1
|
Xi J, Zheng W, Chen M, Zou Q, Tang C, Zhou X. Genetically engineered pigs for xenotransplantation: Hopes and challenges. Front Cell Dev Biol 2023; 10:1093534. [PMID: 36712969 PMCID: PMC9878146 DOI: 10.3389/fcell.2022.1093534] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/31/2022] [Indexed: 01/14/2023] Open
Abstract
The shortage of donor resources has greatly limited the application of clinical xenotransplantation. As such, genetically engineered pigs are expected to be an ideal organ source for xenotransplantation. Most current studies mainly focus on genetically modifying organs or tissues from donor pigs to reduce or prevent attack by the human immune system. Another potential organ source is interspecies chimeras. In this paper, we reviewed the progress of the genetically engineered pigs from the view of immunologic barriers and strategies, and discussed the possibility and challenges of the interspecies chimeras.
Collapse
|
2
|
Thorgersen EB, Asvall J, Schjalm C, McAdam KE, Bruland ØS, Larsen SG, Mollnes TE. Effect of Intraperitoneal 224Radium-Labelled Microparticles on Compartmentalized Inflammation After Cytoreductive Surgery and Hypertherm Intraperitoneal Chemotherapy. Technol Cancer Res Treat 2023; 22:15330338231192902. [PMID: 37574949 PMCID: PMC10426314 DOI: 10.1177/15330338231192902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Despite extensive treatment with surgery and chemotherapy many patients with peritoneal metastases from colorectal cancer experience intraperitoneal disease relapse. The α-emitting 224radium-labelled microparticle radionuclide therapeutic Radspherin® is being explored as a novel treatment option for these patients. Radspherin® is specially designed to give local radiation to the surface of the peritoneal cavity and potentially kill remaining attached micrometastases as well as free-floating cancer cells, thus preventing future relapse. The effect of Radspherin® on the immune system is not known. Systemic and local inflammatory responses were analyzed in plasma, intraperitoneal fluid and urine collected prospectively as part of a phase 1 dose-escalation study of intraperitoneal instillation of the α-emitting therapeutic radiopharmaceutical Radspherin®, at baseline and the first 7 postoperative days from nine patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. All patients additionally received intraperitoneal instillation of Radspherin® on postoperative day 2. Complement activation products C3bc and the terminal complement complex were analyzed using enzyme-linked immunosorbent assay. Cytokines (n = 27), including interleukins, chemokines, interferons and growth factors, were analyzed using multiplex technique. The time course and magnitude of the postoperative cytokine response after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy displayed a modest systemic response in plasma, in contrast to a substantial local intraperitoneal response. After administration of Radspherin®, a significant increase (P < 0.05) in TNF and MIP-1β was observed in both plasma and peritoneal fluid, whereas IL-9 increased only in plasma and IFNγ and IL1-RA only in peritoneal fluid. Only minor changes were seen for the majority of the inflammatory markers after Radspherin® administration. Our study showed a predominately local rather than systemic inflammatory response to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Radspherin® had overall modest impact on the inflammation.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Department of Gastroenterological Surgery, Oslo University Hospital, The Radium Hospital, Oslo, Norway
| | - Jørund Asvall
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Camilla Schjalm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Karin Ekholt McAdam
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, The Radium Hospital, Oslo, Norway
| | - Stein Gunnar Larsen
- Department of Gastroenterological Surgery, Oslo University Hospital, The Radium Hospital, Oslo, Norway
| | - Tom Eirik Mollnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| |
Collapse
|
3
|
Wang HT, Maeda A, Sakai R, Lo PC, Takakura C, Jiaravuthisan P, Mod Shabri A, Matsuura R, Kodama T, Hiwatashi S, Eguchi H, Okuyama H, Miyagawa S. Human CD31 on porcine cells suppress xenogeneic neutrophil-mediated cytotoxicity via the inhibition of NETosis. Xenotransplantation 2018; 25:e12396. [PMID: 29635708 DOI: 10.1111/xen.12396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Xenotransplantation is one of the promising strategies for overcoming the shortage of organs available for transplant. However, many immunological obstructions need to be overcome for practical use. Increasing evidence suggests that neutrophils contribute to xenogeneic cellular rejection. Neutrophils are regulated by activation and inhibitory signals to induce appropriate immune reactions and to avoid unnecessary immune reactivity. Therefore, we hypothesized that the development of neutrophil-targeted therapies may have the potential for increased graft survival in xenotransplantation. METHODS A plasmid containing a cDNA insert encoding the human CD31 gene was transfected into swine endothelial cells (SEC). HL-60 cells were differentiated into neutrophil-like cells by culturing them in the presence of 1.3% dimethyl sulfoxide for 48 hours. The cytotoxicity of the differentiated HL-60 cells (dHL-60) and peripheral blood-derived neutrophils was evaluated by WST-8 assays. To investigate the mechanism responsible for hCD31-induced immunosuppression, citrullinated histone 3 (cit-H3) and phosphorylation of SHP-1 were detected by a cit-H3 enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. RESULTS A significant decrease in dHL-60 and neutrophil-mediated cytotoxicity in SEC/hCD31 compared with SEC was seen, as evidenced by a cytotoxicity assay. Furthermore, the suppression of NETosis and the induction of SHP-1 phosphorylation in neutrophils that had been co-cultured with SEC/CD31 were confirmed by cit-H3 ELISA and Western blotting with an anti-phosphorylated SHP-1. CONCLUSION These data suggest that human CD31 suppresses neutrophil-mediated xenogenic cytotoxicity via the inhibition of NETosis. As CD31 is widely expressed in a variety of inflammatory cells, human CD31-induced suppression may cover the entire xenogeneic cellular rejection, thus making the generation of human CD31 transgenic pigs very attractive for use in xenografts.
