of intracellular signaling proteins, and cytokine production. We developed a novel data visualization tool to provide an integrated view of TLR signaling networks with single-cell resolution. We studied 17 healthy volunteer donors and 8 patients with newly diagnosed and untreated SLE. RESULTS Our data revealed the diversity of TLR-induced responses within cell types, with TLR ligand specificity. Subsets of natural killer cells and T cells selectively induced nuclear factor κ light chain enhancer of activated B cells in response to TLR2 ligands. CD14(hi) monocytes exhibited the most polyfunctional cytokine expression patterns, with more than 80 distinct cytokine combinations. Monocytic TLR-induced cytokine patterns were shared among a group of healthy donors, with minimal intraindividual and interindividual variability. Furthermore, autoimmune disease altered baseline cytokine production; newly diagnosed untreated SLE patients shared a distinct monocytic chemokine signature, despite clinical heterogeneity. CONCLUSION Mass cytometry defined a systems-level reference framework for human TLR activation, which can be applied to study perturbations in patients with inflammatory diseases, such as SLE.
Collapse
Affiliation(s)
- William E O'Gorman
- Department of Microbiology and Immunology, Stanford University, Stanford, Calif
| | - Elena W Y Hsieh
- Department of Microbiology and Immunology, Stanford University, Stanford, Calif; Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, Calif
| | - Erica S Savig
- Cancer Biology Program, Stanford University, Stanford, Calif
| | | | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, Calif; Department of Pathology, Stanford University, Stanford, Calif
| | - Leo Hansmann
- Department of Microbiology and Immunology, Stanford University, Stanford, Calif
| | - Imelda M Balboni
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, Calif
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, Calif; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, Calif
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, Calif
| | - Wendy J Fantl
- Department of Microbiology and Immunology, Stanford University, Stanford, Calif; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, Calif
| | - David B Lewis
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, Calif
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, Calif; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, Calif.
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, Calif; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, Calif; Howard Hughes Medical Institute, Stanford University, Stanford, Calif.
| |
Collapse
|
12
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|
13
|
Carbohydrate-dependent binding of langerin to SodC, a cell wall glycoprotein of Mycobacterium leprae. J Bacteriol 2014; 197:615-25. [PMID: 25422308 DOI: 10.1128/jb.02080-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells.
Collapse
|
14
|
Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control. Biochimie 2014; 102:1-8. [PMID: 24594065 DOI: 10.1016/j.biochi.2014.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/21/2014] [Indexed: 12/12/2022]
Abstract
Toll-like receptor 2 (TLR2), a member of pattern recognition receptors (PRRs) abundant on macrophages, dendritic cells (DCs) and respiratory epithelial cells lining the lung, plays critical role in host immune response against Mycobacterium tuberculosis (MTB) infection. TLR2-mediated elimination of MTB involves multiple pathways such as promoting DCs maturation, generating biased Th1, Th2, Th17 type response, regulating the macrophage activation and cytokine secretion. MTB can also hijack the TLR2 signaling to subvert the host immunity by dampening the macrophages response to IFN-γ, suppressing the processing and presentation of antigens. This review summarizes the intricate network of TLR2-mediated signaling and Mycobacteria effectors involved in MTB-host interaction with an aim to find better target for improved tuberculosis control, especially the host-derived therapy targets. TLR2 agonists with potential to be included in novel tuberculosis vaccines are also discussed.
Collapse
|
15
|
Nandakumar S, Kannanganat S, Dobos KM, Lucas M, Spencer JS, Fang S, McDonald MA, Pohl J, Birkness K, Chamcha V, Ramirez MV, Plikaytis BB, Posey JE, Amara RR, Sable SB. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection. PLoS Pathog 2013; 9:e1003705. [PMID: 24130497 PMCID: PMC3795050 DOI: 10.1371/journal.ppat.1003705] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/28/2013] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.
Collapse
Affiliation(s)
- Subhadra Nandakumar
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sunil Kannanganat
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - John S. Spencer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sunan Fang
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melissa A. McDonald
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristin Birkness
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Venkateswarlu Chamcha
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Melissa V. Ramirez
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bonnie B. Plikaytis
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James E. Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rama Rao Amara
- Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Suraj B. Sable
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:6560-5. [PMID: 23550160 DOI: 10.1073/pnas.1219704110] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A posttranslational protein O-mannosylation process resembling that found in fungi and animals has been reported in the major human pathogen Mycobacterium tuberculosis (Mtb) and related actinobacteria. However, the role and incidence of this process, which is essential in eukaryotes, have never been explored in Mtb. We thus analyzed the impact of interrupting O-mannosylation in the nonpathogenic saprophyte Mycobacterium smegmatis and in the human pathogen Mtb by inactivating the respective putative protein mannosyl transferase genes Msmeg_5447 and Rv1002c. Loss of protein O-mannosylation in both mutant strains was unambiguously demonstrated by efficient mass spectrometry-based glycoproteomics analysis. Unexpectedly, although the M. smegmatis phenotype was unaffected by the lack of manno-proteins, the Mtb mutant had severely impacted growth in vitro and in cellulo associated with a strong attenuation of its pathogenicity in immunocompromised mice. These data are unique in providing evidence of the biological significance of protein O-mannosylation in mycobacteria and demonstrate the crucial contribution of this protein posttranslational modification to Mtb virulence in the host.
Collapse
|
17
|
Cavazos A, Prigozhin DM, Alber T. Structure of the sensor domain of Mycobacterium tuberculosis PknH receptor kinase reveals a conserved binding cleft. J Mol Biol 2012; 422:488-94. [PMID: 22727744 DOI: 10.1016/j.jmb.2012.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/25/2012] [Accepted: 06/06/2012] [Indexed: 01/24/2023]
Abstract
Since their discovery over 20 years ago, eukaryotic-like transmembrane receptor Ser/Thr protein kinases (STPKs) have been shown to play critical roles in the virulence, growth, persistence, and reactivation of many bacteria. Information regarding the signals transmitted by these proteins, however, remains scarce. To enhance understanding of the basis for STPK receptor signaling, we determined the 1.7-Å-resolution crystal structure of the extracellular sensor domain of the Mycobacterium tuberculosis receptor STPK, PknH (Rv1266c). The PknH sensor domain adopts an unanticipated fold containing two intramolecular disulfide bonds and a large hydrophobic and polar cleft. The residues lining the cleft and those surrounding the disulfide bonds are conserved. These results suggest that PknH binds a small-molecule ligand that signals by changing the location or quaternary structure of the kinase domain.
Collapse
Affiliation(s)
- Alexandra Cavazos
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
18
|
Balonova L, Mann BF, Cerveny L, Alley WR, Chovancova E, Forslund AL, Salomonsson EN, Forsberg A, Damborsky J, Novotny MV, Hernychova L, Stulik J. Characterization of protein glycosylation in Francisella tularensis subsp. holarctica: identification of a novel glycosylated lipoprotein required for virulence. Mol Cell Proteomics 2012; 11:M111.015016. [PMID: 22361235 DOI: 10.1074/mcp.m111.015016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FTH_0069 is a previously uncharacterized strongly immunoreactive protein that has been proposed to be a novel virulence factor in Francisella tularensis. Here, the glycan structure modifying two C-terminal peptides of FTH_0069 was identified utilizing high resolution, high mass accuracy mass spectrometry, combined with in-source CID tandem MS experiments. The glycan observed at m/z 1156 was determined to be a hexasaccharide, consisting of two hexoses, three N-acetylhexosamines, and an unknown monosaccharide containing a phosphate group. The monosaccharide sequence of the glycan is tentatively proposed as X-P-HexNAc-HexNAc-Hex-Hex-HexNAc, where X denotes the unknown monosaccharide. The glycan is identical to that of DsbA glycoprotein, as well as to one of the multiple glycan structures modifying the type IV pilin PilA, suggesting a common biosynthetic pathway for the protein modification. Here, we demonstrate that the glycosylation of FTH_0069, DsbA, and PilA was affected in an isogenic mutant with a disrupted wbtDEF gene cluster encoding O-antigen synthesis and in a mutant with a deleted pglA gene encoding pilin oligosaccharyltransferase PglA. Based on our findings, we propose that PglA is involved in both pilin and general F. tularensis protein glycosylation, and we further suggest an inter-relationship between the O-antigen and the glycan synthesis in the early steps in their biosynthetic pathways.
Collapse
Affiliation(s)
- Lucie Balonova
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Simon M, Scherlock J, Duthie MS, Ribeiro de Jesus A. Clinical, immunological, and genetic aspects in leprosy. Drug Dev Res 2011. [DOI: 10.1002/ddr.20457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Bianco MV, Blanco FC, Imperiale B, Forrellad MA, Rocha RV, Klepp LI, Cataldi AA, Morcillo N, Bigi F. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds. BMC Infect Dis 2011; 11:195. [PMID: 21762531 PMCID: PMC3146831 DOI: 10.1186/1471-2334-11-195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 07/16/2011] [Indexed: 11/10/2022] Open
Abstract
Background The P27-P55 (lprG-Rv1410c) operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are functionally connected in processes that involve the preservation of the cell wall and the transport of toxic compounds away from the cells.