Collapse
Affiliation(s)
- Han-Tang Wang
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Maeda
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rieko Sakai
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Pei-Chi Lo
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chihiro Takakura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Afifah Mod Shabri
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rei Matsuura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tasuku Kodama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shohei Hiwatashi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Eguchi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroomi Okuyama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuji Miyagawa
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
4
|
French BM, Sendil S, Sepuru KM, Ranek J, Burdorf L, Harris D, Redding E, Cheng X, Laird C, Zhao Y, Cerel B, Rajarathnam K, Pierson RN, Azimzadeh AM. Interleukin-8 mediates neutrophil-endothelial interactions in pig-to-human xenogeneic models. Xenotransplantation 2018; 25:e12385. [PMID: 29427404 PMCID: PMC5899681 DOI: 10.1111/xen.12385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Human neutrophils are sequestered by pig lung xenografts within minutes during ex vivo perfusion. This phenomenon is not prevented by pig genetic modifications that remove xeno-antigens or added human regulatory molecules intended to down-regulate activation of complement and coagulation pathways. This study investigated whether recipient and donor interleukin-8 (IL-8), a chemokine known to attract and activate neutrophils during inflammation, is elaborated in the context of xenogeneic injury, and whether human or pig IL-8 promote the adhesion of human neutrophils in in vitro xenograft models. METHODS Plasma levels of pig, human or non-human primate (NHP) IL-8 from ex vivo pig lung perfusion experiments (n = 10) and in vivo pig-to-baboon lung transplantation in baboons (n = 22) were analysed by ELISA or Luminex. Human neutrophils stimulated with human or pig IL-8 were analysed for CD11b expression, CD18 activation, oxidative burst and adhesion to resting or TNF-activated endothelial cells (EC) evaluated under static and flow (Bioflux) conditions. For some experiments, human neutrophils were incubated with Reparixin (IL-8/CXCL8 receptor blocker) and then analysed as in the in vitro experiments mentioned above. RESULTS Plasma levels of pig IL-8 (~6113 pg/mL) increased more than human (~1235 pg/mL) between one and four hours after initiation of ex vivo lung perfusion. However, pig IL-8 levels remained consistently low (<60 pg/mL) and NHP IL-8 plasma levels increased by ~2000 pg/mL after four hours in a pig-to-baboon lung xenotransplantation. In vitro, human neutrophils' CD11b expression, CD18 activation and oxidative burst all increased in a dose-dependent manner following exposure to either pig or human IL-8, which also were associated with increased adhesion to EC in both static and flow conditions. Reparixin inhibited human neutrophil activation by both pig and human IL-8 in a dose-dependent fashion. At 0.1 mg/mL, Reparixin inhibited the adhesion of IL-8-activated human neutrophils to pAECs by 84 ± 2.5%. CONCLUSIONS Pig IL-8 increased in an ex vivo model of pig-to-human lung xenotransplantation but is not detected in vivo, whereas human or NHP IL-8 is elevated to a similar degree in both models. Both pig and human IL-8 activate human neutrophils and increase their adhesion to pig aortic ECs, a process significantly inhibited by the addition of Reparixin to human neutrophils. This work implicates IL-8, whether of pig or human origin, as a possible factor mediating in lung xenograft inflammation and injury and supports the evaluation of therapeutic targeting of this pathway in the context of xenotransplantation.
Collapse
Affiliation(s)
- Beth M. French
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Selin Sendil
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jolene Ranek
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Lars Burdorf
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Donald Harris
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Emily Redding
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Xiangfei Cheng
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Christopher Laird
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Yuming Zhao
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Benjamin Cerel
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Richard N Pierson
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| | - Agnes M. Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, and VAMC Baltimore, MD
| |
Collapse
|
5
|
The Role of NK Cells in Pig-to-Human Xenotransplantation. J Immunol Res 2017; 2017:4627384. [PMID: 29410970 PMCID: PMC5749293 DOI: 10.1155/2017/4627384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
Recruitment of human NK cells to porcine tissues has been demonstrated in pig organs perfused ex vivo with human blood in the early 1990s. Subsequently, the molecular mechanisms leading to adhesion and cytotoxicity in human NK cell-porcine endothelial cell (pEC) interactions have been elucidated in vitro to identify targets for therapeutic interventions. Specific molecular strategies to overcome human anti-pig NK cell responses include (1) blocking of the molecular events leading to recruitment (chemotaxis, adhesion, and transmigration), (2) expression of human MHC class I molecules on pECs that inhibit NK cells, and (3) elimination or blocking of pig ligands for activating human NK receptors. The potential of cell-based strategies including tolerogenic dendritic cells (DC) and regulatory T cells (Treg) and the latest progress using transgenic pigs genetically modified to reduce xenogeneic NK cell responses are discussed. Finally, we present the status of phenotypic and functional characterization of nonhuman primate (NHP) NK cells, essential for studying their role in xenograft rejection using preclinical pig-to-NHP models, and summarize key advances and important perspectives for future research.
Collapse
|
6
|
Dangi A, Luo X. Harnessing Apoptotic Cells for Transplantation Tolerance: Current Status and Future Perspectives. CURRENT TRANSPLANTATION REPORTS 2017; 4:270-279. [PMID: 29177124 PMCID: PMC5697727 DOI: 10.1007/s40472-017-0167-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The use of donor apoptotic cells is an emerging therapy for inducing transplantation tolerance. In this review, we will discuss current understanding of mechanisms of this approach, as well as crucial aspects necessary for successful translation of this approach to clinical transplantation. RECENT FINDINGS Transplantation tolerance by donor apoptotic cells is mediated by their homeostatic interaction with recipient phagocytes, and subsequent expansion of suppressor cell populations as well as inhibition of effector T cells via deletion and anergy. To ensure their tolerogenicity, it is critical to procure non-stressed donor cells, and to induce and arrest their apoptosis at the appropriate stage prior to their administration. Equally important is the monitoring of dynamics of recipient immunological status, and its influences on tolerance efficacy and longevity. Emerging concepts and technologies may significantly streamline tolerogen manufacture and delivery of this approach, and smooth its transition to clinical application. SUMMARY Hijacking homeostatic clearance of donor apoptotic cells is a promising strategy for transplantation tolerance. Timing is now mature for concerted efforts for transitioning this strategy to clinical transplantation.
Collapse
Affiliation(s)
- Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
7
|
|
8
|
Cheng W, Zhao H, Yu H, Xin J, Wang J, Zeng L, Yuan Z, Qing Y, Li H, Jia B, Yang C, Shen Y, Zhao L, Pan W, Zhao HY, Wang W, Wei HJ. Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer. Reprod Biol Endocrinol 2016; 14:77. [PMID: 27821126 PMCID: PMC5100250 DOI: 10.1186/s12958-016-0212-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND α1,3-Galactosyltransferase (GGTA1) is essential for the biosynthesis of glycoproteins and therefore a simple and effective target for disrupting the expression of galactose α-1,3-galactose epitopes, which mediate hyperacute rejection (HAR) in xenotransplantation. Miniature pigs are considered to have the greatest potential as xenotransplantation donors. A GGTA1-knockout (GTKO) miniature pig might mitigate or prevent HAR in xenotransplantation. METHODS Transcription activator-like effector nucleases (TALENs) were designed to target exon 6 of porcine GGTA1 gene. The targeting activity was evaluated using a luciferase SSA recombination assay. Biallelic GTKO cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs following transfection by electroporation with TALEN plasmids. One cell line was selected as donor cell line for somatic cell nuclear transfer (SCNT) for the generation of GTKO pigs. GTKO aborted fetuses, stillborn fetuses and live piglets were obtained. Genotyping of the collected cloned individuals was performed. The Gal expression in the fibroblasts and one piglet was analyzed by fluorescence activated cell sorting (FACS), confocal microscopy, immunohistochemical (IHC) staining and western blotting. RESULTS The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 17.1-fold higher than those of the control. Three cell lines (3/126) showed GGTA1 biallelic knockout after modification by the TALENs. The GGTA1 biallelic modified C99# cell line enabled high-quality SCNT, as evidenced by the 22.3 % (458/2068) blastocyst developmental rate of the reconstructed embryos. The reconstructed GTKO embryos were subsequently transferred into 18 recipient gilts, of which 12 became pregnant, and six miscarried. Eight aborted fetuses were collected from the gilts that miscarried. One live fetus was obtained from one surrogate by caesarean after 33 d of gestation for genotyping. In total, 12 live and two stillborn piglets were collected from six surrogates by either caesarean or natural birth. Sequencing analyses of the target site confirmed the homozygous GGTA1-null mutation in all fetuses and piglets, consistent with the genotype of the donor cells. Furthermore, FACS, confocal microscopy, IHC and western blotting analyses demonstrated that Gal epitopes were completely absent from the fibroblasts, kidneys and pancreas of one GTKO piglet. CONCLUSIONS TALENs combined with SCNT were successfully used to generate GTKO Diannan miniature piglets.