Collapse
Affiliation(s)
- María V Bianco
- Instituto de Biotecnología, CICVyA-INTA, N, Repetto and De los Reseros, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW After tuberculosis, leprosy (Mycobacterium leprae) and Buruli ulcer (M. ulcerans infection) are the second and third most common mycobacterial infections in humankind, respectively. Recent advances in both diseases are summarized. RECENT FINDINGS Leprosy remains a public health problem in some countries, and new case detections indicate active transmission. Newly identified M. lepromatosis, closely related to M. leprae, may cause disseminated leprosy in some regions. In genome-wide screening in China, leprosy susceptibility associates with polymorphisms in seven genes, many involved with innate immunity. World Health Organization multiple drug therapy administered for 1 or 2 years effectively arrests disseminated leprosy but disability remains a public health concern. Relapse is infrequent, often associated with higher pretreatment M. leprae burdens. M. ulcerans, a re-emerging environmental organism, arose from M. marinum and acquired a virulence plasmid coding for mycolactone, a necrotizing, immunosuppressive toxin. Geographically, there are multiple strains of M. ulcerans, with variable pathogenicity and immunogenicity. Molecular epidemiology is describing M. ulcerans evolution and genotypic variants. First-line therapy for Buruli ulcer is rifampin + streptomycin, sometimes with surgery, but improved regimens are needed. SUMMARY Leprosy and Buruli ulcer are important infections with significant public health implications. Modern research is providing new insights into molecular epidemiology and pathogenesis, boding well for improved control strategies.
Collapse
|
22
|
Balonova L, Hernychova L, Mann BF, Link M, Bilkova Z, Novotny MV, Stulik J. Multimethodological approach to identification of glycoproteins from the proteome of Francisella tularensis, an intracellular microorganism. J Proteome Res 2010; 9:1995-2005. [PMID: 20175567 DOI: 10.1021/pr9011602] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It appears that most glycoproteins found in pathogenic bacteria are associated with virulence. Despite the recent identification of novel virulence factors, the mechanisms of virulence in Francisella tularensis are poorly understood. In spite of its importance, questions about glycosylation of proteins in this bacterium and its potential connection with bacterial virulence have not been answered yet. In the present study, several putative Francisella tularensis glycoproteins were characterized through the combination of carbohydrate-specific detection and lectin affinity with highly sensitive mass spectrometry utilizing the bottom-up proteomic approach. The protein PilA that was recently found as being possibly glycosylated, as well as other proteins with designation as novel factors of virulence, were among the proteins identified in this study. The reported data compile the list of potential glycoproteins that may serve as a takeoff platform for a further definition of proteins modified by glycans, faciliting a better understanding of the function of protein glycosylation in pathogenicity of Francisella tularensis.
Collapse
Affiliation(s)
- Lucie Balonova
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
23
|
Espitia C, Servín-González L, Mancilla R. New insights into protein O-mannosylation in actinomycetes. MOLECULAR BIOSYSTEMS 2010; 6:775-81. [PMID: 20567761 DOI: 10.1039/b916394h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a common post-translational modification of surface exposed proteins and lipids present in all kingdoms of life. Information derived from bacterial genome sequencing, together with proteomic and genomic analysis has allowed the identification of the enzymatic glycosylation machinery. Among prokaryotes, O-mannosylation of proteins has been found in the actinomycetes and resembles protein O-mannosylation in fungi and higher eukaryotes. In this review we summarize the main features of the biosynthetic pathway of O-mannosylation in prokaryotes with special emphasis on the actinomycetes, as well as the biological role of the glycosylated target proteins.
Collapse
Affiliation(s)
- Clara Espitia
- Departamento de Inmunologia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | | | | |
Collapse
|
24
|
|
25
|
Cooper AM. T cells in mycobacterial infection and disease. Curr Opin Immunol 2009; 21:378-84. [PMID: 19646851 DOI: 10.1016/j.coi.2009.06.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 05/12/2009] [Accepted: 06/27/2009] [Indexed: 11/27/2022]
Abstract
There has been an increase in our understanding of the complexity of the T cell response to mycobacterial infection recently. Improved tools have allowed the determination of the location and kinetics of naïve T cell activation in the mouse as well the variety of function of mycobacteria-specific cells in humans. There is also an increased appreciation of the balance required during mycobacterial infection between anti-bacterial activity and control of the immunopathologic response. The integration of the T cell functional data with the consequences of infection should improve rational vaccine design.
Collapse
|
26
|
González-Zamorano M, Mendoza-Hernández G, Xolalpa W, Parada C, Vallecillo AJ, Bigi F, Espitia C. Mycobacterium tuberculosis Glycoproteomics Based on ConA-Lectin Affinity Capture of Mannosylated Proteins. J Proteome Res 2009; 8:721-33. [DOI: 10.1021/pr800756a] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Margarita González-Zamorano
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Guillermo Mendoza-Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Wendy Xolalpa
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Antonio J. Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Fabiana Bigi
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| |
Collapse
|