Collapse
Affiliation(s)
- Wenmin Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Honghao Yu
- Research Center of Life Science, Yulin University, Yulin, 719000 China
| | - Jige Xin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Jia Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- Hunan Xeno Life Science Co., Ltd, Changsha, 410600 China
| | - Luyao Zeng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Zaimei Yuan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Yubo Qing
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Honghui Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Baoyu Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital Central-South University, Changsha, 410013 China
| | - Youfeng Shen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Lu Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Weirong Pan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Wei Wang
- Hunan Xeno Life Science Co., Ltd, Changsha, 410600 China
- Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital Central-South University, Changsha, 410013 China
| | - Hong-Jiang Wei
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- Key Laboratory of Animal Nutrition and Feed of Yunnan Province, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
9
|
Xue D, Liang Y, Duan S, He J, Su J, Zhu J, Hu N, Liu J, Zhao Y, Lu X. Enhanced anti-tumor immunity against breast cancer induced by whole tumor cell vaccines genetically modified expressing α-Gal epitopes. Oncol Rep 2016; 36:2843-2851. [PMID: 27666541 DOI: 10.3892/or.2016.5128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/27/2016] [Indexed: 11/05/2022] Open
Abstract
Whole tumor cell vaccines have shown much promise, but demonstrated poor efficiency in phase III trials. In this study, we modified MDA-MB‑231 tumor cells (MDA-MB‑231Gal+) to express α-1, 3-galactosyltransferase (α-1, 3-GT) protein, to potentially enhance antitumor effect of whole tumor cell vaccines. MDA-MB‑231 tumor cell vaccines were transfected with a reconstructed lentiviral containing α-1, 3-GT genes. Tumor growth, tumorigenesis and survival of Hu-NOD-SCID mice were observed when tumor-bearing mice were injected with tumor cell vaccines. Proliferation and apoptosis in MDA-MB‑231 tumor xenografts were observed by immunohistochemistry. The levels of cytokine secretion in the serum of mice were tested by ELISA. CD8+ T cells infiltrating tumors were assessed by flow cytometry. MDA-MB‑231Gal+ cells expressed active α-1, 3-GT and produced α-Gal in vitro. MDA-MB‑231Gal+ cell vaccines suppressed tumor growth and tumorigenesis in immunized Hu-NOD-SCID mice. Additionally, decrease of TGF-β, IL-10 and increase of INF-γ, IL-12 were observed in tumor cell vaccinated mice. Furthermore, the cell vaccines enhanced infiltration of cytotoxic CD8+ T cells in the tumor microenvironment of immunized mice. The MDA-MB‑231Gal+ cell vaccines modified α-1, 3-GT genes improved the antitumor effect.
Collapse
Affiliation(s)
- Dabing Xue
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ying Liang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Siliang Duan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian He
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Su
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianmeng Zhu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Nan Hu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianming Liu
- Department of Respiratoy Diseases, The Third Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Chemoattractant Signals and Adhesion Molecules Promoting Human Regulatory T Cell Recruitment to Porcine Endothelium. Transplantation 2016; 100:753-62. [PMID: 26720299 DOI: 10.1097/tp.0000000000001034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human CD4+CD25+Foxp3+ T regulatory cells (huTreg) suppress CD4+ T cell-mediated antipig xenogeneic responses in vitro and might therefore be used to induce xenograft tolerance. The present study investigated the role of the adhesion molecules, their porcine ligands, and the chemoattractant factors that may promote the recruitment of huTreg to porcine aortic endothelial cells (PAEC) and their capacity to regulate antiporcine natural killer (NK) cell responses. METHODS Interactions between ex vivo expanded huTreg and PAEC were studied by static chemotaxis assays and flow-based adhesion and transmigration assays. In addition, the suppressive function of huTreg on human antiporcine NK cell responses was analyzed. RESULTS The TNFα-activated PAEC released factors that induce huTreg chemotaxis, partially inhibited by antihuman CXCR3 blocking antibodies. Coating of PAEC with human CCL17 significantly increased the transmigration of CCR4+ huTreg under physiological shear stress. Under static conditions, transendothelial Treg migration was inhibited by blocking integrin sub-units (CD18, CD49d) on huTreg, or their respective porcine ligands intercellular adhesion molecule 2 (CD102) and vascular cell adhesion molecule 1 (CD106). Finally, huTreg partially suppressed xenogeneic human NK cell adhesion, NK cytotoxicity and degranulation (CD107 expression) against PAEC; however, this inhibition was modest, and there was no significant change in the production of IFNγ. CONCLUSIONS Recruitment of huTreg to porcine endothelium depends on particular chemokine receptors (CXCR3, CCR4) and integrins (CD18 and CD49d) and was increased by CCL17 coating. These results will help to develop new strategies to enhance the recruitment of host huTreg to xenogeneic grafts to regulate cell-mediated xenograft rejection including NK cell responses.
Collapse
|
11
|
Kourtzelis I, Ferreira A, Mitroulis I, Ricklin D, Bornstein SR, Waskow C, Lambris JD, Chavakis T. Complement inhibition in a xenogeneic model of interactions between human whole blood and porcine endothelium. Horm Metab Res 2015; 47:36-42. [PMID: 25350518 PMCID: PMC4383746 DOI: 10.1055/s-0034-1390452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Xenotransplantation (xeno-Tx) is considered as an alternative solution to overcome the shortage of human donor organs. However, the success of xeno-Tx is hindered by immune reactions against xenogeneic cells (e. g. of porcine origin). More specifically, activation of innate immune mechanisms such as complement and triggering of the coagulation cascade occur shortly after xeno-Tx, and adhesion of human leukocytes to porcine endothelium is another early critical step mediating the immune attack. To investigate the therapeutic potential of complement inhibition in the context of xenogeneic interactions, we have employed a whole-blood model in the present study. Incubation of human blood with porcine endothelial cells (PAECs) led to activation of complement and coagulation as well as to increased leukocyte adhesion. The observed responses can be attributed to the pig-to-human xenogeneicity, since the presence of human endothelium induced a minor cellular and plasmatic inflammatory response. Importantly, complement inhibition using a potent complement C3 inhibitor, compstatin analogue Cp40, abrogated the adhesion of leukocytes and, more specifically, the attachment of neutrophils to porcine endothelium. Moreover, Cp40 inhibited the activation of PAECs and leukocytes, since the levels of the adhesion molecules E-selectin, ICAM-1, ICAM-2, and VCAM-1 on PAECs and the surface expression of integrin CD11b on neutrophils were significantly decreased. Along the same line, inhibition of CD11b resulted in decreased leukocyte adhesion. Taken together, our findings provide a better understanding of the mechanisms regulating the acute innate immune complications in the context of xeno-Tx and could pave the way for complement-targeting therapeutic interventions.
Collapse
Affiliation(s)
- I. Kourtzelis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
| | - A. Ferreira
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
| | - I. Mitroulis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - D. Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S. R. Bornstein
- Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
| | - C. Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute of Immunology, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - J. D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T. Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Kourtzelis I, Magnusson PU, Kotlabova K, Lambris JD, Chavakis T. Regulation of Instant Blood Mediated Inflammatory Reaction (IBMIR) in Pancreatic Islet Xeno-Transplantation: Points for Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:171-88. [DOI: 10.1007/978-3-319-18603-0_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Bongoni AK, Kiermeir D, Jenni H, Bähr A, Ayares D, Klymiuk N, Wolf E, Voegelin E, Constantinescu MA, Seebach JD, Rieben R. Complement dependent early immunological responses during ex vivo xenoperfusion of hCD46/HLA-E double transgenic pig forelimbs with human blood. Xenotransplantation 2014; 21:230-43. [PMID: 24635052 DOI: 10.1111/xen.12090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Besides α1,3-galactosyltransferase gene (GGTA1) knockout, several transgene combinations to prevent pig-to-human xenograft rejection are currently being investigated. In this study, the potential of combined overexpression of human CD46 and HLA-E to prevent complement- and NK-cell-mediated xenograft rejection was tested in an ex vivo pig-to-human xenoperfusion model. METHODS α1,3-Galactosyltransferase knockout heterozygous, hCD46/HLA-E double transgenic (transgenic) as well as wild-type pig forelimbs were ex vivo perfused with whole, heparinized human and autologous pig blood, respectively. Blood samples were analyzed for the production of porcine and/or human inflammatory cytokines as well as complement activation products. Biopsy samples were examined for deposition of human and porcine C3b/c, C4b/c, and C6 as well as CD62E (E-selectin) and CD106 (VCAM-1) expression. Apoptosis was measured in the porcine muscle tissue using TUNEL assays. Finally, the formation of thrombin-antithrombin (TAT) complexes was measured in EDTA plasma samples. RESULTS No hyperacute rejection was seen in this model. Extremity perfusions lasted for up to 12 h without increase in vascular resistance and were terminated due to continuous small blood losses. Plasma levels of porcine cytokines IL1β, IL-6, IL-8, IL-10, TNF-α, and MCP-1 as well as human complement activation markers C3a (P = 0.0002), C5a (P = 0.004), and soluble C5b-9 (P = 0.03) were lower in blood perfused through transgenic as compared to wild-type limbs. Human C3b/c, C4b/c, and C6 as well as CD62E and CD106 were deposited in tissue of wild-type limbs, but significantly lower levels (P < 0.0001) of C3b/c, C4b/c, and C6 deposition as well as CD62E and CD106 expression were detected in transgenic limbs perfused with human blood. Transgenic porcine tissue was protected from xenoperfusion-induced apoptosis (P < 0.0001). Finally, TAT levels were significantly lower (P < 0.0001) in transgenic limb as compared to wild-type limb xenoperfusions. CONCLUSION Transgenic hCD46/HLA-E expression clearly reduced humoral xenoresponses since all, the terminal pathway of complement activation, endothelial cell activation, muscle cell apoptosis, inflammatory cytokine production, as well as coagulation activation, were all downregulated. Overall, this model represents a useful tool to study early immunological responses during pig-to-human vascularized xenotransplantation in the absence of hyperacute rejection.
Collapse
Affiliation(s)
- Anjan K Bongoni
- Department of Clinical Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Clinic of Plastic and Hand Surgery, University Hospital, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vadori M, Cozzi E. Immunological challenges and therapies in xenotransplantation. Cold Spring Harb Perspect Med 2014; 4:a015578. [PMID: 24616201 DOI: 10.1101/cshperspect.a015578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xenotransplantation, or the transplantation of cells, tissues, or organs between different species, was proposed a long time ago as a possible solution to the worldwide shortage of human organs and tissues for transplantation. In this setting, the pig is currently seen as the most likely candidate species. In the last decade, progress in this field has been remarkable and includes a better insight into the immunological mechanisms underlying the rejection process. Several immunological hurdles nonetheless remain, such as the strong antibody-mediated and innate or adaptive cellular immune responses linked to coagulation derangements, precluding indefinite xenograft survival. This article reviews our current understanding of the immunological mechanisms involved in xenograft rejection and the potential strategies that may enable xenotransplantation to become a clinical reality in the not-too-distant future.
Collapse
Affiliation(s)
- Marta Vadori
- CORIT (Consortium for Research in Organ Transplantation), Legnaro, 35020 Padua, Italy
| | | |
Collapse
|
15
|
Thorgersen EB, Pischke SE, Barratt-Due A, Fure H, Lindstad JK, Pharo A, Hellerud BC, Mollnes TE. Systemic CD14 inhibition attenuates organ inflammation in porcine Escherichia coli sepsis. Infect Immun 2013; 81:3173-81. [PMID: 23774598 PMCID: PMC3754210 DOI: 10.1128/iai.00390-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/10/2013] [Indexed: 12/30/2022] Open
Abstract
Sepsis is an infection-induced systemic inflammatory response syndrome. Upstream recognition molecules, like CD14, play key roles in the pathogenesis. The aim of the present study was to investigate the effect of systemic CD14 inhibition on local inflammatory responses in organs from septic pigs. Pigs (n = 34) receiving Escherichia coli-bacteria or E. coli-lipopolysaccharide (LPS) were treated with an anti-CD14 monoclonal antibody or an isotype-matched control. Lungs, liver, spleen, and kidneys were examined for bacteria and inflammatory biomarkers. E. coli and LPS were found in large amounts in the lungs compared to the liver, spleen, and kidneys. Notably, the bacterial load did not predict the respective organ inflammatory response. There was a marked variation in biomarker induction in the organs and in the effect of anti-CD14. Generally, the spleen produced the most cytokines per weight unit, whereas the liver contributed the most to the total load. All cytokines were significantly inhibited in the spleen. Interleukin-6 (IL-6) was significantly inhibited in all organs, IL-1β and IP-10 were significantly inhibited in liver, spleen, and kidneys, and tumor necrosis factor, IL-8, and PAI-1 were inhibited only in the spleen. ICAM-1 and VCAM-1 was significantly inhibited in the kidneys. Systemic CD14-inhibition efficiently, though organ dependent, attenuated local inflammatory responses. Detailed knowledge on how the different organs respond to systemic inflammation in vivo, beyond the information gained by blood examination, is important for our understanding of the nature of systemic inflammation and is required for future mediator-directed therapy in sepsis. Inhibition of CD14 seems to be a good candidate for such treatment.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Institute of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The field of heart transplantation has seen significant progress in the past 40 years. However, the breakthroughs in long-term outcome have seen stagnation in the past decade. Through advances in genomics and transcriptomics, there is hope that an era of personalized transplant therapy lies in the future. To see where heart transplantation truly fits into the long term, searching for and understanding the alternative approaches for heart failure therapy is both important and inevitable. The application of mechanical circulatory support has contributed to the largest advancement in treatment of end stage heart failure. It has already been approved for destination therapy of heart failure, and greater portability and ease of use of the device will be the future trend. Although it is still not prime time for stem cell therapy, clinical experiences have already suggested its potential therapeutic effects. And finally, whole organ engineering is on the horizon as new techniques have opened the way for this to proceed. In the end, progress on alternative therapies largely depends on our deeper understanding of the mechanisms of heart failure and how to prevent it.
Collapse
|
17
|
Lee KG, Lee H, Ha JM, Lee YK, Kang HJ, Park CG, Kim SJ. Increased human tumor necrosis factor-α levels induce procoagulant change in porcine endothelial cells in vitro. Xenotransplantation 2012; 19:186-95. [PMID: 22702470 DOI: 10.1111/j.1399-3089.2012.00704.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Intravascular thrombosis and systemic coagulation abnormalities are major hurdles to successful xenotransplantation and are signs of acute humoral rejection. Increased expression of tissue factor (TF) is associated with the development of microvascular thrombosis in xenografts. To develop an effective strategy to prevent accelerated coagulation in xenografts, we investigated the mechanism by which porcine endothelial cells (PECs) become procoagulant after contact with human blood. METHODS The changes in TF mRNA levels and activity in PECs after incubation with 20% human serum or human bioactive molecules, including C5a, tumor necrosis factor-α (TNFα) and interleukin (IL)-1α, were evaluated using real-time PCR and the factor Xa chromogenic assay, respectively. The procoagulant changes in PECs by these agonists were evaluated by measuring the coagulation time of human citrated plasma suspended with PECs pretreated with each agonist. TF expression and coagulation times were also assessed in PECs transfected with short interfering RNA (siRNA) designed to knock down porcine TF. We also examined the production of proinflammatory cytokines in human whole-blood or plasma after contact with PECs, which were screened using the cytometric bead array system. TNFα levels were measured using ELISA in whole-blood after contact with PECs, with or without the addition of xenoreactive antibodies or C1 esterase inhibitor. RESULTS Porcine TF mRNA and activity in PECs were up-regulated in response to human TNFα and IL-1α but were not affected by C5a or 20% human serum. Up-regulation of TF expression by human TNFα or IL-1α shortened PEC-induced coagulation time, while siRNA-mediated knockdown of TF expression prolonged coagulation time. The incubation of PECs with human whole-blood led to a significant increase in human TNFα levels in the blood, which was promoted by the addition of xenoreactive antibodies and prevented by C1 esterase inhibitor. CONCLUSIONS Human TNFα level increases in human blood after contact with PECs, which is attributed to xenoreactive antibody binding and subsequent complement activation. Human TNFα induces procoagulant changes in PECs with increased TF expression. This study suggests that human TNFα may be one of the mediators linking complement activation with procoagulant changes in the xenoendothelium.
Collapse
Affiliation(s)
- Kyoung Geun Lee
- Division of Biotechnology, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Wilhite T, Ezzelarab C, Hara H, Long C, Ayares D, Cooper DKC, Ezzelarab M. The effect of Gal expression on pig cells on the human T-cell xenoresponse. Xenotransplantation 2012; 19:56-63. [PMID: 22360754 DOI: 10.1111/j.1399-3089.2011.00691.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lack of Gal expression on pig cells is associated with a reduced primate humoral immune response as well as a reduction in cytokine production by human cells in vitro. We investigated whether lack of Gal expression is associated with reduced human T-cell response in vitro. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from healthy humans and naïve baboons. Human CD4+ and CD8+ T cells were isolated. Porcine aortic endothelial cells (pAECs) were isolated from wild-type (WT) and α1,3-galactosyltransferase gene-knockout (GTKO) pigs. WT pAECs were treated with α-galactosidase, reducing Gal expression. Swine leukocyte antigen (SLA) class I and II expression on pAECs was measured, as was T-cell proliferation and cytokine production in response to pAECs. RESULTS Reduced Gal expression on WT pAECs after α-galactosidase treatment was associated with reduced human PBMC proliferation (P<0.005). SLA class I and II expression on WT and GTKO pAECs was comparable. Human CD4+ and CD8+ T-cell proliferation was less against GTKO pAECs before (P<0.001) and after (P<0.01 and P<0.05, respectively) activation. Human and baboon PBMC proliferation was less against GTKO pAECs before (P<0.05) and after (P<0.01 and P<0.05, respectively) activation. Human PBMCs produced a comparable cytokine/chemokine response to WT and GTKO pAECs. However, there was less production of IFN-γ/TNF-α by CD4+ and IFN-γ/granzyme B/IP-10 by CD8+ T cells in response to GTKO pAECs. CONCLUSIONS The absence of Gal on pig cells is associated with reduced human T-cell proliferation (and possibly selected cytokine production). Adaptive primate T-cell responses are likely to be reduced in GTKO xenograft recipients.
Collapse
Affiliation(s)
- Tyler Wilhite
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DKC. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379:672-83. [PMID: 22019026 DOI: 10.1016/s0140-6736(11)61091-x] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shortage of organs and cells from deceased individuals continues to restrict allotransplantation. Pigs could provide an alternative source of tissue and cells but the immunological challenges and other barriers associated with xenotransplantation need to be overcome. Transplantation of organs from genetically modified pigs into non-human primates is now not substantially limited by hyperacute, acute antibody-mediated, or cellular rejection, but other issues have become more prominent, such as development of thrombotic microangiopathy in the graft or systemic consumptive coagulopathy in the recipient. To address these problems, pigs that express one or more human thromboregulatory or anti-inflammatory genes are being developed. The results of preclinical transplantation of pig cells--eg, islets, neuronal cells, hepatocytes, or corneas--are much more encouraging than they are for organ transplantation, with survival times greater than 1 year in all cases. Risk of transfer of an infectious microorganism to the recipient is small.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hara H, Koike N, Long C, Piluek J, Roh DS, SundarRaj N, Funderburgh JL, Mizuguchi Y, Isse K, Phelps CJ, Ball SF, Ayares DL, Cooper DKC. Initial in vitro investigation of the human immune response to corneal cells from genetically engineered pigs. Invest Ophthalmol Vis Sci 2011; 52:5278-86. [PMID: 21596821 DOI: 10.1167/iovs.10-6947] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To compare the in vitro human humoral and cellular immune responses to wild-type (WT) pig corneal endothelial cells (pCECs) with those to pig aortic endothelial cells (pAECs). These responses were further compared with CECs from genetically engineered pigs (α1,3-galactosyltransferase gene-knockout [GTKO] pigs and pigs expressing a human complement-regulatory protein [CD46]) and human donors. METHODS The expression of Galα1,3Gal (Gal), swine leukocyte antigen (SLA) class I and class II on pCECs and pAECs, with or without activation by porcine IFN-γ, was tested by flow cytometry. Pooled human serum was used to measure IgM/IgG binding to and complement-dependent cytotoxicity (CDC) to cells from WT, GTKO, and GTKO/CD46 pigs. The human CD4(+) T-cell response to cells from WT, GTKO, GTKO/CD46 pigs and human was tested by mixed lymphocyte reaction (MLR). RESULTS There was a lower level of expression of the Gal antigen and of SLA class I and II on the WT pCECs than on the WT pAECs, resulting in less antibody binding and reduced human CD4(+) T-cell proliferation. However, lysis of the WT pCECs was equivalent to that of the pAECs, suggesting more susceptibility to injury. There were significantly weaker humoral and cellular responses to the pCECs from GTKO/CD46 pigs compared with the WT pCECs, although the cellular response to the GTKO/CD46 pCECs was greater than to the human CECs. CONCLUSIONS These data provide the first report of in vitro investigations of CECs from genetically engineered pigs and suggest that pig corneas may provide an acceptable alternative to human corneas for clinical transplantation.
Collapse
Affiliation(s)
- Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW To summarize the current knowledge of the immune response generated against xenografts stemming from alpha1,3-galactosyltransferase knockout (GalT-KO) pigs. In particular, we will address the nature of potentially remaining Gal epitopes, the role of non-Gal xenoantigens, and the cellular response directed against GalT-KO tissues. RECENT FINDINGS New findings support the view that porcine cells do not express isoglobotrihexosylceramide 3, and GalT-KO pigs, if at all, express negligible levels of Gal. The anti-non-Gal antibody response to GalT-KO cells allowed the identification of several potentially relevant porcine xenoantigens, mainly carbohydrates. Coculture of wildtype pig aortic endothelial cells but not of GalT-KO pig aortic endothelial cells with whole human blood induces the secretion of porcine and human cytokines and the upregulation of E-selectin; in contrast, the transmigration of human leukocytes across porcine endothelium is not regulated by Gal. SUMMARY New immunological problems are arising after the elimination of Gal by the generation of GalT-KO pigs; these include non-Gal antibodies and the identification of their elusive antigens, as well as cellular components of the immune system, including neutrophils, macrophages, natural killer cells, and T cells.
Collapse
|
22
|
Human leukocyte transmigration across Galalpha(1,3)Gal-negative porcine endothelium is regulated by human CD18 and CD99. Transplantation 2009; 87:491-9. [PMID: 19307784 DOI: 10.1097/tp.0b013e318195fb8d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND In pig-to-human xenotransplantation cross-species receptor interactions mediate cellular infiltration and rejection of porcine grafts. However, the mechanisms responsible for recruitment of human leukocyte subsets across porcine endothelial cells (EC) remain largely unknown. Here, we investigated the role of CD99, CD18, and Galalpha(1,3)Gal (Gal) in this process. METHODS Adhesion and transmigration of human peripheral blood mononuclear cell (PBMC) subsets on Gal and Gal porcine EC (pEC) and on human EC was analyzed using a two-compartment system separated by a permeable membrane. The mechanisms of human PBMC recruitment to pEC were investigated by blocking cell surface receptors and by differentially measuring adhesion and transendothelial migration (TEM). RESULTS Blocking of CD18, but not CD99, decreased human PBMC adhesion on pEC, whereas blocking of CD18 or CD99 strongly reduced the subsequent human PBMC TEM across pEC. The inhibitory effect of CD99 blockade was slightly stronger across pEC as compared with human EC. A critical role for Gal in TEM of human monocytes, B, natural killer (NK), NK/T, and T cells was excluded by evaluating TEM across pEC derived from Gal and Gal pigs. CONCLUSIONS CD99 and CD18, but not Gal, play a critical role in human monocyte and lymphocyte TEM across pEC, and their respective porcine ligands may serve as targets to specifically inhibit human leukocyte recruitment in pig-to-human xenotransplantation.
Collapse
|
23
|
Current world literature. Curr Opin Organ Transplant 2009; 14:211-7. [PMID: 19307967 DOI: 10.1097/mot.0b013e32832ad721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
|
25
|
Suppressive efficacy and proliferative capacity of human regulatory T cells in allogeneic and xenogeneic responses. Transplantation 2008; 86:1452-62. [PMID: 19034017 DOI: 10.1097/tp.0b013e318188acb0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An understanding of the mechanisms that suppress the human anti-pig cellular response is key for xenotransplantation. We have compared the ability of human regulatory T cells (Tregs) to suppress xenogeneic and allogeneic responses in vitro. METHODS Human peripheral blood mononuclear cells (PBMC), CD4+ T cells, or CD4+ CD25- T cells were stimulated with irradiated human or wild type (WT) or alpha1,3-galactosyltransferase gene-knockout (GT-KO) pig PBMC in the presence or absence of human CD4+ CD25 high Tregs. In separate experiments, 5- (and 6)-carboxyfluorescein diacetate succinimidyl ester-labeled human CD4+ T cells were stimulated with human or pig PBMC. The expansion and precursor frequencies of allo- and xenoreactive Tregs were assessed by labeling with FoxP3 mAb and flow cytometric analysis. RESULTS The responses of human PBMC, CD4+ T cells, and CD4+ CD25- T cells to pig PBMC were stronger than to human PBMC (P<0.05). Human anti-GT-KO responses were weaker than anti-WT responses (P<0.05). Human CD4+ CD25 high Tregs suppressed proliferation of CD4+ CD25- T cells to both human and pig PBMC stimulator cells with the same efficiency. Alloreactive CD4+ CD25+ FoxP3 high responder T cells proliferated more than their xenoreactive counterparts (P<0.05), although xenoreactive CD4+ CD25+ T cells proliferated more than alloreactive cells (P<0.05). There was no difference in precursor frequency between allo- and xeno-reactive CD4+ CD25+ FoxP3 high cells. CONCLUSIONS Human T-cell responses to pig cells are stronger than to allogeneic cells. The human response to GT-KO PBMC is weaker than to WT PBMC. Although human Tregs can suppress both responses, expansion of CD4+ CD25+ FoxP3 high cells against pig PBMC is weaker than against human PBMC. More human Tregs may be required to suppress the stronger xenogeneic response.
Collapse
|